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1. Experimental section

1.1 General information

All chemicals were commercially available and used as received without further purification. 

Column chromatography was performed using 300-400 mesh silica. Nuclear magnetic resonance 

spectra were recorded on Bruker Avance 400 MHz and 500 MHz spectrometer. 1H NMR spectra 

are recorded in parts per million from tetramethylsilane. Data were reported as follows: 

chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and br = broad), 

coupling constant in Hz and integration. 13C NMR spectra were recorded in parts per million from 

tetramethylsilane. 19F NMR spectra were recorded in parts per million with fluorobenzene as 

external standard. High resolution mass spectra (HR MS) were performed using an Agilent 6546 

LC/Q-TOF mass spectrometer operated in positive ion mode. IR spectra were recorded on WQF-

510 Fourier transform infrared spectrophotometer. 

1.2 The spectrum of our lamp and the visible-light irradiation instrument 

Photochemical reaction was carried out under visible light irradiation by a blue LED at 25 oC. RLH-

18 8-position Photo Reaction System manufactured by Beijing Roger Tech Ltd. was used in this 

system. Eight 10 W blue LEDs were equipped in this Photo reactor. The blue LED's energy peak 

wavelength is 429 nm, peak width at half-height is 18.4 nm, irradiance@10 W is 236.28 mW/cm2. 

The reaction vessel is a borosilicate glass test tube and the distance between it and the lamp is 

15 mm, no filter applied.

Figure S1 The spectrum of our lamp (blue LED)
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Figure S2 The visible-light irradiation instrument

1.3 Synthesis N-methacryloyl-2-arylbenzo[d]imidazole derivatives 11
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In a round-bottomed flask (50 mL) equipped with a magnetic stirrer, a mixture of benzaldehyde 

(5.0 mmol, 578 μL ) and NaHSO3 (11.0 eq, 5.73 g) in H2O (20.0 mL) was prepared. When the 

mixture reached refluxing temperature, substituted o-phenylenediamine (5.0 mmol, 541 mg) 

was added. The resulting mixture was stirred for appropriate time. After completion of the 

reaction, the reaction mixture was vacuum filtered after cooling to room temperature by a glass 

funnel. The residues were washed by water (20 mL × 2), dried in air dry oven to give the 

corresponding products 1. 

To the solution of substituted 2-aryl-benzo[d]imidazoles (3 mmol) and DMAP (0.6 mmol, 73 mg) 

in DCM (0.5 M) was added Et3N (6 mmol, 834 μL) at 0 oC. Then methacryloyl chloride (6 mmol, 

624 mg) was added dropwise to the solution. The solution was warmed up to room temperature 

and stirred for 24-30 h. The reaction was complete according to TLC analysis, and water (20 mL) 

was added to the mixture, which was extracted with CH2Cl2 (15 mL × 3). The organic solvent was 

concentrated in vacuo. The residue was purified by flash column chromatography with Ethyl 

acetate and petroleum ether as eluent to give the products 1. 
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1.4 Synthesis N-methacryloyl-2-aryl-1H-indole derivatives 42
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In a 100 mL flask was charged with phenylhydrazine or substituted phenylhydrazine 

hydrochloride (11.0 mmol, 1.1 equiv), ketone (10.0 mmol, 1.0 equiv) and acetic acid (10 mL, 1.0 

M). After stirring for 12-24 h at 120 oC, AcOH was removed by rotory evaporation and the 

residue was portioned between saturated NaCl solution (50 mL) and EtOAc (20 mL). The aqueous 

layer was extracted with EtOAc (20 mL x 3), and the combined organic phase was washed with a 

saturated solution of brine (20 mL), the combined organic layer was dried over anhydrous 

Na2SO4, concentrated to afford the residue. The crude product was purified by column 

chromatography to afford the substituted indoles 4.

In a 100 mL flask was charged with substituted indole 4 (5 mmol, 1.0 equiv) and DMAP (1.0 

mmol, 0.2 equiv) in DCM (0.5 M). The solution was stirred at 0 oC, triethylamine (10 mmol, 2.0 

equiv) and methacryloyl chloride (10 mmol, 2.0 equiv) was added. Then acyl chloride (10 mmol) 

was added dropwise to the solution. The solution was warmed up to room temperature and 

stirred for 24-30 h. The mixture was diluted with DCM (20 mL) and saturated NH4Cl solution (20 

mL). The organic and aqueous layers were separated. The aqueous layer was extracted with DCM 

(20 mL x 3). The combined organic layer was washed with brine, dried over Na2SO4, filtered and 

concentrated in vacuo to give a residue, which was purified by flash chromatography and then 

recrystallized from PE/EtOAc to afford the products 4.
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2. Mechanism study

2.1 Light on/off experiment

N
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To a mixture of N-acryloyl-2-arylbenzimidazole 1a (0.2 mmol, 26.2 mg), N1,N1,N4,N4-

tetraphenylnaphthalene-1,4-diamine (Cat. II, 0.01 mmol, 4.62 mg) in DCM (2.0 mL) was added 

[Ph3PCF2H]+Br- 2a (0.4 mmol, 156.8 mg). The reaction mixture was stirred under the irradiation of 

10 W blue LEDs in air at room temperature and the reaction was placed in light and dark in every 

alternative 2 h. After the completion of the reaction, ethyl acetate (10 mL) was added to the 

reaction mixture, washed with saturated sodium chloride solution (10 mL  2). The organic phase 

was dried over anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by 

flash column chromatography using ethyl acetate/ petroleum ether as eluent to give the desired 

product 3a.

Entry Time (h) Light source Yield (%)

1 2 on 32

2 2 off 32

3 2 on 60

4 2 off 60

5 2 on 92

6 2 off 92

2.2 The Stern-Volmer luminescence-quenching experiment

The fluorescence emission intensities were recorded on a F-7000 FL Spectrophotometer. The 

excitation wavelength was fixed at 456 nm, and the emission wavelength was measured at 400 
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nm (emission maximum). In a typical experiment, the emission spectrum of a 2.5 × 10-4 M 

solution of Cat. II with different concentration of 1a and 2a in degassed anhydrous CH2Cl2 and 

the linear relationship between I0/I and the increasing concentration of 1a and 2a from 0 M to 

2.5 × 10-2 M.
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Fig. S3 The fluorescein with the difference concentration of 1a
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Fig. S5 Stern-Volmer luminescence-quenching experiment

2.2 HR MS spectrum of the adduct 6

Fig. S6 HR MS spectrum of the BHT-CF2H adduct 6
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2.3 HR MS spectrum of the adduct 7

Fig. S7 HR MS spectrum of the DPE-CF2H adduct 7
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3. Copies of spectra of products

 

Fig. S8 1H NMR (400 MHz) spectrum of compound 3a

N

N

O
CF2H



S10

 Fig. S9 13C NMR (101 MHz) spectrum of compound 3a
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Fig. S10 19F NMR (376 MHz) spectrum of compound 3a
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Fig. S11 1H NMR (400 MHz) spectrum of compound 3b
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Fig. S12 13C NMR (125 MHz) spectrum of compound 3b
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Fig. S13 19F NMR (470 MHz) spectrum of compound 3b
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Fig. S14 1H NMR (500 MHz) spectrum of compound 3c
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 Fig. S15 13C NMR (125 MHz) spectrum of compound 3c
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Fig. S16 19F NMR (470 MHz) spectrum of compound 3c
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Fig. S17 1H NMR (500 MHz) spectrum of compound 3d
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Fig. S18 13C NMR (125 MHz) spectrum of compound 3d
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Fig. S19 19F NMR (470 MHz) spectrum of compound 3d
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Fig. S20 1H NMR (400 MHz) spectrum of compound 3e
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 Fig. S21 13C NMR (125 MHz) spectrum of compound 3e
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Fig. S22 19F NMR (470 MHz) spectrum of compound 3e
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Fig. S23 1H NMR (400 MHz) spectrum of compound 3f
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Fig. S24 13C NMR (125 MHz) spectrum of compound 3f
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Fig. S25 19F NMR (470 MHz) spectrum of compound 3f
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Fig. S26 1H NMR (400 MHz) spectrum of compound 3g
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 Fig. S27 13C NMR (125 MHz) spectrum of compound 3g
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Fig. S28 19F NMR (470 MHz) spectrum of compound 3g
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Fig. S29 1H NMR (400 MHz) spectrum of compound 3h
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 Fig. S30 13C NMR (125 MHz) spectrum of compound 3h
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Fig. S31 19F NMR (470 MHz) spectrum of compound 3h
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Fig. S32 1H NMR (500 MHz) spectrum of compound 3i
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 Fig. S33 13C NMR (125 MHz) spectrum of compound 3i
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Fig. S34 19F NMR (470 MHz) spectrum of compound 3i
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Fig. S35 1H NMR (500 MHz) spectrum of compound 3j
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Fig. S36 13C NMR (125 MHz) spectrum of compound 3j
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Fig. S37 19F NMR (470 MHz) spectrum of compound 3j
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Fig. S38 1H NMR (500 MHz) spectrum of compound 3k
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 Fig. S39 13C NMR (125 MHz) spectrum of compound 3k
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Fig. S40 19F NMR (470 MHz) spectrum of compound 3k
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Fig. S41 1H NMR (400 MHz) spectrum of compound 3l
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 Fig. S42 13C NMR (125 MHz) spectrum of compound 3l
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Fig. S43 19F NMR (470 MHz) spectrum of compound 3l
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Fig. S44 1H NMR (500 MHz) spectrum of compound 3m
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 Fig. S45 13C NMR (125 MHz) spectrum of compound 3m
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Fig. S46 19F NMR (470 MHz) spectrum of compound 3m
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Fig. S47 1H NMR (500 MHz) spectrum of compound 3n
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Fig. S48 13C NMR (125 MHz) spectrum of compound 3n

N

N

O
CF2H



S50

Fig. S49 19F NMR (470 MHz) spectrum of compound 3n
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Fig. S50 1H NMR (500 MHz) spectrum of compound 3o
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 Fig. S51 13C NMR (125 MHz) spectrum of compound 3o
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Fig. S52 19F NMR (470 MHz) spectrum of compound 3o
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Fig. S53 1H NMR (400 MHz) spectrum of compound 3p
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 Fig. S54 13C NMR (125 MHz) spectrum of compound 3p

N

N

O
CF2H

O



S56

Fig. S55 19F NMR (470 MHz) spectrum of compound 3p
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Fig. S56 1H NMR (500 MHz) spectrum of compound 3q
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 Fig. S57 13C NMR (125 MHz) spectrum of compound 3q
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Fig. S58 19F NMR (470 MHz) spectrum of compound 3q
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Fig. S59 1H NMR (500 MHz) spectrum of compound 3r
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 Fig. S60 13C NMR (125 MHz) spectrum of compound 3r
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Fig. S61 19F NMR (470 MHz) spectrum of compound 3r
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Fig. S62 1H NMR (500 MHz) spectrum of compound 3s
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 Fig. S63 13C NMR (125 MHz) spectrum of compound 3s
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Fig. S64 19F NMR (470 MHz) spectrum of compound 3s
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Fig. S65 1H NMR (500 MHz) spectrum of compound 3t
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 Fig. S66 13C NMR (125 MHz) spectrum of compound 3t
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Fig. S67 19F NMR (470 MHz) spectrum of compound 3t
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Fig. S68 1H NMR (500 MHz) spectrum of compound 3u
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 Fig. S69 13C NMR (125 MHz) spectrum of compound 3u
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Fig. S70 19F NMR (470 MHz) spectrum of compound 3u
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Fig. S71 1H NMR (500 MHz) spectrum of compound 3v
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 Fig. S72 13C NMR (125 MHz) spectrum of compound 3v
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Fig. S73 19F NMR (470 MHz) spectrum of compound 3v
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Fig. S74 1H NMR (400 MHz) spectrum of compound 3w
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 Fig. S75 13C NMR (125 MHz) spectrum of compound 3w
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Fig. S76 19F NMR (470 MHz) spectrum of compound 3w
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Fig. S77 1H NMR (500 MHz) spectrum of compound 3x
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 Fig. S78 13C NMR (125 MHz) spectrum of compound 3x
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Fig. S79 19F NMR (470 MHz) spectrum of compound 3x
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Fig. S80 1H NMR (500 MHz) spectrum of compound 3y
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 Fig. S81 13C NMR (125 MHz) spectrum of compound 3y
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Fig. S82 19F NMR (470 MHz) spectrum of compound 3y
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Fig. S83 1H NMR (500 MHz) spectrum of compound 3z
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 Fig. S84 13C NMR (125 MHz) spectrum of compound 3z
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Fig. S85 19F NMR (470 MHz) spectrum of compound 3z
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Fig. S86 1H NMR (400 MHz) spectrum of compound 3aa

N

N

O
CF2H

CF3



S88

 Fig. S87 13C NMR (125 MHz) spectrum of compound 3aa
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Fig. S88 19F NMR (470 MHz) spectrum of compound 3aa
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Fig. S89 1H NMR (400 MHz) spectrum of compound 3ab
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 Fig. S90 13C NMR (125 MHz) spectrum of compound 3ab
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Fig. S91 19F NMR (470 MHz) spectrum of compound 3ab
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Fig. S92 1H NMR (500 MHz) spectrum of compound 5a
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 Fig. S93 13C NMR (125 MHz) spectrum of compound 5a
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Fig. S94 19F NMR (470 MHz) spectrum of compound 5a
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Fig. S95 1H NMR (500 MHz) spectrum of compound 5b
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 Fig. S96 13C NMR (125 MHz) spectrum of compound 5b
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Fig. S97 19F NMR (470 MHz) spectrum of compound 5b
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Fig. S98 1H NMR (500 MHz) spectrum of compound 5c
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 Fig. S99 13C NMR (125 MHz) spectrum of compound 5c
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Fig. S100 19F NMR (470 MHz) spectrum of compound 5c
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Fig. S101 1H NMR (500 MHz) spectrum of compound 5d
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Fig. S102 13C NMR (125 MHz) spectrum of compound 5d
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Fig. S103 19F NMR (470 MHz) spectrum of compound 5d
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Fig. S104 1H NMR (400 MHz) spectrum of compound 5e

N

O
CF2H

Ph



S106

 Fig. S105 13C NMR (125 MHz) spectrum of compound 5e

N

O
CF2H

Ph



S107

Fig. S106 19F NMR (470 MHz) spectrum of compound 5e
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Fig. S107 1H NMR (500 MHz) spectrum of compound 5f
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 Fig. S108 13C NMR (125 MHz) spectrum of compound 5f
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Fig. S109 19F NMR (470 MHz) spectrum of compound 5f
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Fig. S110 1H NMR (500 MHz) spectrum of compound 5g
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 Fig. S111 13C NMR (125 MHz) spectrum of compound 5g
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Fig. S1112 19F NMR (470 MHz) spectrum of compound 5g
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Fig. S113 1H NMR (500 MHz) spectrum of compound 5h
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 Fig. S114 13C NMR (125 MHz) spectrum of compound 5h
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Fig. S115 19F NMR (470 MHz) spectrum of compound 5h
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Fig. S116 1H NMR (500 MHz) spectrum of compound 5i
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 Fig. S117 13C NMR (125 MHz) spectrum of compound 5i
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Fig. S118 19F NMR (470 MHz) spectrum of compound 5i
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