Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of diarylsulphide/diarylselenide embedded pyrazole-fused isocoumarins and isatin/ninhydrin hydrazones via acid catalyzed solvent and temperature controlled reactions

Sayanwita Panja, a,b Arun Dhurey and Animesh Pramanik*a

Fax: +91-33-2351-9755; Tel: +91-9830107470.

E-mail: pramanikanimesh61@gmail.com

CONTENTS	PAGE NO.
General information and experimental procedure for starting material 2	S2
Starting material 2 utilized in the synthesis of compounds 3 & 4	S3
Optimization of the reaction conditions for compound 3 and 4	S4
Some additional optimization studies for compound 3	S5- S6
Library of synthesized hydrazone 3	S7
Gram-scale synthesis of compound 3h and 4n	S8
ORTEP diagram and X-ray analysis data of compound 3j and 4p	S9-S11
Spectral Data of Compound 3 and 4	S12-S27
¹ H and ¹³ C NMR spectra of compounds 3a-ab	S28-S57
¹ H and ¹³ C NMR spectra of compounds 4a-v	S58-S82
LC-MS Mass Spectrum of reaction mixture for intermediate A	S83

^aDepartment of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.

^bDepartment of Chemistry, Shahid Matangini Hazra Govt. General Degree College for Women, East Midnapore 721649, India.

Experimental section:

General information: Solvents and chemicals were sourced from commercial chemical suppliers and used without additional purification. The starting materials, specifically diaryl sulfide/selenide embedded arylhydrazones **2**, were synthesized following a previously reported procedure.^{1,2} Melting points were recorded in open capillary tubes and remained uncorrected. Column chromatography was carried out using silica gel (60-120 mesh) and neutral alumina (Merck) with hexane/ethyl acetate solvent system. Additionally, ¹H (300 & 400 MHz), ¹³C (75 & 101 MHz) and ¹⁹F (377 MHz) spectra were acquired using Bruker instrument in CDCl₃ and DMSO-d₆ NMR solvents. High-resolution mass spectra (HRMS) were obtained using the Xevo G2-S QTof instrument. Lastly, X-ray diffraction data for the crystallized compound were collected at 296 K using MoK_α radiation and the Bruker APEX-II CCD System.

Experimental procedure for the synthesis of starting material sulphenylated/selenylated arylhydrazones 2^{1,2}

$$R_{1} + Q_{1} + Q_{2} + Q_{2} + Q_{3} + Q_{4} + Q_{4} + Q_{4} + Q_{5} + Q_{5$$

Initially, arylhydrazone 2α was synthesized following a previously reported procedure using differently substituted benzaldehydes and phenylhydrazines in ethanol solvent. Subsequently, a mixture of compounds 2α (1.0 mmol, 1.0 equiv) and diversely substituted arylthiols/arylselenols 2β (1.5 mmol, 1.5 equiv) was dissolved in 2.0 ml dimethyl sulfoxide (DMSO) in a 25 ml round-bottom flask. To this pot iodine (10 mol %, 0.1 equiv) was added and then the entire reaction mixture was heated at 80°C for 4 h under N_2 atmosphere in an oil bath (monitored by TLC). After completion of the reaction, the crude mixture was quenched with 10 ml of saturated sodium thiosulfate solution and extracted twice with ethyl acetate. The collected organic layer was then dried over anhydrous Na_2SO_4 . Evaporation under reduced pressure yielded a crude mass, which was subsequently purified by column chromatography using silica gel (hexane/ethyl acetate as solvent system) to obtain starting materials 2a-x in 60-86% yield (Table S1).

Table S1: Starting materials diarylsulfide and diarylselenide containing arylhydrazones 2 utilized in the synthesis of compounds 3 & 4.²

$$2a: Ar' = -C_6H_5 (86\%) \\ 2b: Ar' = -p-Me-C_6H_4 (78\%) \\ 2c: Ar' = -p-Cl-C_6H_4 (85\%) \\ 2d: Ar' = -p-Br-C_6H_4 (80\%) \\ 2e: Ar' = -p-Br-C_6H_4 (80\%) \\ 2e: Ar' = -p-Br-C_6H_4 (80\%) \\ 2e: Ar' = -p-Br-C_6H_4 (80\%) \\ 2f: Ar' = -p-Br-C_6H_4 (80\%) \\ 2f: Ar' = -p-Br-C_6H_4 (80\%) \\ 2f: Ar' = -p-Cl-C_6H_4 (75\%) \\ 2m: Ar' = -p-Br-C_6H_4 (83\%) \\ 2f: Ar' = -p-Br-C_6H_4 (84\%) \\ 2f: Ar' = -p-Br-C_6H_4 (85\%) \\ 2f$$

References:

1 Z. T. G. Maz, S. Turanli, H. B. Caliskan, J. Fac. Pharm. Ankara., 2023, 47, 111-119.

2 A. Dhurey, S. Mandal, A. Pramanik, J. Org. Chem., 2023, 88, 5377-5390.

Table S2. Optimization of the reaction conditions for compound 3 and 4 (full studies). a,b

		[p 3: 36: 4]					
Entry	2i	Catalyst	Solvent	Temp	Time	Yield ^b (%)	Yield ^b (%
	(x mmol)	(y mol%)	(2.0 mL)	(°C)	(hr)	of 3c	of 4n
1	1.0	<i>p</i> -TSA (5.0)	EtOH	r.t.	1.0	-	<10
2	1.0	HCl (5.0)	EtOH	r.t.	1.0	-	12
3	1.0	HCl (5.0)	EtOH	78	1.0	15	-
4	1.0	$Cu(OAc)_2$ (5.0)	EtOH	78	1.0	28	-
5	1.0	FeCl ₃ (5.0)	EtOH	78	1.0	trace	-
6	1.0	CSA (5.0)	EtOH	78	1.0	45	-
7	1.0	AcOH (5.0)	EtOH	78	1.0	30	-
8	1.0	<i>p</i> -TSA (5.0)	EtOH	78	1.0	62	-
9	1.2	<i>p</i> -TSA (5.0)	EtOH	78	1.0	67	-
10	1.2	p-TSA (10.0)	EtOH	78	1.0	70	-
11	1.5	p-TSA (20.0)	EtOH	78	1.0	74	
12	1.5	p-TSA (20.0)	EtOH	78	2.0	82	-
13	1.5	<i>p</i> -TSA (20.0)	EtOH	78	3.0	85	-
14	1.5	p-TSA (20.0)	EtOH	78	4.0	81	-
15	1.5	<i>p</i> -TSA (30.0)	EtOH	78	4.0	79	-
16	2.0	p-TSA (40.0)	EtOH	78	5.0	65	-
17	1.5	-	EtOH	78	2.0	-	-
18	1.5	HCl (0.1)	DCM	r.t.	1.0	-	76
19	1.5	$H_2SO_4(0.1)$	DCM	r.t.	1.0	-	89
20	1.5	$H_2SO_4(0.1)$	CH ₃ CN	r.t.	1.0	-	74
21	1.5	$H_2SO_4(0.1)$	CHCl ₃	r.t.	1.0	-	63
22	1.5	$H_2SO_4(0.1)$	Acetone	r.t.	1.0	-	60

^aReaction conditions: **1a** (1.0 mmol) and **2i** (x mol%) were dissolved in solvent (2.0 mL) and then catalyst (y mol%) was added to the same pot. The entire reaction mixture was stirred for 1-5 h at r.t.-78°C in open-air. ^bIsolated yields. Bold row 13 & 19 indicate the optimal conditions for **3c** and **4n** respectively.

Optimization studies for the formation of isatin hydrazones 3.

To achieve the maximum yield of isatin derived sulphenylated hydrazone 3h, 5-nitroisatin **1b'** and (E)-1-(4-((4-chloromophenyl)thio)phenyl)-2-(4-methoxybenzylidene)hydrazine **2c** were taken as model substrates in the optimization study. The starting material 1b' (1.0 mmol) and hydrazone 2c (x mmol) were dissolved in 2.0 mL solvent and then the entire reaction mixture was stirred with different acid catalysts (y mol %) in open air for different time and temperatures (Table S3). Initially, the use of strong mineral acids such as conc. HCl & H₂SO₄ (5 mol % each) as catalyst in EtOH (2.0 mL) at r.t. and 78°C for 1.0 h stirring resulted very low yield of the product 3h due to charring of the reaction mixture (Table S3, entries 1-3). Thus we employed other Lewis/organic acids such as Cu(OAc)2, FeCl3, CSA, AcOH and p-TsOH (5 mol % each) successively for 1.0 h reflux (78°C) to further maximize the yield of **3h** (entries 4-8). From the above screening experiments it was observed that p-TsOH was the most efficient catalyst to deliver **3h** in ~68% yields (entry 8). Then to improve the yield of **3h** further, the amount of hydrazone **2c** was increased from 1.0 to 1.5 mmol. The results showed minimal improvement in the yield of 3h if the other reaction parameters were kept constant (Table S3, entries 9 & 10). Subsequently, upon increasing the mol % of p-TsOH and reaction time simultaneously (Table S3, entries 11-13), the best possible outcome of **3h** with ~92% yield was isolated when the reaction mixture was refluxed for 3.0 h in presence of 20 mol% p-TsOH (entry 13). The extended period of heating and use of excess amount of p-TsOH showed sudden decline in the yield of **3h** from 92% to 71%, presumably due to thermal decomposition of hydrazone 2c (entries 14-17). Expectedly, the reaction failed to generate **3h** in the absence of catalyst, thus implying the role of p-TsOH for this reaction to occur (entry 18). Several aprotic solvents such as acetone, DCM, CH₃CN, DMF and DMSO were also examined but none of these solvents were effective enough for the production of 3h in satisfactory yield (Table S3, entries 19-23). Therefore, refluxing the mixture of 5nitroisatin 1b' (1.0 mmole) and arylhydrazone 2c (1.5 mmol) in EtOH (2.0 mL) in open air

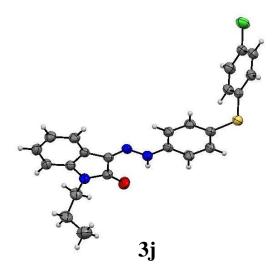
for 3.0 h at 78°C in presence of p-TsOH (20 mol %) afforded the desired product **3h** in ~92% yield (Table S3, entry 13).

Table S3 Optimization of the reaction conditions for formation of isatin hydrazones. a,b

Entry	2c (x mmol)	Catalyst (y mol %)	Solvent (2.0 mL)	Time (h)	Temp.	Yield ^b (%) of 3h
1	1.0	HCl (5.0)	EtOH	1.0	r.t.	-
2	1.0	HCl (5.0)	EtOH	1.0	78	<20
3	1.0	$H_2SO_4(5.0)$	EtOH	1.0	78	22
4	1.0	$Cu(OAc)_2(5.0)$	EtOH	1.0	78	31
5	1.0	FeCl ₃ (5.0)	EtOH	1.0	78	trace
6	1.0	CSA (5.0)	EtOH	1.0	78	43
7	1.0	AcOH (5.0)	EtOH	1.0	78	32
8	1.0	<i>p</i> -TsOH (5.0)	EtOH	1.0	78	68
9 10 11	1.2 1.5 1.5	<i>p</i> -TsOH (5.0) <i>p</i> -TsOH (5.0) <i>p</i> -TsOH (10.0)	EtOH EtOH EtOH	1.0 1.0 1.5	78 78 78	72 74 80
12	1.5	<i>p</i> -TsOH (15.0)	EtOH	2.0	78	83
13	1.5	<i>p</i> -TsOH (20.0)	EtOH	3.0	78	92
14	1.5	<i>p</i> -TsOH (20.0)	EtOH	4.0	78	90
15	1.5	<i>p</i> -TsOH (20.0)	EtOH	5.0	78	87
16	1.5	<i>p</i> -TsOH (30.0)	EtOH	3.0	78	78
17	1.5	<i>p</i> -TsOH (40.0)	EtOH	3.0	78	71
18	1.5	-	EtOH	3.0	78	-
19	1.5	<i>p</i> -TsOH (20.0)	Acetone	3.0	78	44
20	1.5	<i>p</i> -TsOH (20.0)	DCM	3.0	78	25
21 22 23	1.5 1.5 1.5	<i>p</i> -TsOH (20.0) <i>p</i> -TsOH (20.0) <i>p</i> -TsOH (20.0)	CH₃CN DMF DMSO	3.0 3.0 3.0	78 78 78	31

^aReaction conditions: Substrate **1b'** (1.0 mmol) & **2c** (x mmol) were dissolved in solvent (2.0 mL) and then catalyst (y mol %) was added to this pot. Then the entire reaction mixture was stirred at r.t.-78°C for 1.0-5.0 h. ^bYield of isolated product **3h**. Bold row 13 indicates the optimal conditions for **3h**.

Table S4 Synthesis of diarylsulphide/diarylselenide substituted ninhydrin/isatin hydrazones 3.^a


^aReaction conditions: ninhydrin **1a**/isatin **1b** (1.0 mmol) and hydrazone **2** (1.5 mmol) were dissolved in ethanol (2.0 mL) and then 20 mol% p-TSA was added to the same pot. The entire reaction mixture was refluxed at 78° C for 3 h in open-air.

Gram-scale synthesis of compound 3h.

Upon confirming the efficacy of the method through the preparation of a series of ninhydrin/isatin derived hydrazones (3) substituted with diarylsulphide/diarylselenide unit, a gram-scale synthesis was undertaken to demonstrate its practical usefulness. The desired product 3h was obtained in 87% yield ($\sim 2.22 \text{ g}$) after heating a mixture of 5-nitroisatin 1b' ($\sim 1.15 \text{ g}$, 6.0 mmol) and hydrazone 2c ($\sim 3.32 \text{ g}$, 9.0 mmol) in 10 mL ethanol in presence of p-TSA at 78°C for 3 h.

Gram-scale synthesis of compound 4n.

Upon confirming the efficacy of the method through the preparation of a series of pyrazole-fused isocoumarins integrated with diarylsulphide/diarylselenide unit, a gram-scale synthesis was undertaken to demonstrate its practical usefulness. The desired product **4n** was obtained in 85% yield (~ 2.86 g) after stirring a mixture of ninhydrin **1a** (~1.06 g, 6.0 mmol) and hydrazone **2i** (~2.51 g, 9.0 mmol) in presence of conc. H₂SO₄ (0.1 mol%) in 10 mL DCM at r.t. for 1 h.

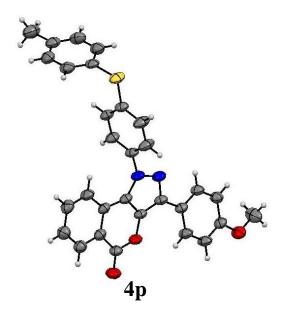


Figure S1. ORTEP diagram of X-ray crystal structure of compound **3j** (CCDC No. 2371891). The thermal ellipsoids are shown at 50% probability. Color code: blue, nitrogen; red, oxygen; yellow, sulphur; green, chlorine; grey, carbon; white, hydrogen. The crystal was grown from CHCl₃ at room temperature through slow evaporation.

Table S5. Single crystal X-ray analysis data of compound 3j

Compound	3j
Formula	C ₂₃ H ₂₀ ClN ₃ OS
Formula weight	421.93
Temperature (K)	175.29
Crystal colour	Yellow
Crystal system	Triclinic
Space group	P-1
a(Å)	5.4212(11)
b(Å)	12.849(3)
c(Å)	15.183(3)
α(°)	82.858(8)
β(°)	81.299(8)
γ(°)	87.732(9)
$V(ilde{A}^3)$	1037.1(4)
Z	2
$D_c/{ m gcm}^{-3}$	1.351
Radiation type	MoK_{α}
Radiation wave length	0.71073

μ/mm^{-1}	0.304
F(000)	440.0
Crystal size/mm ³	$0.18 \times 0.1 \times 0.03$
R(int)	0.0665
R(sigma)	0.0761
Total reflections	11618
Independent reflections	4541
2Θ range for data collection/°	5.994 to 54.496
Index ranges	$-6 \le h \le 6$, $-16 \le k \le 16$, $-19 \le l \le 19$
$R_1, wR_2(I \ge 2\sigma(I))$	0.0597, 0.1629
R_1, wR_2 (for all data)	0.0730, 0.1782
Goodness-of-fitonF ²	1.056
Largest diff. peak/hole / e Å ⁻³	0.41/-0.34

Figure S2. ORTEP diagram of X-ray crystal structure of compound **4p** (CCDC No. 2371892). The thermal ellipsoids are shown at 50% probability. Color code: blue, nitrogen; red, oxygen; yellow, sulphur; grey, carbon; white, hydrogen. The crystal was grown from CH₃CN+CHCl₃+Hexane at room temperature through slow evaporation.

Table S6. Single crystal X-ray analysis data of compound 4p

Compound	4p
Formula	$C_{30}H_{22}N_2O_3S$
Formula weight	490.55
Temperature (K)	298.95
Crystal colour	White
Crystal system	Triclinic
Space group	P-1
a(Å)	7.8820(11)
b(Å)	10.6903(15)
c(Å)	15.608(2)
α(°)	81.608(5)
β(°)	82.326(5)
γ(°)	68.920(5)
$V(\text{Å}^3)$	1209.3(3)
Z	2
$D_c/{ m gcm}^{-3}$	1.347
Radiation type	MoK_{α}
Radiation wavelength	0.71073
μ/mm^{-1}	0.170
F(000)	512.0
Crystal size/mm ³	$0.15\times0.1\times0.08$
R(int)	0.0824
R(sigma)	0.1006
Total reflections	15750
Independent reflections	6425
2Θ range for data collection/°	5.296 to 58.278
Index ranges	$-8 \le h \le 10, -13 \le k \le 14, -21 \le 1 \le 21$
$R_1, wR_2 (I > 2\sigma(I))$	0.0722, 0.1890
R_1, wR_2 (for all data)	0.1222, 0.2350
Goodness-of-fitonF ²	1.046
Largest diff. peak/hole / e Å ⁻³	0.40/-0.40

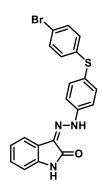
Spectral data of compounds 3:

2-(2-(4-(phenylthio)phenyl)hydrazono)-1H-indene-1,3(2H)-dione (3a): The compound was purified by column chromatography as red solid (294 mg, 82% yield) using 10% ethylacetate in hexane; m.p. 175°C; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (t, J = 4.4 Hz, 3H),

7.43-7.54 (m, 6H), 7.60-7.83 (m, 2H), 7.84-7.91 (m, 1H), 7.95-7.82 (s, 1H), 13.46 (s, 1H) ppm; ${}^{13}C\{{}^{1}H\}NMR$ (101 MHz, CDCl₃): δ 117.0, 121.0, 122.9, 123.2, 127.6, 128.9, 129.4, 131.0, 132.9, 134.2, 135.0, 135.4, 138.8, 140.3, 140.6, 186.0, 188.7 ppm; HRMS (ESI-TOF): Calcd for $[C_{21}H_{15}O_{2}N_{2}S]^{+}$ m/z

359.0855. Found 359.0880.

2-(2-(4-((4-bromophenyl)thio)phenyl)hydrazono)-1H-indene-1,3(2H)-dione (**3b):** The compound was purified by column chromatography as red solid (380 mg, 87% yield) using


15% ethylacetate in hexane; m.p. 189°C; ¹H NMR (400 MHz, CDCl₃): δ 7.19 (d, J = 10.8 Hz, 2H), 7.36-7.52 (m, 6H), 7.76-7.84 (m, 2H), 7.90 (t, J = 7.2 Hz, 1H), 7.98 (t, J = 6.8 Hz, 1H), 13.46 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 117.1, 121.1, 122.9, 123.3, 131.9, 132.3,

132.4, 132.9, 135.1, 135.2, 135.5, 138.8, 140.5, 140.7, 186.0, 188.7 ppm.; HRMS (ESI-TOF): Calcd for $[C_{21}H_{14}O_2N_2BrS]^+ m/z$ 436.9960. Found 436.9997.

2-(2-(4-((4-chlorophenyl)thio)phenyl)hydrazono)-1H-indene-1,3(2H)-dione (**3c):** The compound was purified by column chromatography as red solid (334 mg, 85% yield) using 10% ethylacetate in hexane; m.p. 185°C; ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.31 (m, 4H), 7.40 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.77-7.83 (m, 2H), 7.91 (d, J = 6.4 Hz,

1H), 7.97 (d, J = 8.0 Hz, 1H), 13.46 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 117.0, 122.9, 123.3, 129.4, 131.2, 131.9, 132.7, 132.8, 133.2, 134.3, 135.1, 135.5, 138.8, 140.4, 140.7, 185.9, 188.7 ppm.; HRMS

(ESI-TOF): Calcd for $[C_{21}H_{14}O_2N_2ClS]^+ m/z$ 393.0465. Found 393.0493.

 $(Z) \hbox{-} 3 \hbox{-} (2 \hbox{-} (4 \hbox{-} (4 \hbox{-} bromophenyl) thio) phenyl) hydrazono) in dolin-2 \hbox{-} one \ \, (3d) \hbox{:} \\$

The compound was purified by column chromatography as orange solid (322 mg, 76% yield) using 10% ethylacetate in hexane; m.p. 205°C; 1 H NMR (400 MHz, DMSO-d₆): δ 6.92 (d, J = 8.0 Hz, 1H), 7.03-7.11 (m, 3H), 7.25 (t, J = 8.0 Hz, 1H), 7.43-7.56 (m, 7H), 11.06 (s, 1H), 12.76 (s, 1H)

ppm.; ${}^{13}C\{{}^{1}H\}NMR$ (101 MHz, DMSO-d₆): δ 111.0, 115.8, 119.3, 119.6, 121.4, 122.4, 125.2, 129.2, 129.4, 130.3, 132.5, 135.3, 137.7, 140.6, 143.6, 165.7 ppm.; HRMS (ESI-TOF): Calcd for $[C_{20}H_{15}ON_3BrS]^+ m/z$, 424.0120. Found 424.0164.

(**Z**)-5-methyl-3-(2-(4-(phenylthio)phenyl)hydrazono)indolin-2-one (3e): The compound was purified by column chromatography as yellow solid (223 mg, 62% yield) using 10% ethylacetate in hexane; m.p. 192°C; 1 H NMR (300 MHz, CDCl₃): δ 2.39 (s, 3H), 6.82 (d, J =

N-NH Me N-NH 7.8 Hz, 1H), 7.07 (d, J = 7.8 Hz, 1H), 7.17 (t, J = 6.6 Hz, 2H), 7.23-7.26 (m, 3H), 7.37 (d, J = 8.7 Hz, 2H), 7.46 (t, J = 8.1 Hz, 3H), 7.85 (brs, 1H), 12.73 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 21.1, 110.0, 115.2, 119.9, 121.8, 127.0, 127.1, 127.9, 129.1, 130.0, 132.0, 132.3, 134.6, 136.1, 136.5, 142.7, 163.6 ppm.; HRMS (ESI-TOF): Calcd for [C₂₁H₁₈ON₃S]⁺ m/z 360.1108. Found 360.1143.

 $(Z) - 3 - (2 - (4 - ((4 - chlorophenyl)thio)phenyl) hydrazono) - 5 - methoxy indolin - 2 - one \\ (3f): The$

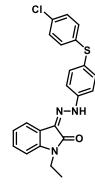
compound was purified by column chromatography as orange solid (246 mg, 60% yield) using 15% ethylacetate in hexane; m.p. 228°C; ¹H NMR (400 MHz, CDCl₃): δ 3.87 (s, 3H), 6.83 (s, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.24 (t, J = 9.2 Hz, 3H), 7.38 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.64 (brs, 1H), 12.79 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 55.92, 104.5, 111.0, 115.0, 115.3, 122.6, 127.3, 128.0, 129.1, 130.1, 132.1, 134.5, 136.4, 142.6, 156.0, 163.7 ppm.; HRMS (ESI-TOF):

Calcd for $[C_{21}H_{17}O_2N_3ClS]^+$ m/z 410.0731. Found 410.0783.

(Z)-3-(2-(4-((4-chlorophenyl)thio)phenyl)hydrazono)-5-fluoroindolin-2-one (3g): The

CI N-NH F compound was purified by column chromatography as orange solid (358 mg, 90% yield) using 10% ethylacetate in hexane; m.p. 172°C; 1 H NMR (400 MHz, CDCl₃): δ 6.86 (t, J = 6.8 Hz, 1H), 6.97 (t, J = 10.0 Hz, 1H), 7.20 (t, J = 17.6 Hz, 3H), 7.36-7.46 (m, 6H), 7.63 (brs, 1H), 12.81 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, DMSO-d₆): δ 111.1 (d, 2 J_{C-F} = 25.5 Hz), 116.7, 116.8, 120.4, 120.9, 127.5 (d, 3 J_{C-F} = 8.9 Hz), 130.9, 134.5, 135.1, 136.2, 139.8, 141.5, 141.6, 148.0, 163.2 (d, 1 J_{C-F} =

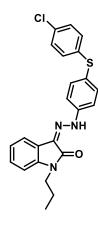
190.8 Hz), 168.4 ppm.; ${}^{19}F\{{}^{13}C\}NMR$ (377 MHz, DMSO-d₆): δ 120.2 ppm.; HRMS (ESITOF): Calcd for $[C_{20}H_{14}ON_3CIFS]^+$ m/z 398.0531. Found 398.0579.


(Z)-3-(2-(4-((4-chlorophenyl)thio)phenyl)hydrazono)-5-nitroindolin-2-one (3h): The

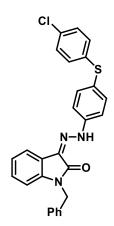
 O_2N N-NH O_2N N N N

compound was purified by column chromatography as orange solid (391 mg, 92% yield) using 25% ethylacetate in hexane; m.p. above 250°C; 1 H NMR (400 MHz, CDCl₃): δ 6.90-7.03 (m, 1H), 7.10-7.21 (m, 3H), 7.29-7.40 (m, 4H), 8.06-8.21 (m, 2H), 8.39 (t, J = 8.4 Hz, 1H), 10.92 (s, 1H), 12.83 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 110.5, 110.7, 114.6, 115.6, 120.7, 124.2, 125.8, 127.3, 128.5, 129.1, 130.5, 134.0, 135.8, 141.9, 143.2, 164.3 ppm.; HRMS (ESI-TOF): Calcd for [C₂₀H₁₄O₃N₄ClS]⁺

m/z 425.0938. Found 425.0962.


(Z)-3-(2-(4-((4-chlorophenyl)thio)phenyl)hydrazono)-1-ethylindolin-2-one (3i): The

compound was purified by column chromatography as yellow solid (347 mg, 85% yield) using 5% ethylacetate in hexane; m.p. 135° C; 1 H NMR (400 MHz, CDCl₃): δ 1.26 (t, J = 7.2 Hz, 3H), 3.76-3.82 (m, 2H), 6.85 (d, J = 8.0 Hz, 1H), 7.02-7.09 (m, 3H), 7.15 (d, J = 8.4 Hz, 2H), 7.21-7.28 (m, 3H), 7.35 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 7.6 Hz, 1H), 12.77 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 13.1, 34.2, 108.6, 115.2, 119.2, 121.1, 122.5, 126.8, 128.0, 128.4, 129.1, 130.0, 132.0, 134.6, 136.6, 140.3, 142.8,


161.9 ppm.; HRMS (ESI-TOF): Calcd for [C₂₂H₁₉ON₃ClS]⁺ *m/z* 408.0938. Found 408.0973.

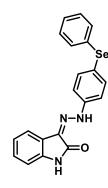
(Z)-3-(2-(4-((4-chlorophenyl)thio)phenyl)hydrazono)-1-propylindolin-2-one (3j): The

compound was purified by column chromatography as yellow solid (354 mg, 84% yield) using 5% ethylacetate in hexane; m.p. 142° C; ¹H NMR (300 MHz, CDCl₃): δ 1.02 (t, J = 10.5 Hz, 3H), 1.75-1.84 (m, 2H), 3.81 (t, J = 3.6 Hz, 2H), 6.93 (d, J = 7.2 Hz, 1H), 7.11-7.18 (m, 4H), 7.24 (d, J = 8.1 Hz, 2H), 7.29-7.38 (m, 2H), 7.45 (d, J = 6.0 Hz, 2H), 7.67 (d, J = 5.4 Hz, 1H), 12.88 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 11.4, 21.1, 41.1, 108.8, 115.2, 119.2, 121.0, 122.5, 126.8, 128.0, 128.4, 129.1, 129.3, 130.0, 132.0, 134.6, 140.7, 142.8, 162.3 ppm.; HRMS (ESI-TOF):

Calcd for $[C_{23}H_{21}ON_3CIS]^+$ m/z 422.1095. Found 422.1133.

(Z) - 1 - benzyl - 3 - (2 - (4 - ((4 - chlorophenyl)thio)phenyl) hydrazono) indolin-

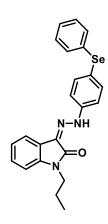
2-one (**3k**): The compound was purified by column chromatography as yellow solid (400 mg, 85% yield) using 5% ethylacetate in hexane; m.p. 138° C; ¹H NMR (400 MHz, CDCl₃): δ 5.02 (s, 2H), 6.83 (d, J = 8.0 Hz,


1H), 7.12 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 8.8 Hz, 2H), 7.24 (t, J = 8.4 Hz, 3H), 7.32-7.39 (m, 7H), 7.46 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 7.2 Hz, 1H), 12.88 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 43.2, 109.4, 115.2, 119.2, 121.1, 122.8, 127.1, 127.3, 127.7, 127.8, 128.4, 128.9, 129.1, 130.1, 132.1, 134.5, 135.6, 136.5, 140.4, 142.7, 162.2 ppm.; HRMS (ESI-TOF): Calcd for [C₂₇H₂₁ON₃ClS] $^{+}$ m/z 470.1095. Found 470.1123.

$(Z) - 3 - (2 - (4 - (4 - chlorophenyl)thio)phenyl) \\ hydrazono) - 1 - phenylindolin - 2 - one \\ (3l): The expression of the expression$

CI N-NH O Ph compound was purified by column chromatography as yellow solid (392 mg, 86% yield) using 10% ethylacetate in hexane; m.p. 132° C; 1 H NMR (300 MHz, DMSO-d₆): δ 6.88 (d, J = 7.8 Hz, 1H), 7.21 (d, J = 8.7 Hz, 3H), 7.30 (t, J = 7.8 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 7.46-7.63 (m, 9H), 7.69 (d, J = 6.3 Hz, 1H), 12.73 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, DMSO-d₆): δ 110.1, 116.2, 119.4, 120.9, 123.5, 126.1, 127.0, 127.8, 128.7, 129.3, 129.7, 130.0, 130.3, 131.4, 133.8, 135.1, 136.8, 141.5, 143.4, 160.8 ppm.; HRMS (ESI-TOF): Calcd for [C₂₆H₁₉ON₃ClS]⁺ m/z

456.0938. Found 456.0970.


(Z)-3-(2-(4-(phenylselanyl)phenyl)hydrazono)indolin-2-one (3m): The compound was

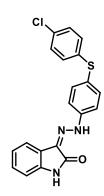
purified by column chromatography as orange solid (341 mg, 87% yield) using 10% ethylacetate in hexane; m.p. 205°C ; MNR (400 MHz, CDCl₃+DMSO-d₆): δ 6.85 (t, J = 7.2 Hz, 1H), 6.92-7.00 (m, 1H),7.11-7.18 (m, 4H), 7.23 (d, J = 5.2 Hz, 1H), 7.28-7.32 (m, 3H), 7.43-7.47 (m, 2H), 7.51 (t, J = 6.8 Hz, 1H), 9.92 (s, 1H), 12.75 (s, 1H) ppm.; ^{13}C { MNR (101 MHz, DMSO-d₆): δ 114.5, 120.7, 123.8, 125.3, 127.7, 130.3, 133.1, 134.1, 134.4, 134.9, 136.1, 140.0, 141.7, 146.6,

148.2, 166.3 ppm.; HRMS (ESI-TOF): Calcd for $[C_{20}H_{16}ON_3Se]^+$ m/z 394.0460. Found 394.0513.

(Z)-3-(2-(4-(phenylselanyl)phenyl)hydrazono)-1-propylindolin-2-one (3n): The

compound was purified by column chromatography as yellow solid (386 mg, 89% yield) using 5% ethylacetate in hexane; m.p. $135\,^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃): δ 1.01 (t, J = 7.6 Hz, 3H), 1.76-1.82 (m, 2H), 3.79 (t, J = 7.2 Hz, 2H), 6.92 (d, J = 8.0 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.25-7.34 (m, 6H), 7.42 (d, J = 6.8 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.6 Hz, 1H), 12.86 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 11.5, 21.2, 41.1, 108.8, 115.2, 119.1, 121.1, 122.5, 123.2, 126.7, 127.7, 128.2,

129.2, 131.5, 132.6, 135.7, 140.6, 142.5, 162.3 ppm.; HRMS (ESI-TOF): Calcd for $[C_{23}H_{22}ON_3Se]^+ m/z$ 436.0929. Found 436.0955.


2-(2-(4-(phenylselanyl)phenyl)hydrazono)-1H-indene-1,3(2H)-dione (3o): The compound

Se Se

was purified by column chromatography as red solid (365 mg, 90% yield) using 10% ethylacetate in hexane; m.p. $197^{\circ}\text{C};^{1}\text{H}$ NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 2.8 Hz, 2H), 7.38-7.41 (m, 1H), 7.44-7.54 (m, 6H), 7.61 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 4.4 Hz, 1H), 7.90 (d, J = 6.0 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H),13.46 (s, 1H) ppm.; $^{13}\text{C}\{^{1}\text{H}\}$ NMR (101 MHz,

CDCl₃): δ 117.0, 122.9, 123.2, 127.2, 127.6, 129.4, 131.0, 132.9, 134.2, 134.5, 135.0, 135.4, 138.8, 140.3, 140.6, 186.0, 188.7 ppm.; HRMS (ESI-TOF): Calcd for [C₂₁H₁₅O₂N₂Se]⁺ m/z 408.0299. Found 408.0354.

$(Z) - 3 - (2 - (4 - (4 - chlorophenyl)thio)phenyl) hydrazono) indolin - 2 - one \ (3p): \ \ \text{The } \ \ compound \ \)$

was purified by column chromatography as orange solid (288 mg, 76% yield) using 10% ethylacetate in hexane; m.p. 198° C; 1 H NMR (300 MHz, CDCl₃): δ 6.93 (d, J = 6.0 Hz, 1H), 7.13 (t, J = 6.0 Hz, 1H), 7.18 (d, J = 6.3 Hz, 2H), 7.24-7.27 (m, 3H), 7.38 (d, J = 6.6 Hz, 2H), 7.45 (d, J = 6.3 Hz, 2H), 7.66 (d, J = 5.7 Hz, 1H), 7.90 (brs, 1H), 12.75 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, DMSO-d₆): δ 111.0, 115.8, 119.3, 121.4, 122.4, 125.4, 129.4, 129.7, 130.2, 131.3, 135.3, 137.0, 140.6, 143.6, 145.3, 163.5

ppm.; HRMS (ESI-TOF): Calcd for $[C_{20}H_{15}ON_3ClS]^+$ m/z 380.0625. Found 380.0659.

CI S NH O NH

(Z)-4-bromo-3-(2-(4-((4-chlorophenyl)thio)phenyl)hydrazono)indolin-2-one (3q): The compound was purified by column chromatography as orange solid (344 mg, 75% yield) using 10% ethylacetate in hexane; m.p. 220°C; 1 H NMR (400 MHz, CDCl₃): δ 6.93 (d, J = 8.0 Hz, 1H), 7.11-7.19 (m, 3H), 7.24-7.26 (m, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.6 Hz, 1H), 7.78 (brs, 1H), 12.76 (s, 1H) ppm.; 13 C{ 1 H}NMR (101

MHz, CDCl₃): δ 110.3, 115.3, 119.4, 121.8, 122.8, 127.3, 127.6, 128.5, 129.1, 130.1, 132.1, 134.5, 136.4, 138.2, 142.6, 163.3 ppm.; HRMS (ESI-TOF): Calcd for [C₂₀H₁₄ON₃ClBrS]⁺ m/z 457.9730. Found 457.9764.

(**Z**)-**7-bromo-3-(2-(4-(phenylthio)phenyl)hydrazono)indolin-2-one** (**3r**): The compound was purified by column chromatography as orange solid (327 mg, 77% yield) using 15%

ethylacetate in hexane; m.p. 210°C; ¹H NMR (400 MHz, CDCl₃): δ 6.93 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.19-7.27(m, 3H), 7.29-7.31 (m, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 7.6 Hz, 1H), 7.85 (brs, 1H), 12.76 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 110.2, 115.2, 119.3, 121.8, 122.8, 126.2, 127.4, 128.1, 128.4, 129.0, 129.1, 134.2, 137.6, 138.2, 142.3, 163.4 ppm.; HRMS (ESI-TOF): Calcd for [C₂₀H₁₅ON₃BrS]⁺ m/z 424.0120. Found 424.0175.

(**Z**)-3-(2-(4-((4-bromophenyl)thio)phenyl)hydrazono)-7-chloroindolin-2-one (3s): The compound was purified by column chromatography as orange solid (358 mg, 78% yield)

Br N-NH O H

using 15% ethylacetate in hexane; m.p. 214°C; ¹H NMR (400 MHz, CDCl₃): δ 6.97-7.04 (m, 2H), 7.23-7.37 (m, 6H), 7.42-7.49 (m, 2H), 7.54 (d, J = 6.0 Hz, 1H),7.68 (s, 1H), 12.72 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 115.5, 117.5, 123.2, 123.6, 127.0, 127.9, 128.3, 129.2, 130.5, 132.3, 134.2, 135.4, 136.0, 142.1, 162.5ppm.; HRMS (ESI-TOF): Calcd for [C₂₀H₁₄ON₃ClBrS]⁺ m/z 457.9730. Found 457.9777.

 $(Z) - 7 - chloro - 3 - (2 - (4 - ((4 - chlorophenyl) thio) phenyl) hydrazono) indolin - 2 - one \\ (3t): The$

compound was purified by column chromatography as orange solid (315 mg, 76% yield) using 15% ethylacetate in hexane; m.p. 208° C; ¹H NMR (400 MHz, CDCl₃): δ 7.08 (t, J = 7.8 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.25 (s, 3H), 7.37-7.45 (m, 4H), 7.56 (d, J = 7.6 Hz, 1H), 7.86 (brs, 1H), 12.81 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 114.6, 115.5, 117.5, 123.2, 123.5, 127.0, 127.9, 128.3, 129.2, 130.5, 132.3, 134.2, 135.4, 136.0, 142.1, 162.5 ppm.; HRMS (ESI-TOF): Calcd for [C₂₀H₁₄ON₃Cl₂S]⁺ m/z 414.0235. Found 414.0272.

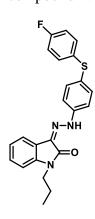
 $(Z) - 3 - (2 - (4 - (4 - chlorophenyl) thio) phenyl) hydrazono) - 5 - iodoindolin - 2 - one \qquad (3u): \qquad \text{The}$

CI N-NH N-NH compound was purified by column chromatography as orange solid (405 mg, 80% yield) using 10% ethylacetate in hexane; m.p. 235°C; 1 H NMR (300 MHz, DMSO-d₆): 6.96-6.77 (m, 3H), 7.17 (d, J = 8.7 Hz, 1H), 7.32-7.42 (m, 2H), 7.53 (t, J = 10.5 Hz, 1H), 7.62-7.65 (m, 4H), 10.66 (s, 1H), 12.70 (brs, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, DMSO-

d₆): δ 101.3, 118.2, 120.9, 132.4, 132.8, 134.4, 135.1, 138.2, 138.3, 139.6, 144.3, 144.4, 146.4, 146.5, 167.6, 176.3 ppm.; HRMS (ESI-TOF): Calcd for [C₂₀H₁₄ON₃ClIS]⁺ m/z 505.9592. Found 505.9645.

(Z)-3-(2-(4-((4-bromophenyl)thio)phenyl)hydrazono)-1-propylindolin-2-one (3v): The

Br N-NH O


compound was purified by column chromatography as yellow solid (410 mg, 88% yield) using 5% ethylacetate in hexane; m.p. 138° C; 1 H NMR (400 MHz, CDCl₃): δ 1.02 (t, J = 7.6 Hz, 3H), 1.75-1.84 (m, 2H), 3.79 (t, J = 7.2 Hz, 2H), 6.93 (d, J = 8.0 Hz, 1H), 7.09-7.17 (m, 3H), 7.31 (t, J = 7.6 Hz, 1H),7.38 (t, J = 8.4 Hz, 4H), 7.45 (d, J = 8.4 Hz, 2H),7.67 (d, J = 7.6 Hz, 1H), 12.88 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 11.5, 21.1, 41.1, 108.8, 115.2, 119.2, 119.8, 121.0, 122.5, 126.5, 128.0, 128.4, 130.1, 132.0, 134.8, 137.4, 140.7, 142.9, 162.3 ppm.; HRMS (ESI-TOF):

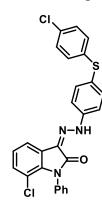
Calcd for $[C_{23}H_{21}ON_3BrS]^+$ m/z 466.0589. Found 466.0639.

(**Z**)-3-(2-(4-((2-bromophenyl)thio)phenyl)hydrazono)-1-propylindolin-2-one (3w): The compound was purified by column chromatography as yellow solid (406 mg, 87% yield)

S N-NH O using 5% ethylacetate in hexane; m.p. 148° C; ¹H NMR (300 MHz, CDCl₃): δ 1.02 (t, J = 7.5 Hz, 3H), 1.74-1.83 (m, 2H), 3.80 (t, J = 7.2 Hz, 2H), 6.81 (d, J = 9.0 Hz, 1H), 6.92-7.02 (m, 2H), 7.14 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 8.1 Hz, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.52-7.56 (m, 3H), 7.68 (d, J = 7.2 Hz, 1H), 12.91 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 6.7, 16.4, 36.4, 104.1, 110.6, 114.5, 116.2, 116.5, 117.8, 120.0, 121.7, 122.9, 123.2, 123.5, 123.7, 128.0, 131.6, 135.6, 136.0, 138.7, 157.5 ppm.; HRMS (ESI-TOF): Calcd for [C₂₃H₂₁ON₃BrS]⁺ m/z 466.0589. Found 466.0651.

(**Z**)-3-(2-(4-((4-fluorophenyl)thio)phenyl)hydrazono)-1-propylindolin-2-one (3x): The compound was purified by column chromatography as yellow solid (365 mg, 90% yield)

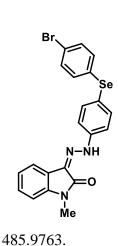
using 5% ethylacetate in hexane; m.p. 126° C; 1 H NMR (400 MHz, CDCl₃): δ 1.01 (t, J = 7.6 Hz, 3H), 1.74-1.84 (m, 2H), 3.79 (t, J = 7.2 Hz, 2H), 6.92 (d, J = 8.0 Hz, 1H), 7.01 (t, J = 8.4 Hz, 2H), 7.13 (t, J = 7.6 Hz, 1H), 7.28-7.32 (m, 5H), 7.39 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.6 Hz, 1H), 12.86 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 11.5, 21.2, 41.1, 108.8, 115.1,116.2 (d, ${}^{2}J_{\text{C-F}} = 22.0$ Hz), 119.1, 121.1, 122.5, 127.7, 128.4 (d, ${}^{3}J_{\text{C-F}} = 8.1$ Hz), 131.9, 132.0, 132.2, 133.4, 140.6, 142.3, 161.8 (d, ${}^{1}J_{\text{C-F}} = 247.2$ Hz), 162.2 ppm.;


 19 F{ 13 C}NMR (377 MHz, CDCl₃): δ 115.3 ppm.; HRMS (ESI-TOF): Calcd for $[C_{23}H_{21}ON_3FS]^+$ m/z 406.1390. Found 406.1435.

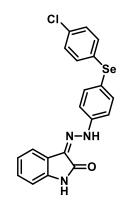
(Z)-1-propyl-3-(2-(4-(p-tolylthio)phenyl)hydrazono)indolin-2-one (3y): The compound was purified by column chromatography as orange solid (345 mg, 86% yield) using 5%

Me N-NH O ethylacetate in hexane; m.p. 120° C; ¹H NMR (400 MHz, CDCl₃): δ 1.01 (t, J = 7.6 Hz, 3H), 1.76-1.84 (m, 2H), 2.34 (s, 3H), 3.79 (t, J = 7.2 Hz, 2H), 6.92 (d, J = 7.6 Hz, 1H), 7.11-7.14 (m, 3H),7.23 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 8.4 Hz, 3H), 7.39 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.6 Hz, 1H), 12.86 (s, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 11.5, 21.070, 21.071, 41.1, 108.8, 115.0, 119.1, 121.1, 122.5, 127.5, 128.1, 129.1, 129.9, 130.3, 133.1, 133.3, 136.6, 140.5, 142.0, 162.3 ppm.; HRMS (ESI-TOF): Calcd for [C₂₄H₂₄ON₃S]⁺ m/z 402.1641. Found 402.1678.

(Z)-7-chloro-3-(2-(4-((4-chlorophenyl)thio)phenyl)hydrazono)-1-phenylindolin-2-one

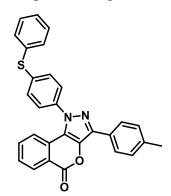

(3z): The compound was purified by column chromatography as yellow solid (417 mg, 85%

yield) using 5% ethylacetate in hexane; m.p. 128° C; 1 H NMR (400 MHz, CDCl₃): δ 6.97 (d, J = 8.8 Hz, 1H), 7.19 (d, J = 13.2 Hz, 2H), 7.25 (s, 1H), 7.39 (t, J = 8.4 Hz, 3H), 7.44-7.50 (m, 6H), 7.59 (t, J = 11.2 Hz, 2H), 7.75 (d, J = 12.0 Hz, 1H), 12.95 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 109.9, 115.3, 119.2, 121.0, 123.2, 126.3, 127.4, 127.5, 128.3, 129.1, 129.4, 129.7, 130.2, 132.1, 133.6, 134.4, 136.4, 141.0, 142.6, 161.6 ppm.; HRMS (ESI-TOF): Calcd for [C₂₆H₁₇ON₃Cl₂S]⁺ m/z


490.0548. Found 490.0583.

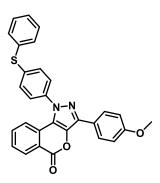
(Z)-3-(2-(4-((4-bromophenyl)selanyl)phenyl)hydrazono)-1-methylindolin-2-one (3aa):

The compound was purified by column chromatography as yellow solid (427 mg, 88% yield) using 10% ethylacetate in hexane; m.p. 142° C; 1 H NMR (400 MHz, CDCl₃): δ 3.36 (s, 3H), 6.91 (d, J = 7.6 Hz, 1H), 7.09-7.16 (m, 3H), 7.30-7.39 (m, 5H), 7.45 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 12.83 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 25.5, 108.5, 115.2, 119.1, 119.8, 120.9, 122.7, 126.5, 127.9, 128.5, 130.1, 132.0, 134.8, 137.4, 141.2, 142.9, 162.2 ppm.; HRMS (ESI-TOF): Calcd for [C₂₁H₁₇ON₃BrSe]⁺ m/z 485.9721. Found

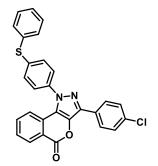

(Z)-3-(2-(4-((4-chlorophenyl)selanyl)phenyl)hydrazono)indolin-2-one (3ab): The

compound was purified by column chromatography as yellow solid (367 mg, 86% yield) using 15% ethylacetate in hexane; m.p. 138° C; H NMR (400 MHz, CDCl₃): δ 6.83-6.95 (m, 1H), 6.97-7.11 (m, 1H), 7.14-7.30 (m, 7H), 7.44-7.51 (m, 3H), 9.92 (s, 1H), 12.79 (s, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 110.6, 112.5, 115.0, 119.0, 121.5, 122.1, 122.7, 126.7, 128.3, 129.2, 131.3, 132.5, 135.7, 139.5, 142.6, 164.0 ppm.; HRMS (ESI-TOF): Calcd for [C₂₀H₁₅ON₃ClSe]⁺m/z 428.0070. Found 428.0123.

Spectral data of compounds 4:


1-(4-(phenylthio)phenyl)-3-(p-tolyl)isochromeno[4,3-c]pyrazol-5(1*H***)-one (4a):** The compound was purified by column chromatography as white solid (405 mg, 88% yield) using

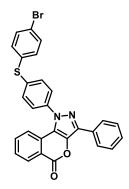
7% ethylacetate in hexane; m.p. 172° C; 1 H NMR (400 MHz, CDCl₃+DMSO-d₆): δ 2.31 (s, 3H), 7.17-7.19 (m, 3H), 7.29-7.36 (m, 4H), 7.41-7.45 (m, 5H), 7.51-7.55 (m, 2H), 7.92-7.96 (m, 2H), 8.34 (d, J=7.6 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃+DMSO-d₆): δ 21.3, 119.5, 120.9, 123.5, 126.2, 127.1, 127.3, 127.9, 128.3, 128.5, 129.3, 129.6, 129.9, 132.0, 132.9, 133.1, 134.7, 136.6, 137.6, 138.2, 138.3, 139.4, 161.4 ppm.;


HRMS (ESI-TOF): Calcd for $[C_{29}H_{21}O_2N_2S]^+$ m/z 461.1324. Found 461.1371.

$\textbf{3-} (4\text{-}methoxyphenyl) \textbf{-} \textbf{1-} (4\text{-}(phenylthio}) phenyl) is ochromeno \textbf{[4,3-c]} pyrazol\textbf{-} \textbf{5} (1H) \textbf{-} one \textbf{-} o$

(4b): The compound was purified by column chromatography as white solid (386 mg, 81% yield) using 7% ethylacetate in hexane; m.p. 198°C; ¹H NMR (400 MHz, CDCl₃): δ 3.86 (s, 3H), 6.98 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.0 Hz, 1H), 7.38-7.46 (m, 5H), 7.51-7.55 (m, 5H), 7.60 (t, J = 7.6 Hz, 1H), 8.07 (d, J = 8.4 Hz, 2H), 8.42 (d, J = 8.0 Hz, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 55.3, 114.1, 116.9, 119.6, 121.0, 122.8, 123.5, 127.2, 127.8, 128.4,

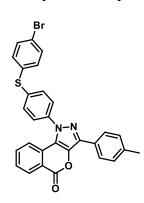
129.6, 130.1, 131.0, 132.1, 132.9, 133.3, 134.7, 136.5, 137.6, 138.4, 139.3, 159.8, 161.4 ppm.; HRMS (ESI-TOF): Calcd for $[C_{29}H_{21}O_3N_2S]^+$ m/z 477.1274. Found 477.1309.



3-(4-chlorophenyl)-1-(4-(phenylthio)phenyl)isochromeno[4,3-c]pyrazol-5(1H)-one (4c): The compound was purified by column chromatography as white solid (408 mg, 85% yield) using 5%

ethylacetate in hexane; m.p. >250°C; ¹H NMR (400 MHz, CDCl₃): δ 7.284 (d, J = 1.6 Hz, 1H), 7.40-7.45 (m, 7H), 7.50-7.57 (m, 5H), 7.62 (t, J = 6.4 Hz, 1H), 8.08 (d, J = 16.4 Hz, 2H), 8.45 (d, J = 8.0 Hz, 1H) ppm.; ${}^{13}C\{{}^{1}H\}NMR$ (101 MHz, CDCl₃): δ 119.6, 121.0, 123.8, 127.1, 127.6, 127.8, 128.5, 128.7, 128.8, 128.9, 129.7, 129.9, 132.3, 133.10, 133.2, 134.3, 134.8, 136.6, 136.8, 138.1, 139.9, 161.2 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{18}O_2N_2ClS]^+$ m/z 480.0699. Found 480.0754.

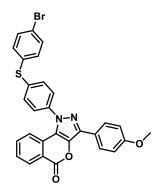
1-(4-((4-bromophenyl)thio)phenyl)-3-phenylisochromeno[4,3-c]pyrazol-5(1H)-one (4d):


The compound was purified by column chromatography as white solid (462 mg, 88% yield)

using 7% ethylacetate in hexane; m.p. 191°C; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 7.2 Hz, 1H), 7.37-7.43 (m, 3H), 7.47-7.52 (m, 4H), 7.54-7.58 (m, 5H), 7.64 (t, J = 8.0 Hz, 1H), 8.18 (d, J = 7.6 Hz, 2H), 8.48 (d, J = 7.6 Hz, 1H) ppm.; ${}^{13}C\{{}^{1}H\}NMR$ (101 MHz, CDCl₃): δ 119.8, 120.9, 122.5, 123.7, 126.5, 127.3, 127.9, 128.6, 128.73, 128.79, 130.1, 130.6, 132.3, 132.7, 132.9, 134.0, 134.7, 137.0, 137.9, 138.5, 138.7, 161.4 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{18}O_2N_2BrS]^+$ m/z 525.0273. Found 525.0309.

1-(4-((4-bromophenyl)thio)phenyl)-3-(p-tolyl)isochromeno[4,3-c]pyrazol-5(1H)-one (4e):

The compound was purified by column chromatography as white solid (442 mg, 82% yield)



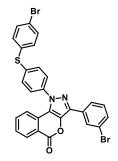
using 7% ethylacetate in hexane; m.p. 227°C; ¹H NMR (400 MHz, CDCl₃): δ 2.48 (s, 3H), 7.29-7.31 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 8.4 Hz, 5H), 7.63 (t, J = 7.6Hz, 1H), 8.07 (d, J = 7.6 Hz, 2H), 8.48 (d, J = 7.6 Hz, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 21.4, 119.8, 120.9, 122.5, 123.6, 126.4, 127.2, 127.3, 128.0, 128.6, 129.4, 130.7, 132.3, 132.7, 133.0, 134.0, 134.7, 136.9, 138.0, 138.4, 138.6, 138.8, 161.4

ppm.; HRMS (ESI-TOF): Calcd for $[C_{29}H_{20}O_2N_2BrS]^+$ m/z 539.0351. Found 539.0397.

1-(4-((4-bromophenyl)thio)phenyl)-3-(4-methoxyphenyl)isochromeno[4,3-c]pyrazol-

5(1H)-one (4f): The compound was purified by column chromatography as white solid (466

mg, 84% yield) using 7% ethylacetate in hexane; m.p. 192°C; ¹H NMR (400 MHz, DMSO-d₆): δ 3.81 (s, 3H), 7.10 (d, J = 11.6 Hz, 2H), 7.20 (d, J = 10.4 Hz, 1H), 7.45 (d, J = 11.2 Hz, 2H), 7.54 (d, J = 11.2 Hz, 2H), 7.55 (d, 11.2 Hz, 2H), 7.63-7.71 (m, 5H), 7.80 (t, J = 9.6 Hz, 1H), 7.94 (d, J= 11.6 Hz, 2H), 8.33 (d, J = 9.6 Hz, 1H) ppm.; ${}^{13}C\{{}^{1}H\}NMR$ (101)


MHz, DMSO-d₆): δ 55.6, 114.9, 119.6, 121.3, 122.0, 122.9, 124.0, 127.7, 127.8, 128.1, 129.5, 131.3, 132.0, 133.2, 133.4, 134.2, 135.9, 136.3, 136.8, 137.4, 139.1, 159.9, 161.1 ppm.; HRMS (ESI-TOF): Calcd for $[C_{29}H_{20}O_3N_2BrS]^+$ m/z 555.0379. Found 555.0434.

3-(4-bromophenyl)-1-(4-((4-bromophenyl)thio)phenyl)isochromeno[4,3-c]pyrazol-

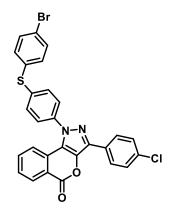
Br S N-N Br **5(1***H***)-one (4g):** The compound was purified by column chromatography as white solid (538 mg, 89% yield) using 7% ethylacetate in hexane; m.p. 185°C; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 8.4 Hz, 2H), 7.46 (t, J = 12.4 Hz, 2H), 7.53-7.57 (m, 3H),7.60-7.68 (m, 4H), 7.76 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 2H), 8.47 (d, J = 6.4 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 119.7, 120.9, 122.6, 123.8,

127.2, 127.8, 127.9, 128.6, 128.8, 129.1, 130.4, 131.1, 131.9, 132.3, 132.7, 132.8, 133.3, 134.2, 134.8, 138.5, 138.9, 161.2 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{17}O_2N_2Br_2S]^+ m/z$ 604.9358. Found 604.9402.


3-(3-bromophenyl)-1-(4-((4-bromophenyl)thio)phenyl)isochromeno[4,3-c]pyrazol-

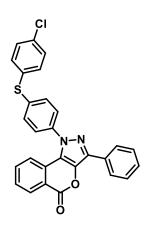
5(1*H***)-one (4h):** The compound was purified by column chromatography as white solid (508 mg, 84% yield) using 7% ethylacetate in hexane; m.p. 182° C; 1 H NMR (400 MHz, CDCl₃): δ 7.29-7.30 (m, 1H), 7.35-7.43 (m, 3H), 7.45-7.60 (m, 8H), 7.64 (t, J = 7.6 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 8.31 (s, 1H), 8.49 (d, J = 7.6 Hz, 1H)ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 119.8, 120.9, 122.6, 127.1, 127.2, 127.5, 120.5, 120.04, 120.05, 120.7, 120.0, 120.2

122.9, 123.9, 125.2, 127.1, 127.2, 127.8, 128.5, 128.84, 128.89, 129.0, 129.7, 129.9, 130.3, 130.4, 131.5, 132.4, 132.8, 133.1, 134.2, 134.8, 161.1 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{17}O_2N_2Br_2S]^+ m/z$, 604.9279. Found 604.9318.


3-(2-bromophenyl)-1-(4-((4-bromophenyl)thio)phenyl)isochromeno[4,3-c]pyrazol-

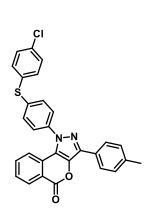
5(1*H***)-one (4i):** The compound was purified by column chromatography as white solid (483 mg, 80% yield) using 5% ethylacetate in hexane; m.p. 170°C; ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.37 (m, 4H), 7.42-7.49 (m, 2H), 7.52-7.58 (m, 4H), 7.60-7.66 (m, 3H), 7.75 (t, J = 8.4 Hz, 1H), 7.82-7.85 (m, 1H), 8.48 (t, J = 8.0 Hz, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 120.0, 121.0, 123.4, 127.2, 127.3, 127.9, 128.2, 128.8, 128.9, 129.2, 130.2, 130.5,

130.6, 130.9, 131.9, 132.3, 132.7, 133.4, 133.9, 134.7, 138.5, 138.7, 138.9, 161.2 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{17}O_2N_2Br_2S]^+ m/z$ 604.9279. Found 604.9335.


1-(4-((4-bromophenyl)thio)phenyl)-3-(4-chlorophenyl)isochromeno[4,3-c]pyrazol-5(1H)-

one (4j): The compound was purified by column chromatography as white solid (492 mg, 88% yield) using 7% ethylacetate in hexane; m.p. 240°C; 1 H NMR (400 MHz, CDCl₃+DMSO-d₆): δ 7.21-7.28 (m, 2H), 7.34-7.41 (m, 7H), 7.47-7.49 (m, 3H), 7.51-7.58 (m, 1H), 8.02-8.06 (m, 2H), 8.38-8.40 (m, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃+DMSO-d₆): δ 119.6, 120.9, 123.8, 127.1, 127.6, 127.7, 128.7, 128.8, 128.9, 129.8, 130.1, 131.8, 132.2, 134.1, 134.3, 134.6, 134.8, 136.6, 136.7, 138.4,

139.1, 161.1 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{17}O_2N_2BrClS]^+$ m/z 558.9883. Found 558.9926.


1-(4-((4-chlorophenyl)thio)phenyl)-3-phenylisochromeno[4,3-c]pyrazol-5(1H)-one (4k):

The compound was purified by column chromatography as white solid (418 mg, 87% yield) using 7% ethylacetate in hexane; m.p. 182° C; 1 H NMR (300 MHz, CDCl₃): δ 7.16-7.20 (m, 1H), 7.28-7.40 (m, 9H), 7.46-7.52 (m, 3H), 7.59 (t, J=10.8 Hz, 1H), 7.97 (d, J=6.6 Hz, 2H), 8.28 (d, J=7.8 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 124.2, 125.7, 128.4, 131.1, 131.9, 132.1, 132.5, 133.3, 133.4, 133.5, 134.5, 134.9, 135.0, 136.8, 138.7, 139.1, 139.7, 141.5, 142.2, 143.2, 143.5, 166.0 ppm.; HRMS (ESI-TOF): Calcd

for $[C_{28}H_{18}O_2N_2ClS]^+$ m/z 481.0778. Found 481.0811.

1-(4-((4-bromophenyl)thio)phenyl)-3-(p-tolyl)isochromeno[4,3-c]pyrazol-5(1H)-one (4l):

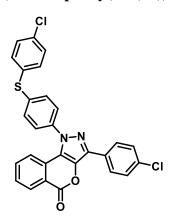
The compound was purified by column chromatography as white solid (415 mg, 77% yield) using 7% ethylacetate in hexane; m.p. 213° C; 1 H NMR (400 MHz, DMSO-d₆): δ 2.36 (s, 3H), 7.20 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.68 (t, J = 9.6 Hz, 5H),7.80 (t, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 2H), 8.32 (d, J = 8.4 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, DMSO-d₆): δ 21.4, 119.6, 121.2, 122.0, 124.0, 126.1, 127.6, 127.8, 128.1, 129.5, 129.9, 131.2, 131.9, 133.2, 133.4, 134.2, 135.8, 136.5,

136.8, 137.4, 138.5, 139.1, 161.0 ppm.; HRMS (ESI-TOF): Calcd for $[C_{29}H_{20}O_2N_2BrS]^+ m/z$ 539.0430. Found 539.0471.

$1-(4-((4-chlorophenyl)thio)phenyl)-3-(4-methoxyphenyl) is ochromeno \cite{A}, 3-c\cite{A} pyrazol-1-(4-((4-chlorophenyl)thio)phenyl)-3-(4-methoxyphenyl) is ochromeno \cite{A}, 3-c\cite{A} pyrazol-1-(4-methoxyphenyl) is ochromeno \cite{A}, 3-c\cite{A}, 3-$

5(1H)-one (4m): The compound was purified by column chromatography as white solid (419 mg, 82% yield) using 7% ethylacetate in hexane; m.p. 187°C; ¹H NMR (400 MHz, CDCl₃): δ 3.85 (s, 3H), 6.97 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.43-

7.45 (m, 3H),7.48-7.61 (m, 5H), 8.06 (d, J = 8.4 Hz, 2H), 8.40 (d, J = 7.6 Hz, 1H) ppm.; $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃): δ 55.3, 114.1, 119.6, 120.9, 122.7, 123.5, 127.3, 127.8, 127.9, 128.5, 129.8, 130.4, 132.1, 132.2, 133.8, 134.4, 134.6, 136.6, 137.7, 138.4, 138.7, 159.8, 161.3 ppm.; $^{13}C\{^{1}H\}$ DEPT- 135 NMR (101 MHz, CDCl₃): δ 55.3, 114.1, 120.9, 127.2, 127.8, 128.5, 129.8, 130.4, 132.1, 133.8, 134.6 ppm.;HRMS (ESI-TOF): Calcd for $[C_{29}H_{20}O_{3}N_{2}ClS]^{+}$ m/z 511.0884. Found 511.0942.


3-(4-bromophenyl)-1-(4-((4-chlorophenyl)thio)phenyl)isochromeno[4,3-c]pyrazol-5(1H)-

S N-N Br

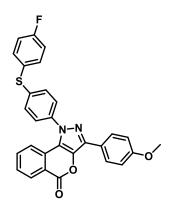
one (4n): The compound was purified by column chromatography as white solid (498 mg, 89% yield) using 7% ethylacetate in hexane; m.p. 233°C; 1 H NMR (400 MHz, DMSO-d₆): δ 7.16 (d, J = 8.0 Hz, 1H), 7.44-7.59 (m, 8H), 7.66 (d, J = 8.0 Hz, 3H), 7.78 (t, J = 7.2 Hz, 1H), 7.98 (d, J = 8.4 Hz, 2H), 8.30 (d, J = 8.0 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, DMSO-d₆): δ 121.2, 124.2, 124.3, 127.7, 127.90, 127.97, 128.0, 129.1, 129.5, 129.6, 129.7, 130.40, 130.49, 132.0, 133.0, 133.6, 135.9, 136.5, 138.4, 139.0, 157.5, 161.0 ppm.; HRMS (ESI-TOF): Calcd for

 $[C_{28}H_{17}O_2N_2BrClS]^+$ m/z 578.9883. Found 578.9951.

3-(4-chlorophenyl)-1-(4-((4-chlorophenyl)thio)phenyl)isochromeno[4,3-c]pyrazol-5(1H)-

one (4o): The compound was purified by column chromatography as white solid (438 mg, 85% yield) using 7% ethylacetate in hexane; m.p. 177° C; ¹H NMR (400 MHz, CDCl₃): δ 7.27 (d, J = 6.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.45-7.48 (m, 5H),7.53-7.58 (m, 3H), 7.64 (t, J = 8.4 Hz, 2H), 8.10 (d, J = 8.4 Hz, 2H), 8.46 (d, J = 7.6 Hz, 1H) ppm.; 13 C{¹H}NMR (101 MHz, CDCl₃): δ 119.7, 121.0, 123.8, 127.2, 127.7, 127.8, 128.7, 128.8, 128.9, 129.9, 130.2, 131.9, 132.3,

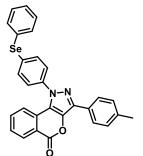
134.1, 134.4, 134.7, 134.8, 136.7, 136.8, 138.4, 139.1, 161.2 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{17}O_2N_2Cl_2S]^+$ m/z 515.0389. Found 515.0424.


3-(4-methoxyphenyl)-1-(4-(p-tolylthio)phenyl)isochromeno[4,3-c]pyrazol-5(1H)-one

(4p): The compound was purified by column chromatography as white solid (382 mg, 78% yield) using 7% ethylacetate in hexane; m.p. 203°C ; H NMR (400 MHz, CDCl₃): δ 2.42 (s,

3H), 3.88 (s, 3H), 7.01 (d, J = 8.0 Hz, 2H), 7.27 (t, J = 9.2 Hz, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.46-7.56 (m, 5H), 7.62 (t, J = 9.2 Hz, 1H), 8.10 (d, J = 8.4 Hz, 2H), 8.46 (d, J = 8.0 Hz, 1H)ppm.; 13 C 1 H 10 NMR (101 MHz, CDCl₃): δ 20.7, 55.3, 114.1, 119.7, 121.0, 122.9, 123.6, 127.1, 127.9, 128.0, 128.5, 129.03, 129.06, 130.5, 132.2, 133.8, 134.7, 136.5, 137.6, 137.9, 139.0, 140.6, 159.8, 161.5 ppm.; HRMS (ESI-TOF): Calcd for $[C_{30}H_{23}O_{3}N_{2}S]^{+}$ m/z 491.1351. Found 491.1384.

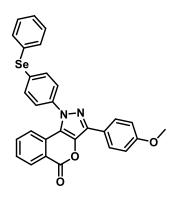
$1-(4-((4-fluor ophenyl)thio)phenyl)-3-(4-methoxyphenyl) is ochromeno \cite{A}, 3-c\cite{A} pyrazol-discount \cite{A}, 3-c\cite{A}, 3-$


5(1*H***)-one (4q):** The compound was purified by column chromatography as white solid (425 mg, 86% yield) using 7% ethylacetate in hexane; m.p. 189°C; ¹H NMR (400 MHz, CDCl₃): δ

3.87 (s, 3H), 6.99-7.06 (m, 2H), 7.14 (t, J = 8.8 Hz, 2H), 7.28 (t, J = 16.4 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 7.50-7.61 (m, 5H), 8.09 (d, J = 6.4 Hz, 2H), 8.45 (d, J = 8.0 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 55.3, 114.1, 116.6 (d, $^{2}J_{C-F} = 22.2$ Hz), 117.0, 119.7, 120.9, 122.8, 123.5, 127.2, 127.8, 128.6 (d, $^{3}J_{C-F} = 8.7$ Hz), 129.2, 131.2, 132.2, 134.7, 135.8, 136.6, 137.7, 138.2, 139.9, 159.8, 161.4, 163.0 (d, $^{1}J_{C-F} = 250.2$ Hz) ppm.; 19 F{ 13 C}NMR (377 MHz, CDCl₃): δ 111.8 ppm.; HRMS

(ESI-TOF): Calcd for $[C_{29}H_{20}O_3N_2FS]^+ m/z$ 495.1179. Found 495.1239.

1-(4-(phenylselanyl)phenyl)-3-(p-tolyl)isochromeno[4,3-c]pyrazol-5(1H)-one (4r): The

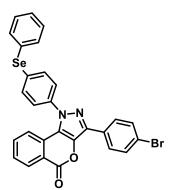


compound was purified by column chromatography as white solid (406 mg, 80% yield) using 7% ethylacetate in hexane; m.p. 220°C; 1 H NMR (400 MHz, CDCl₃): δ 2.42 (s, 3H), 7.29 (t, J = 7.6 Hz, 3H), 7.39-7.47 (m, 5H), 7.52-7.57 (m, 5H), 7.63 (t, J = 7.6 Hz, 1H), 8.07 (d, J = 7.6 Hz, 2H), 8.47 (d, J = 7.6 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃): δ 21.4, 119.7, 121.0, 123.6,

126.4, 127.2, 127.3, 128.0, 128.4, 128.6, 129.4, 129.6, 130.1, 132.2, 132.9, 133.3, 134.7, 136.8, 137.9, 138.3, 138.5, 139.5, 161.5 ppm.; $^{13}C\{^{1}H\}$ DEPT- 135 NMR (101 MHz, CDCl₃): δ 21.4, 121.0, 126.4, 127.2, 128.4, 128.6, 129.4, 129.6, 130.1, 132.2, 132.9, 134.7 ppm.; HRMS (ESI-TOF): Calcd for $[C_{29}H_{21}O_{2}N_{2}Se]^{+}$ m/z 509.0690. Found 509.0743.

3-(4-methoxyphenyl)-1-(4-(phenylselanyl)phenyl)isochromeno[4,3-c]pyrazol-5(1H)-one

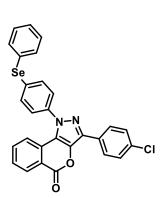
(4s): The compound was purified by column chromatography as white solid (429 mg, 82%



yield) using 7% ethylacetate in hexane; m.p. 205° C; ¹H NMR (400 MHz, CDCl₃+ DMSO-d₆): δ 3.81 (s, 3H), 7.05 (d, J = 8.4 Hz, 2H), 7.21-7.53 (m, 9H),7.73-7.94 (m, 5H), 8.23-8.33 (m, 1H) ppm.; ¹³C{¹H}NMR (101 MHz, CDCl₃+DMSO-d₆): δ 55.5, 114.6, 117.7, 119.6, 121.2, 123.0, 123.8, 127.5, 127.7, 128.8, 129.3, 129.8, 130.2, 130.5, 131.9, 132.9, 135.7, 135.8, 138.7, 140.5, 141.6, 159.9, 161.0 ppm.; HRMS (ESI-TOF): Calcd for

 $[C_{29}H_{21}O_3N_2Se]^+$ m/z 525.0718. Found 525.0757.

$\textbf{3-} (\textbf{4-bromophenyl}) \textbf{-1-} (\textbf{4-}(\textbf{phenylselanyl}) \textbf{phenyl}) \textbf{isochromeno} [\textbf{4,3-c}] \textbf{pyrazol-} \textbf{5} (\textbf{1} \textbf{\textit{H}}) \textbf{-one}$

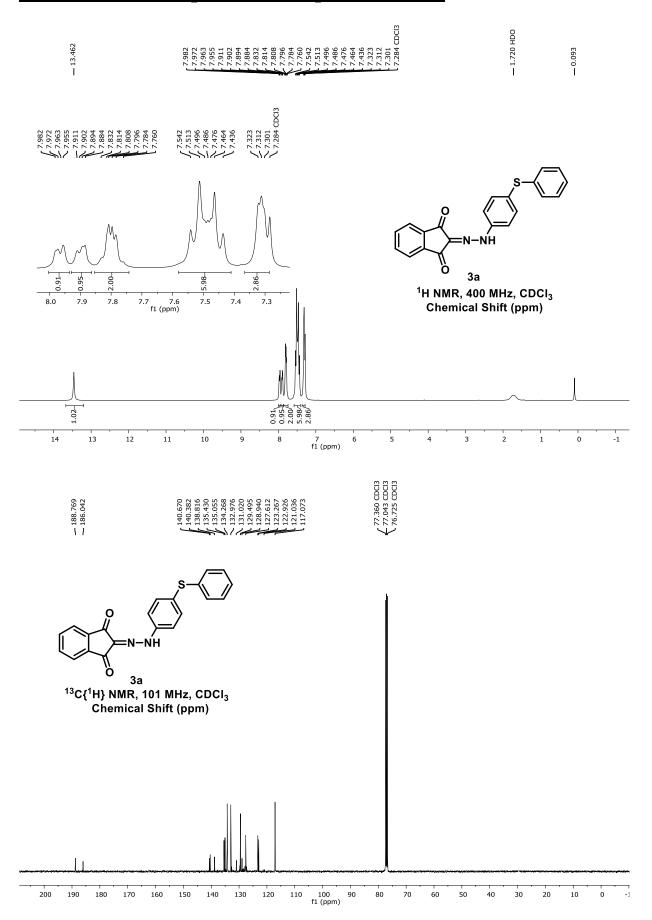

(4t): The compound was purified by column chromatography as white solid (504 mg, 88%

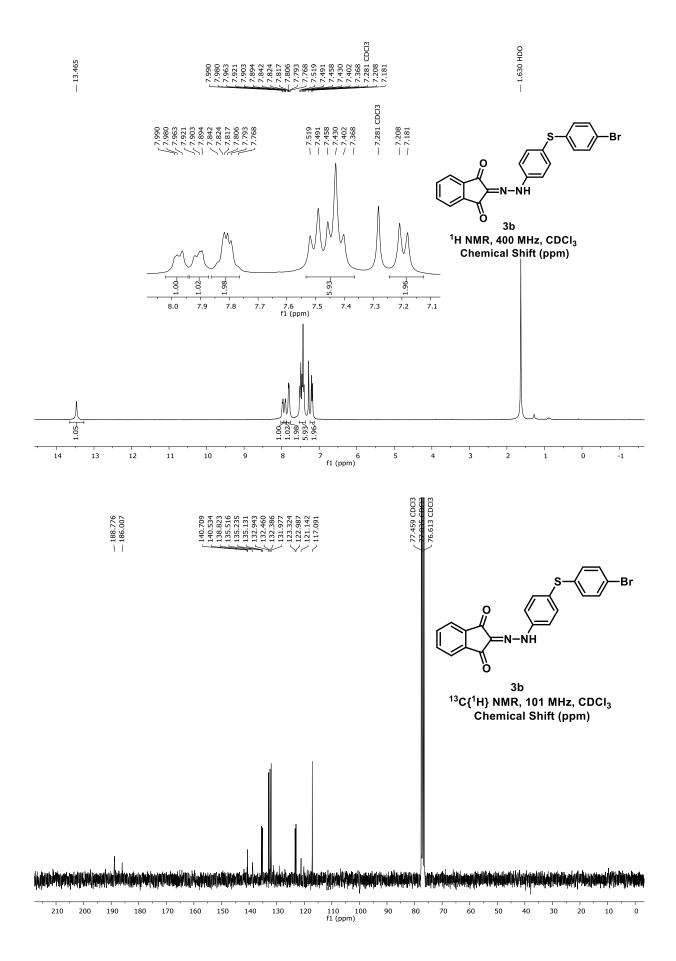
yield) using 7% ethylacetate in hexane; m.p. 187° C; 1 H NMR (400 MHz, DMSO-d₆): δ 7.20 (d, J = 8.0 Hz, 1H), 7.41-7.47 (m, 3H), 7.54 (t, J = 8.0 Hz, 4H), 7.64-7.72 (m, 5H), 7.81 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 7.6 Hz, 2H), 8.32 (d, J = 8.0 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, DMSO-d₆): δ 119.6, 121.3, 122.1, 124.1, 126.3, 127.8, 128.1, 129.1, 129.4, 129.6, 130.3, 130.5, 131.2, 132.0, 133.2, 134.3, 135.9, 136.7, 136.8, 137.6, 139.0,

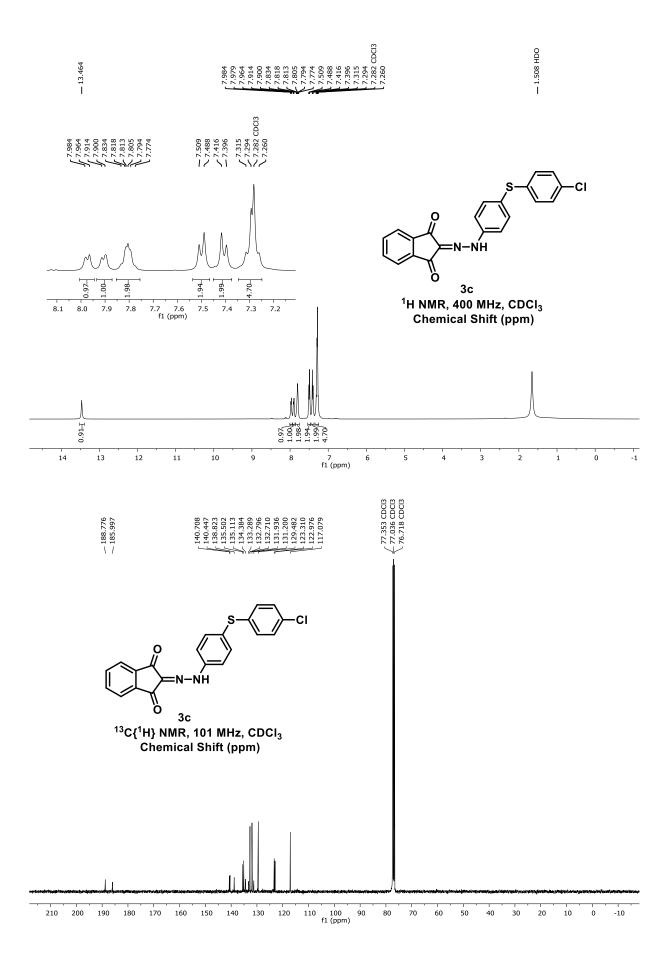
161.0 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{18}O_2N_2BrSe]^+$ m/z 572.9718. Found 572.9766.

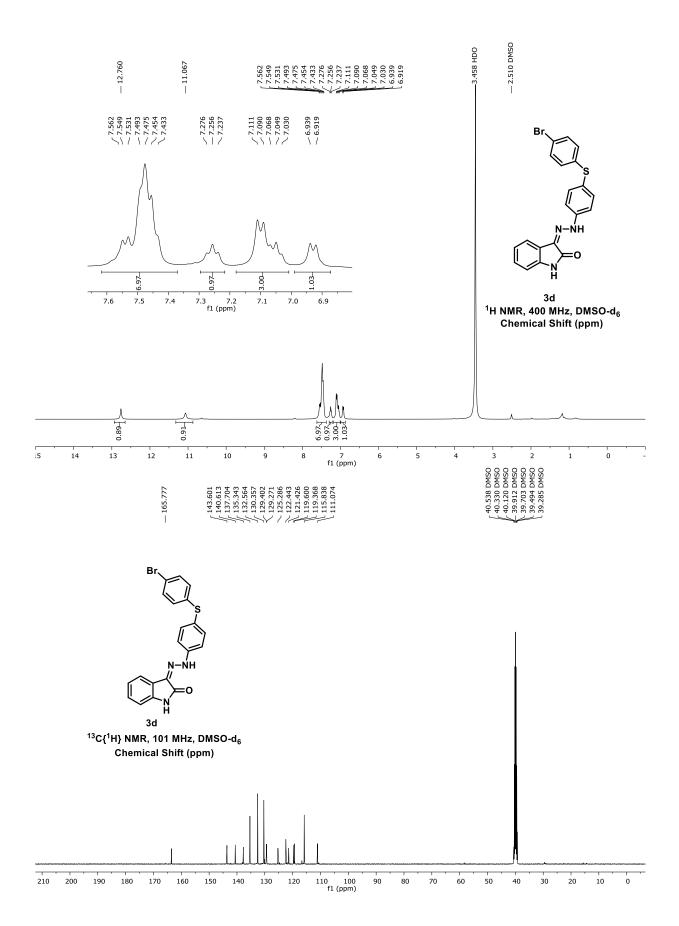
3-(4-chlorophenyl)-1-(4-(phenylselanyl)phenyl)isochromeno[4,3-c]pyrazol-5(1H)-one

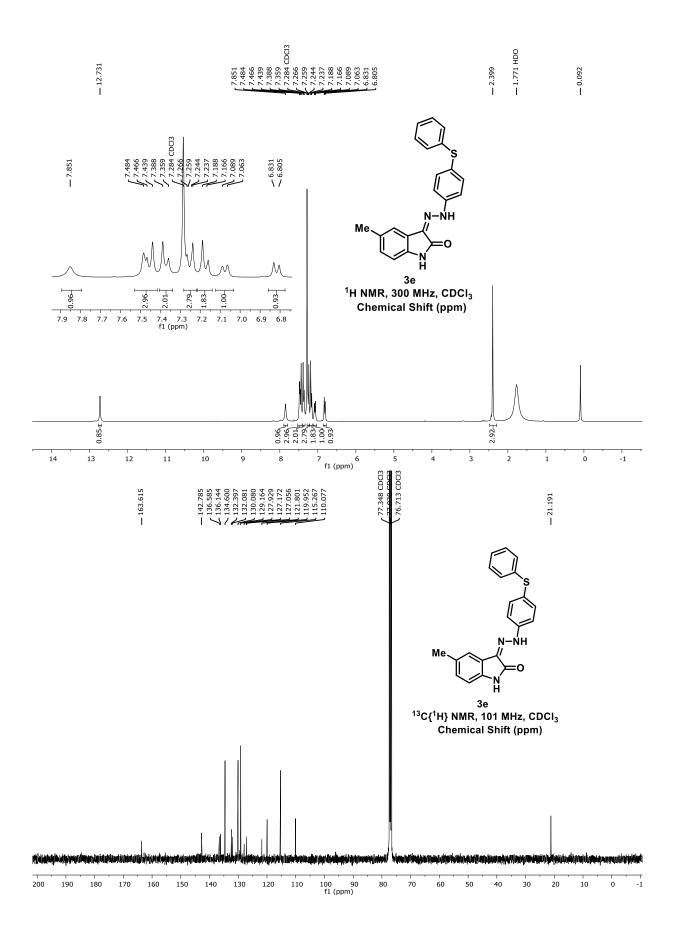
(**4u**): The compound was purified by column chromatography as white solid (470 mg, 89% yield) using 7% ethylacetate in hexane; m.p. 178°C; ¹H NMR (400 MHz, CDCl₃+DMSO-d₆): δ 7.27-7.31 (m, 1H), 7.36-7.44 (m, 7H), 7.48-7.56 (m, 5H), 7.62 (t, J = 7.6 Hz, 1H), 8.08 (d, J = 8.4 Hz, 2H), 8.44 (d, J = 8.0 Hz, 1H) ppm.; 13 C{ 1 H}NMR (101 MHz, CDCl₃+DMSO-d₆): δ 119.6, 121.0, 123.8, 127.1, 127.6, 127.8, 128.5, 128.7, 128.8, 128.9, 129.7,

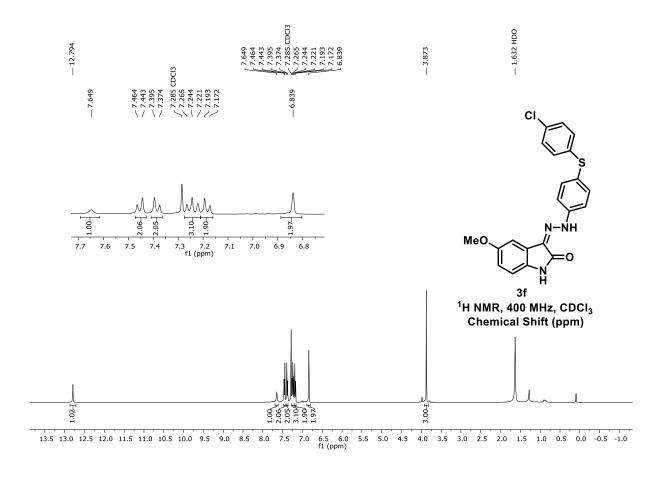

129.8, 130.5, 132.2, 133.1, 134.3, 134.8, 136.6, 136.7, 138.0, 140.0, 161.2 ppm.; HRMS (ESI-TOF): Calcd for $[C_{28}H_{18}O_2N_2ClSe]^+ m/z$ 529.0223. Found 529.0268.

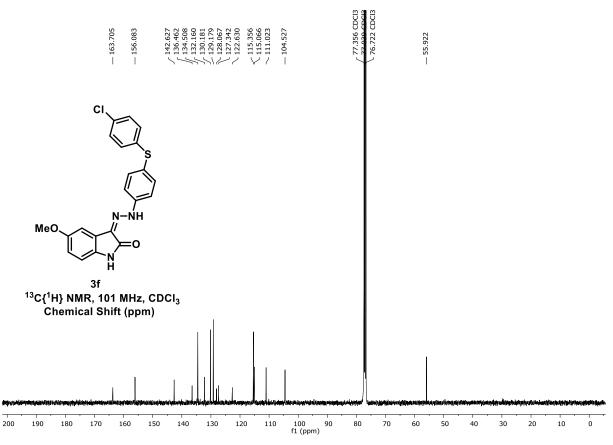

1-(4-((4-chlorophenyl)selanyl)phenyl)-3-phenylisochromeno[4,3-c]pyrazol-5(1H)-one

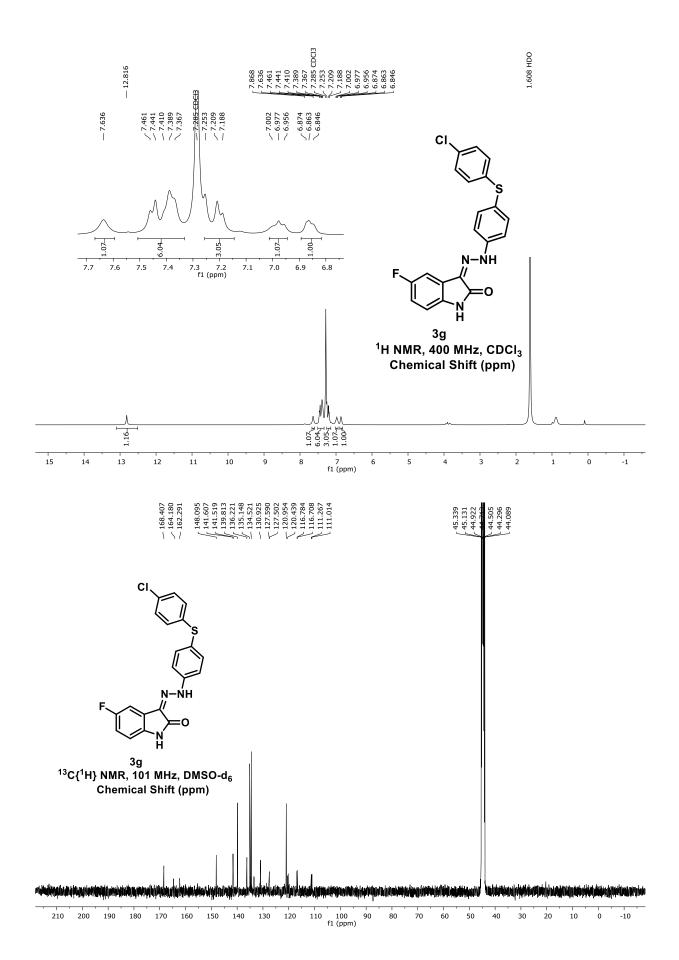

(**4v**): The compound was purified by column chromatography as white solid (459 mg, 87% yield) using 10% ethylacetate in hexane; m.p. 170°C; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, J = 8.0 Hz, 1H), 7.38-7.41 (m, 3H), 7.45-7.51 (m, 6H), 7.54-7.57 (m, 3H), 7.62 (t, J = 8.0 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 8.46 (d, J = 7.6 Hz, 1H) ppm; ¹³C{¹H}NMR (101 MHz, CDCl₃): δ 119.7, 120.9, 123.7, 126.5, 127.3, 127.9, 128.6, 128.71, 128.77, 129.8, 130.1, 130.3, 132.0, 132.3, 133.9, 134.5, 134.7, 137.0, 137.8, 138.6, 138.8, 161.3

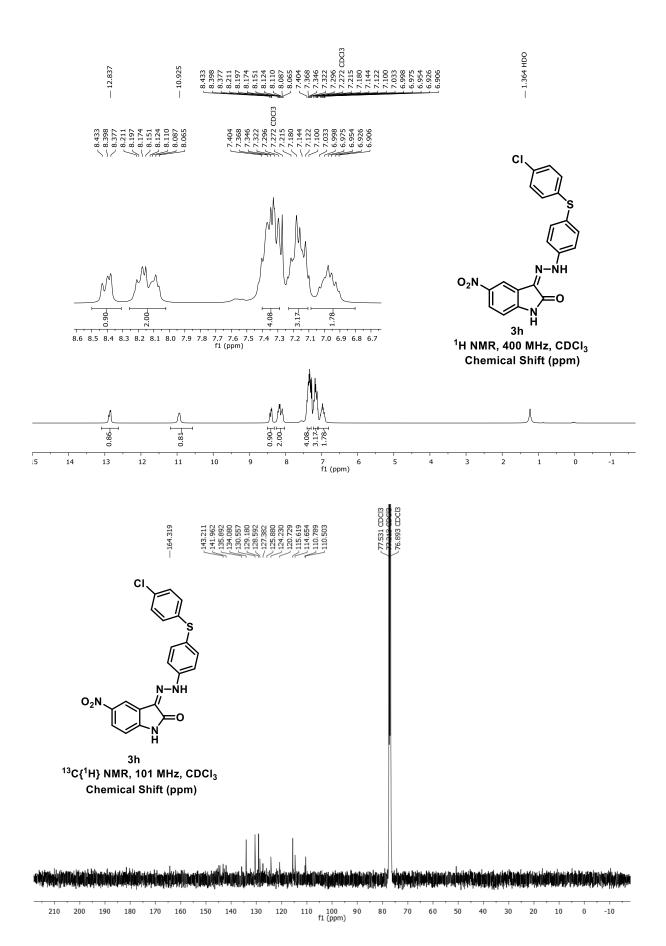

ppm; HRMS (ESI-TOF): Calcd for [C₂₈H₁₈O₂N₂ClSe]⁺ m/z 529.0223. Found 529.0211.

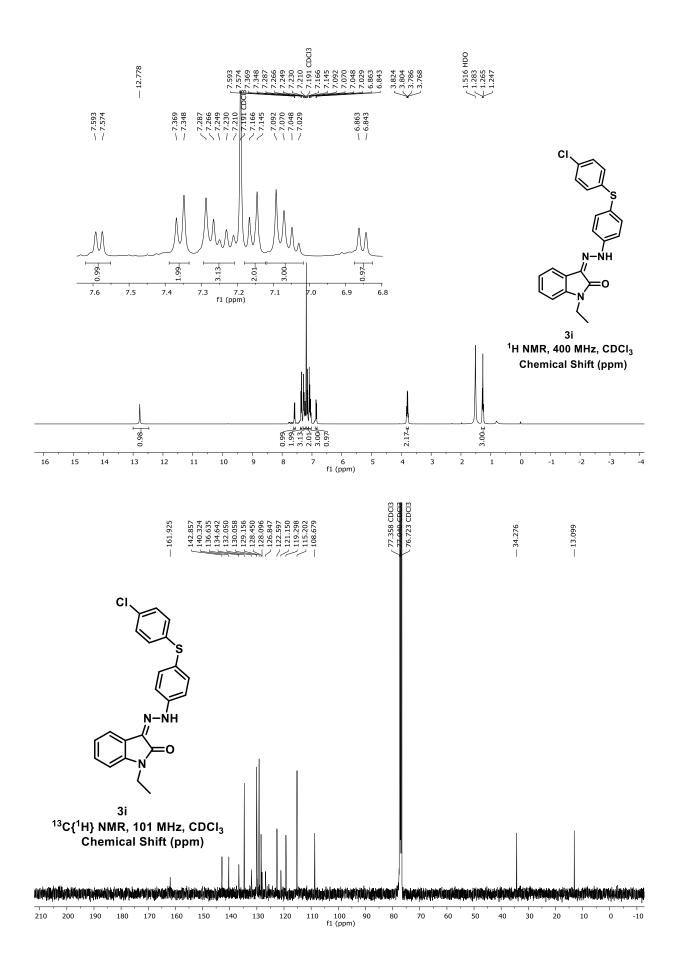

¹H and ¹³C NMR Spectra of compounds 3a-ab:

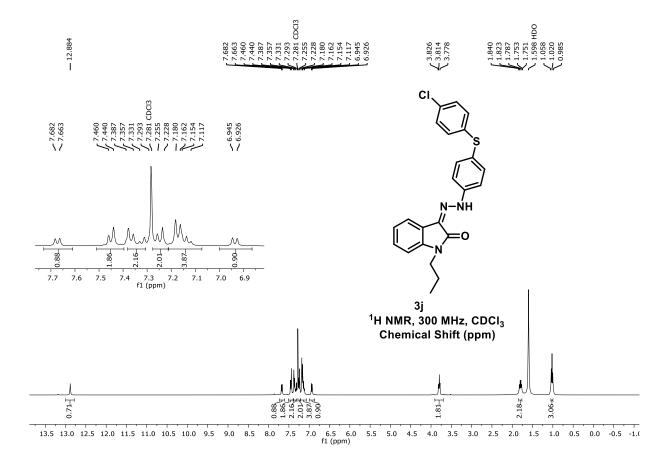


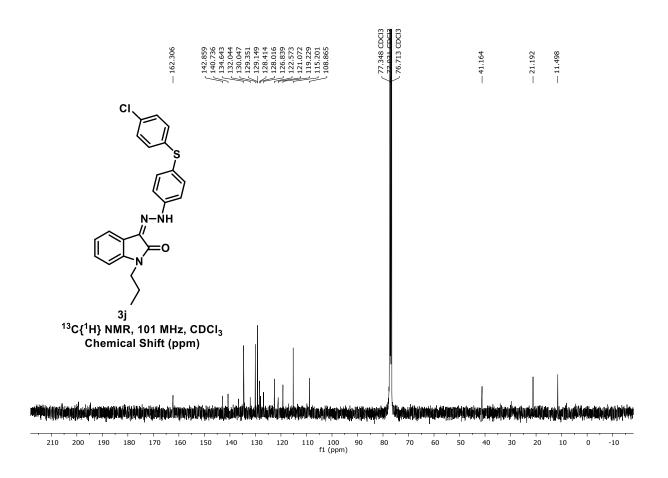


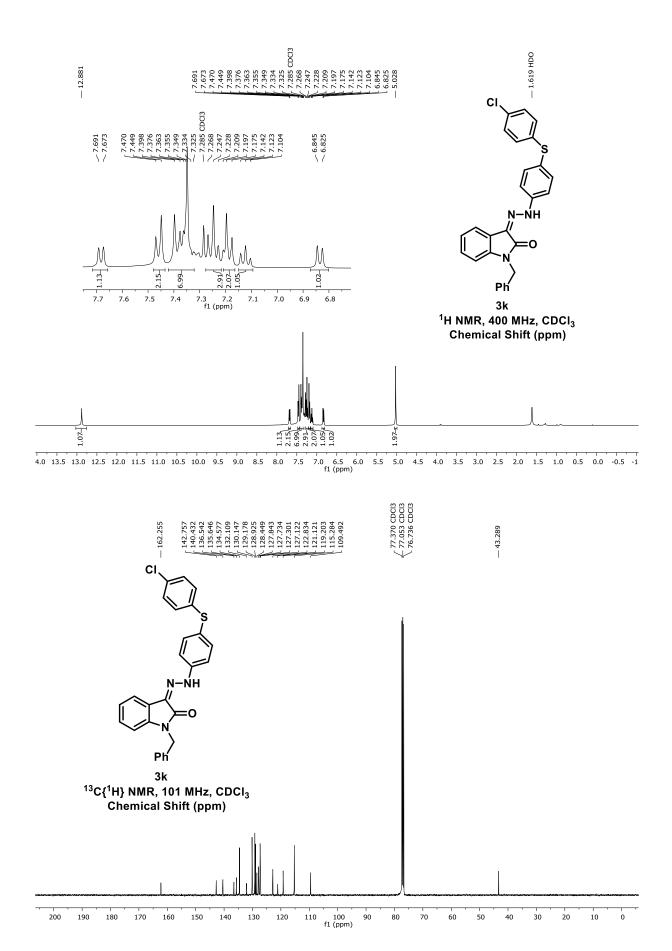


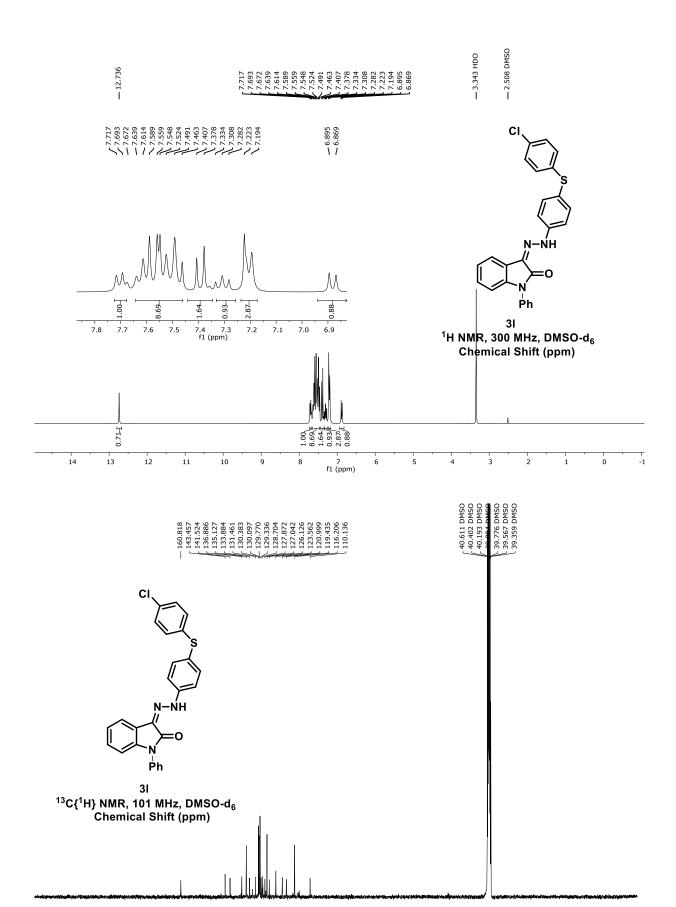


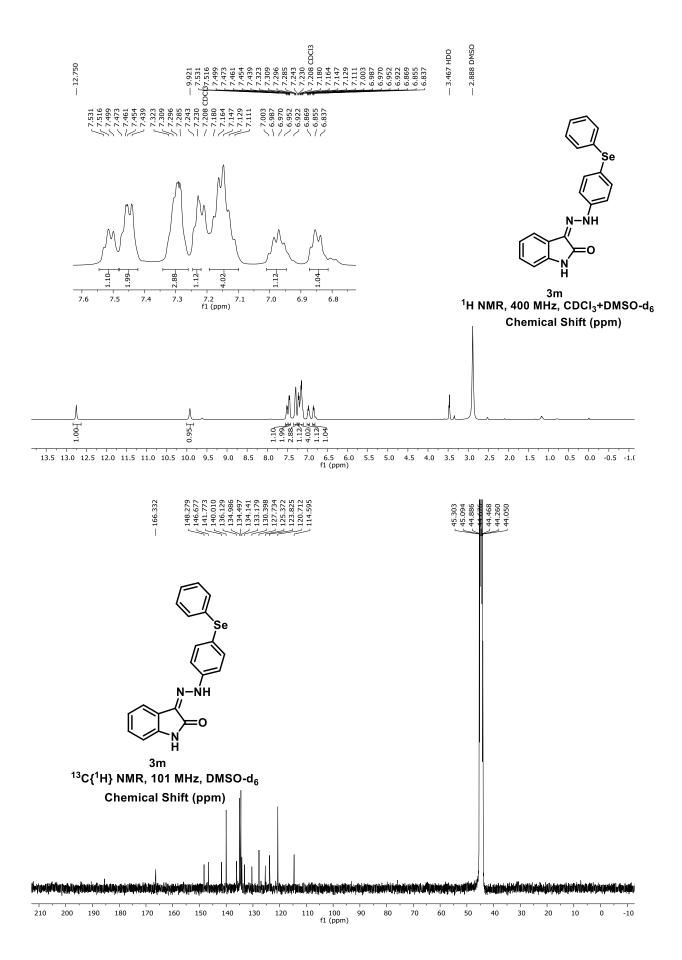


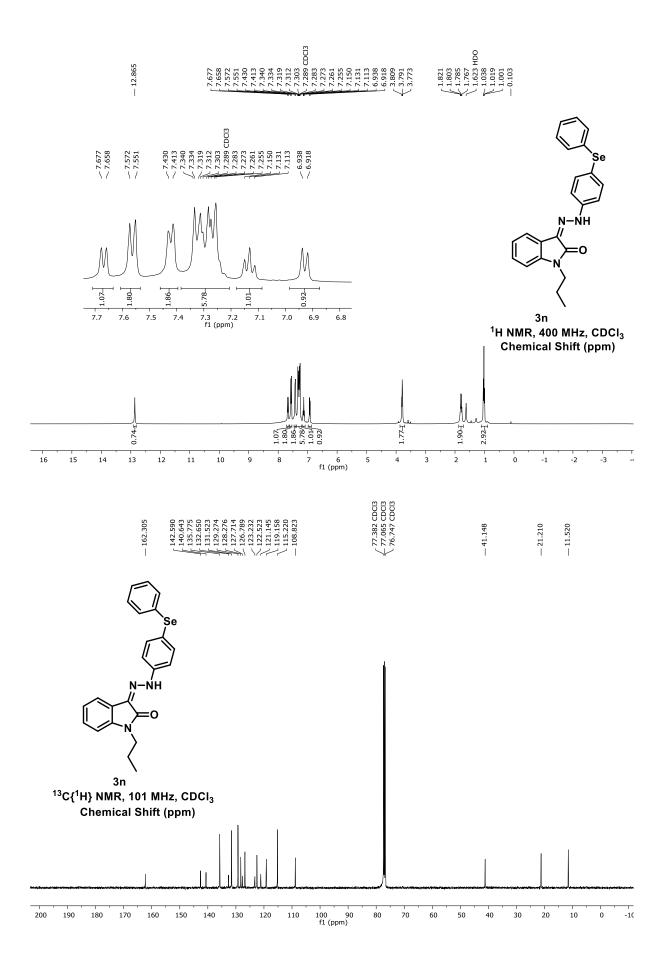


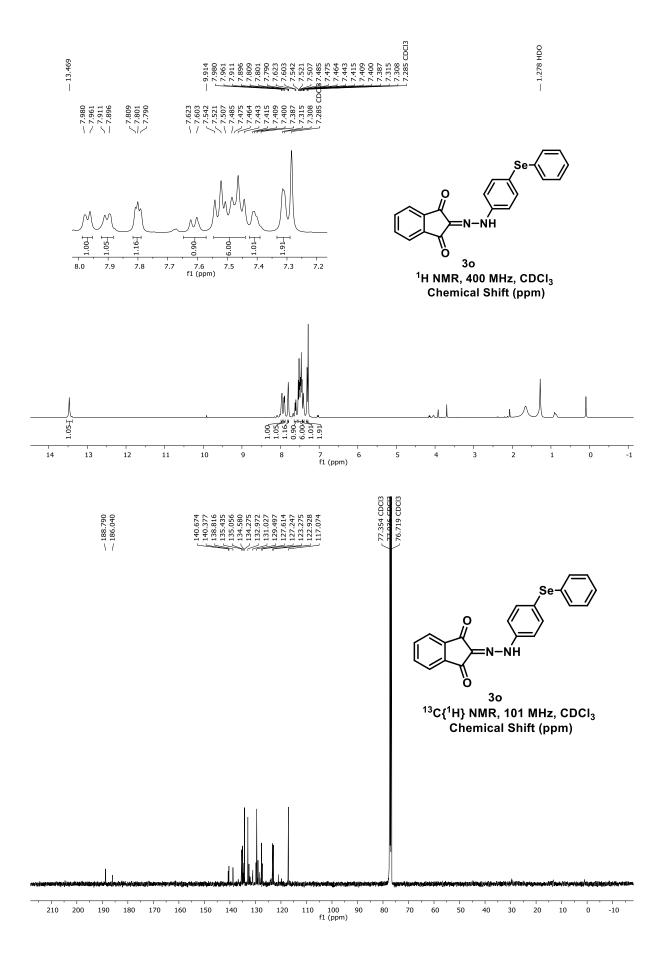

3g ¹⁹F{¹³C} NMR, 377 MHz, DMSO-d₆ Chemical Shift (ppm)

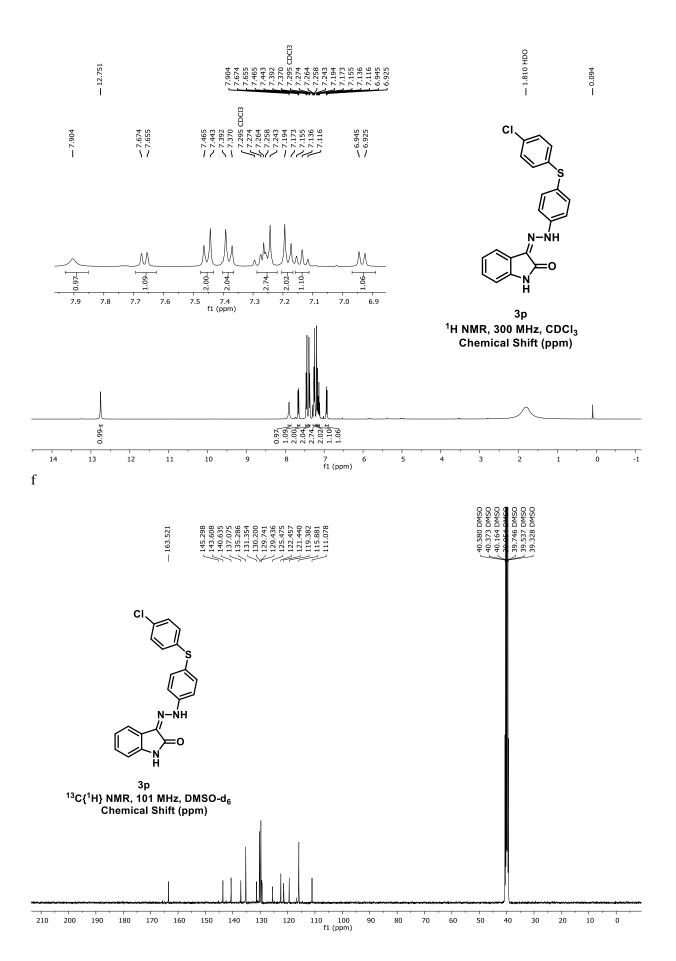

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

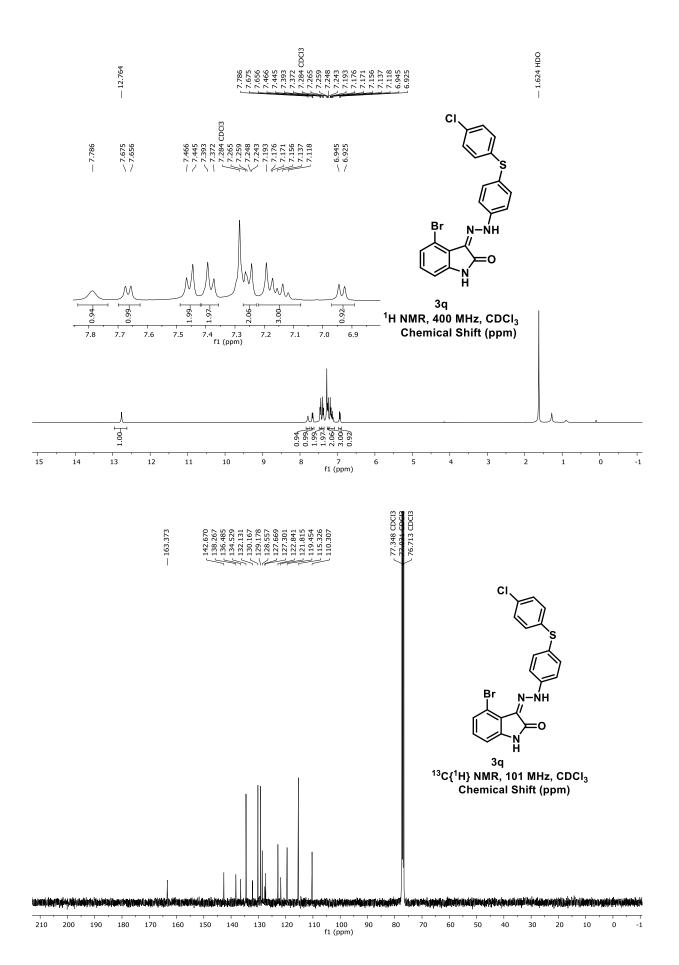


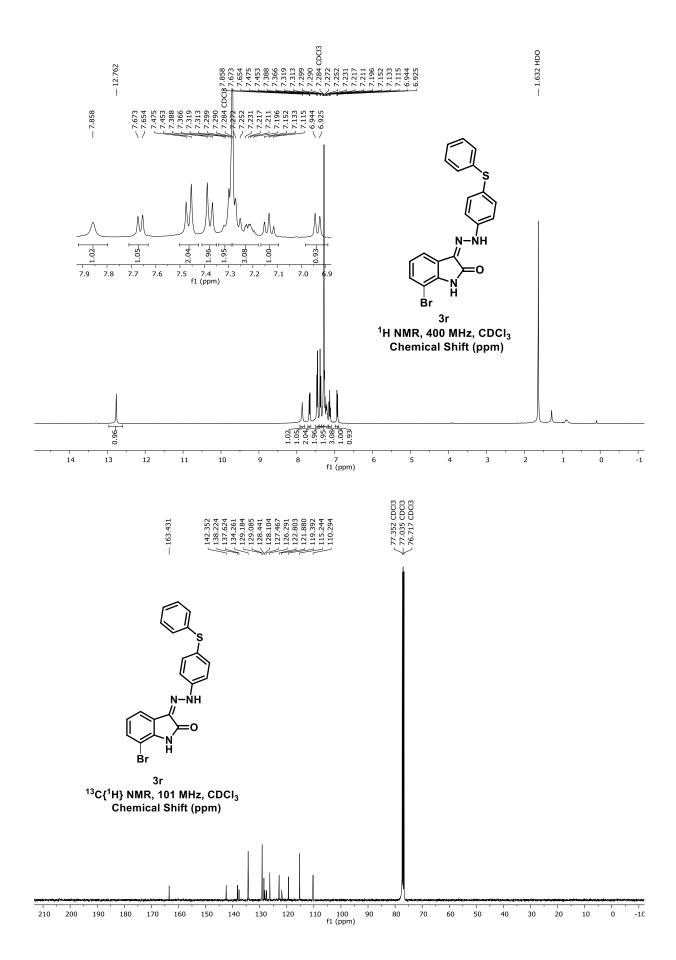


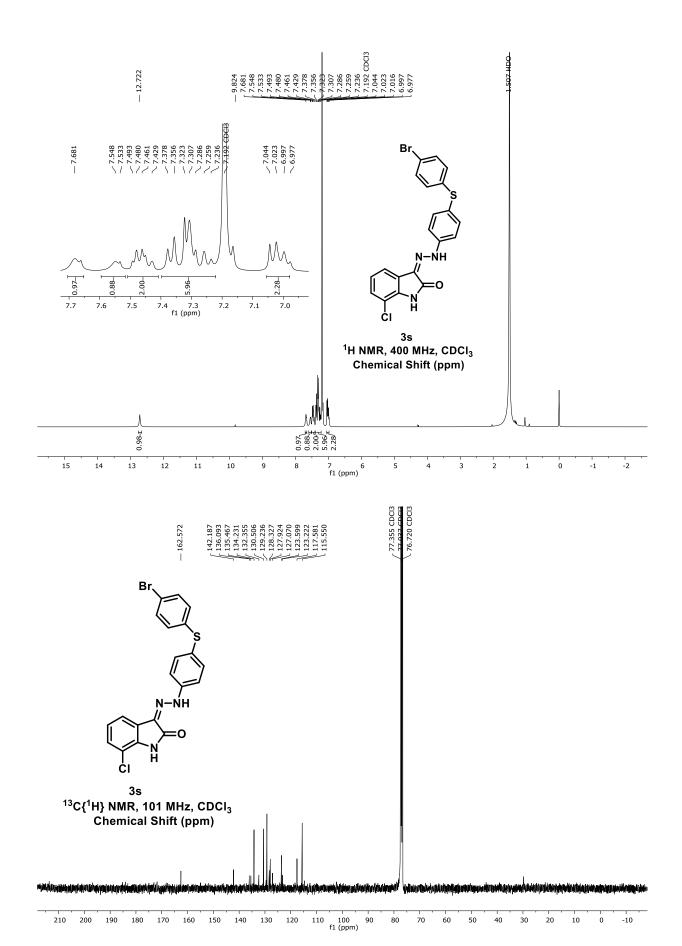


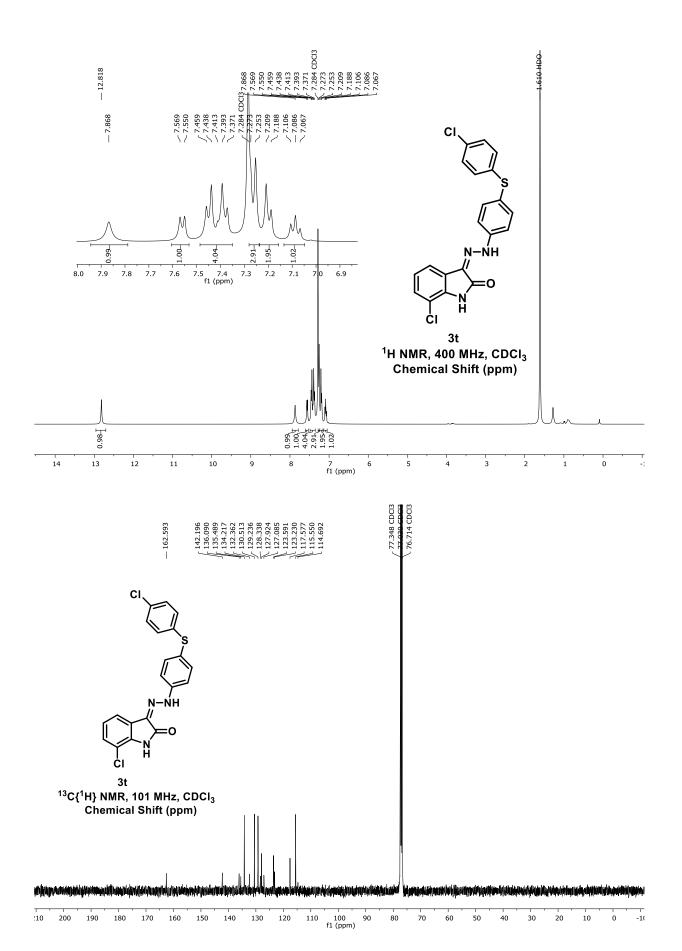

70

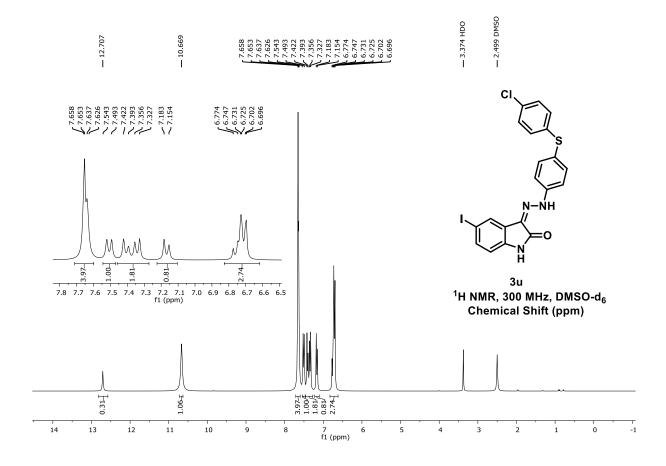

210 200 190

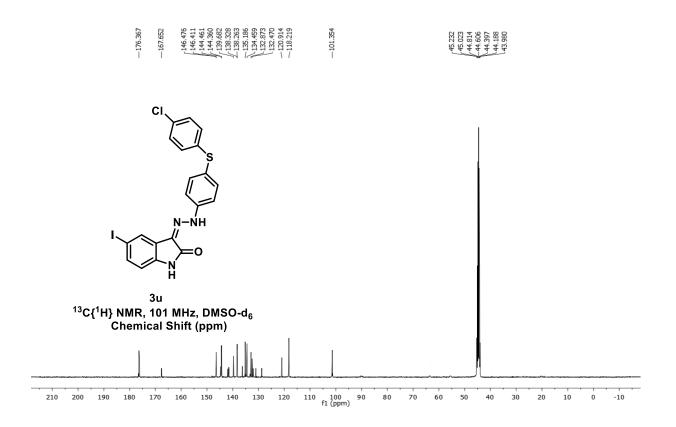

170 160 150 140 130 120

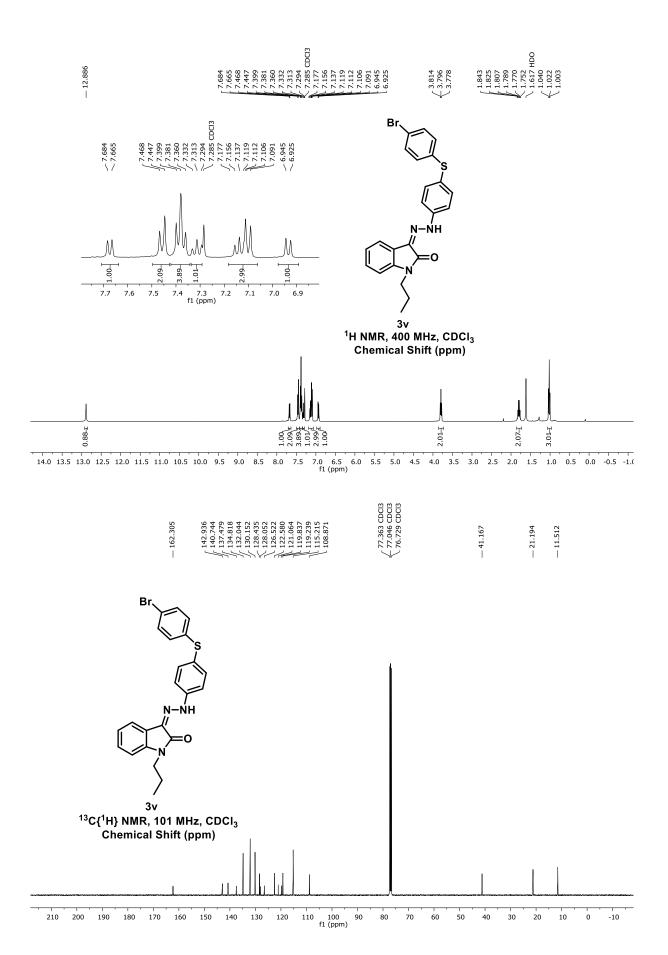


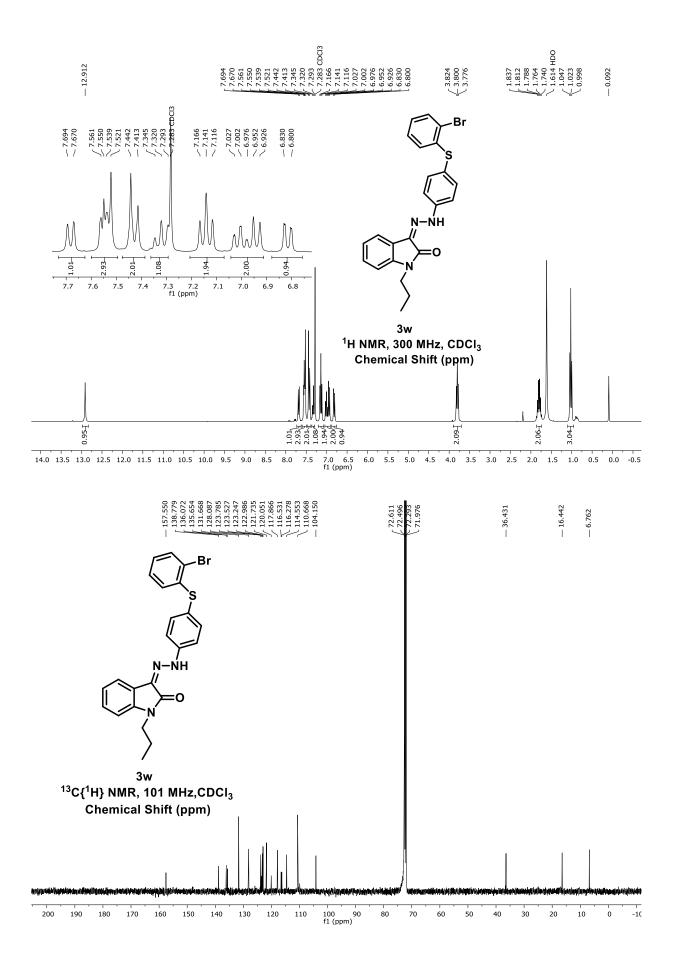


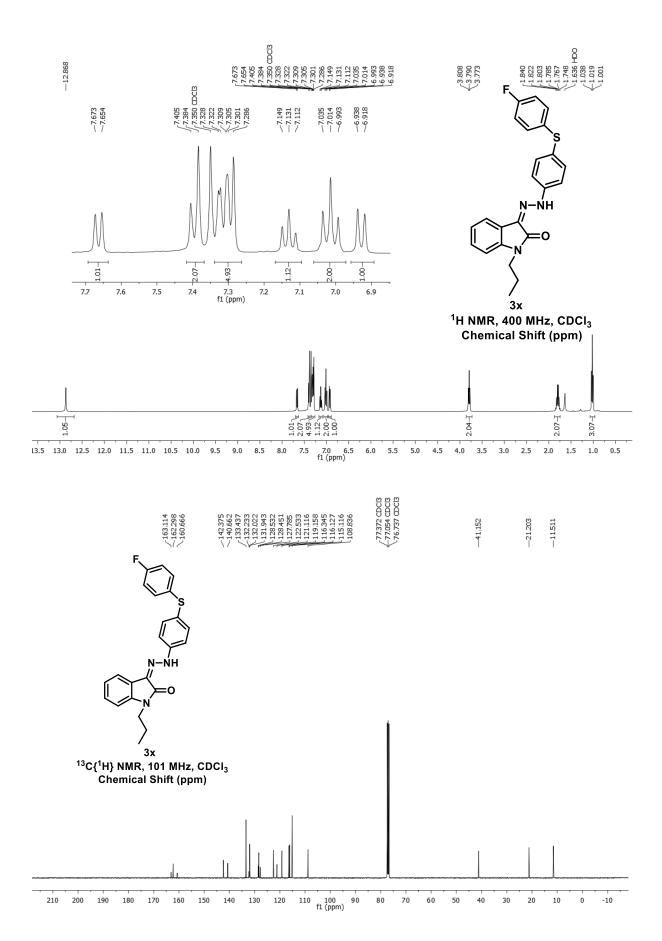


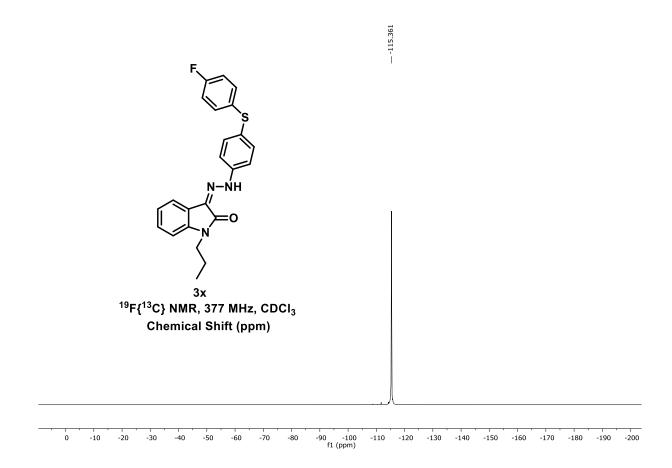


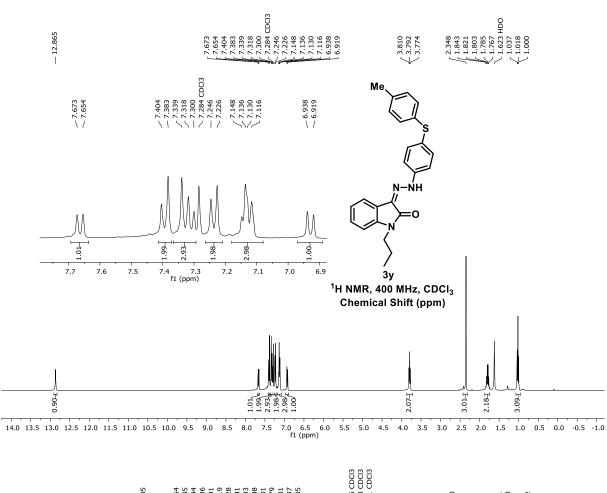


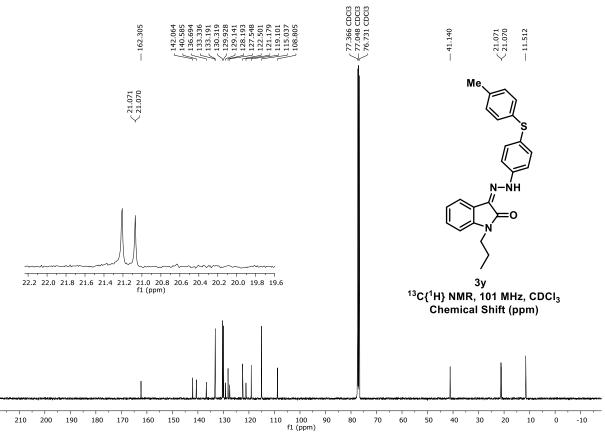


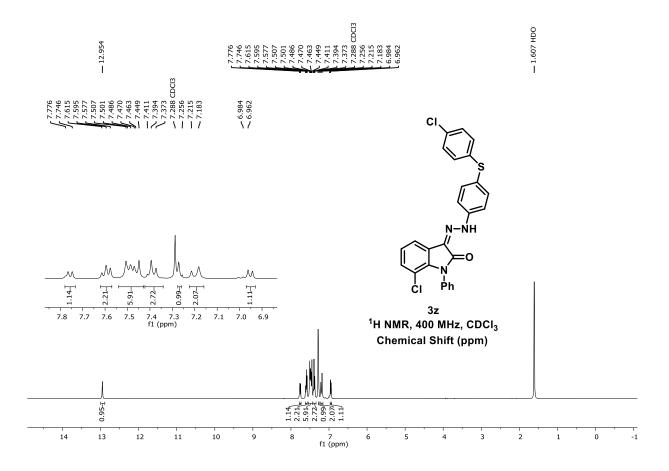


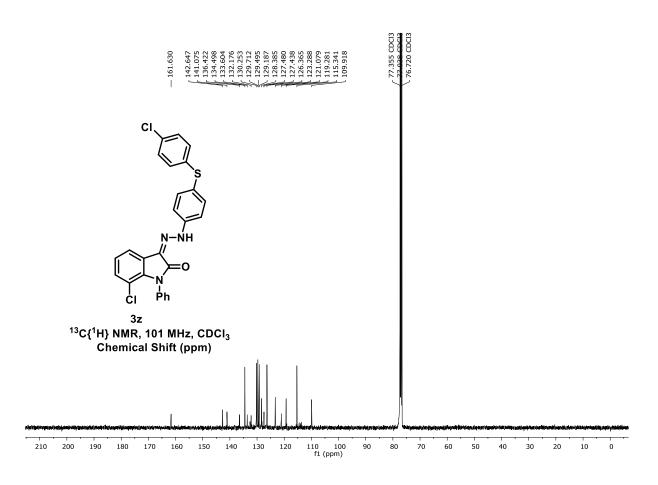


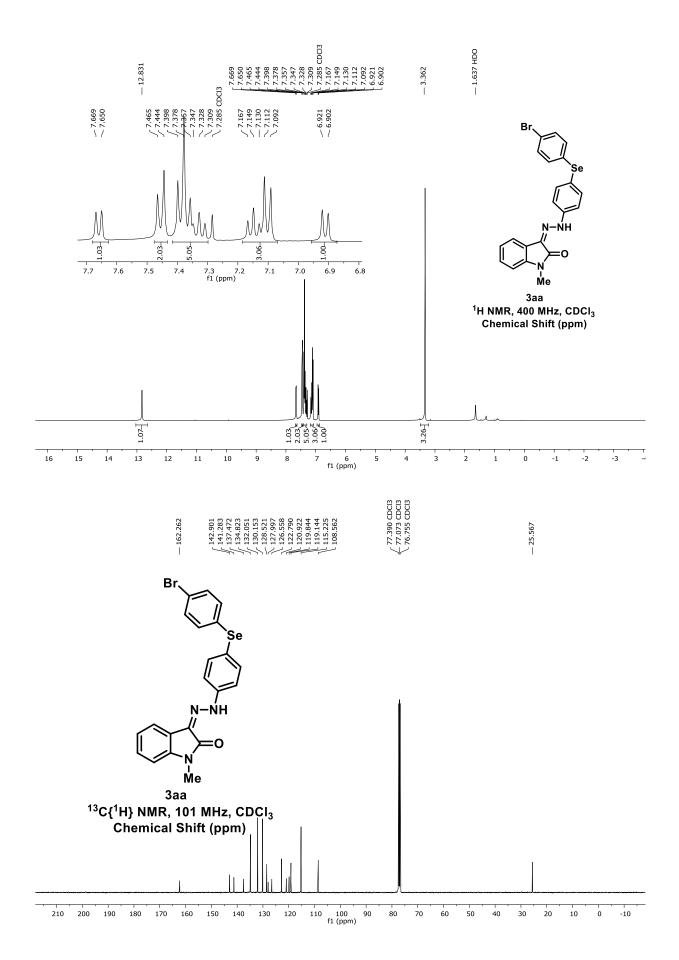


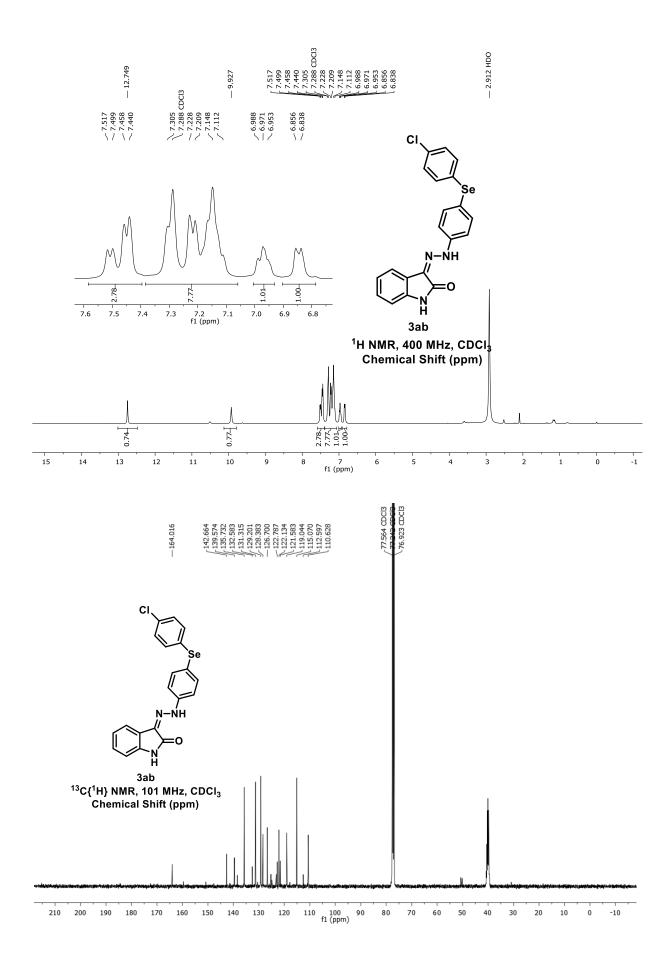


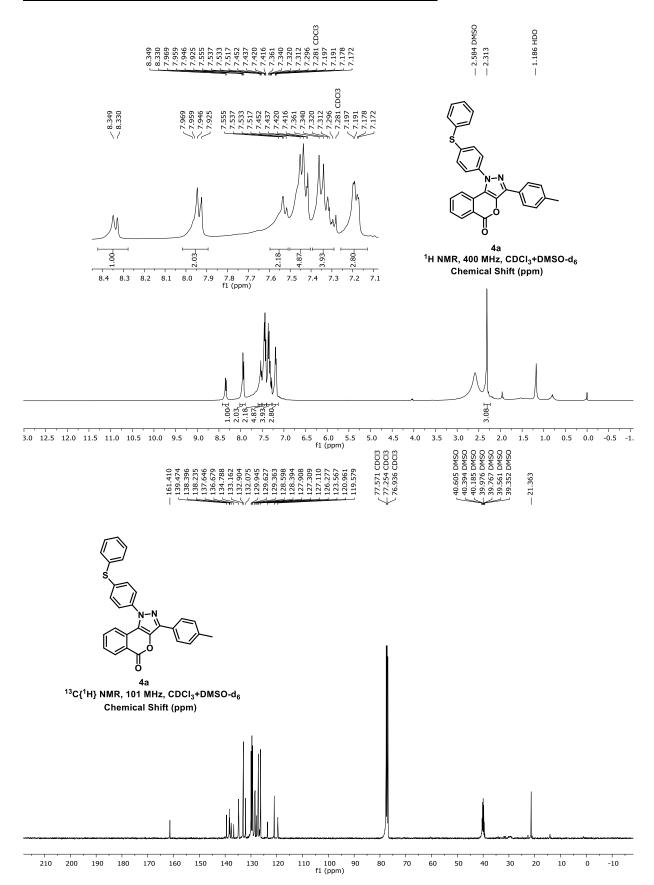


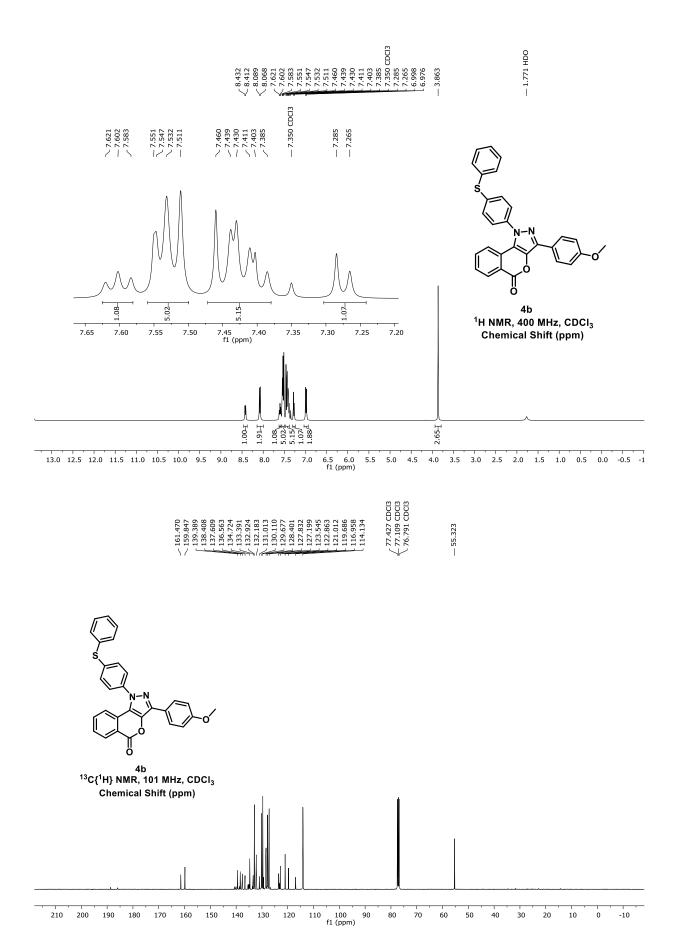


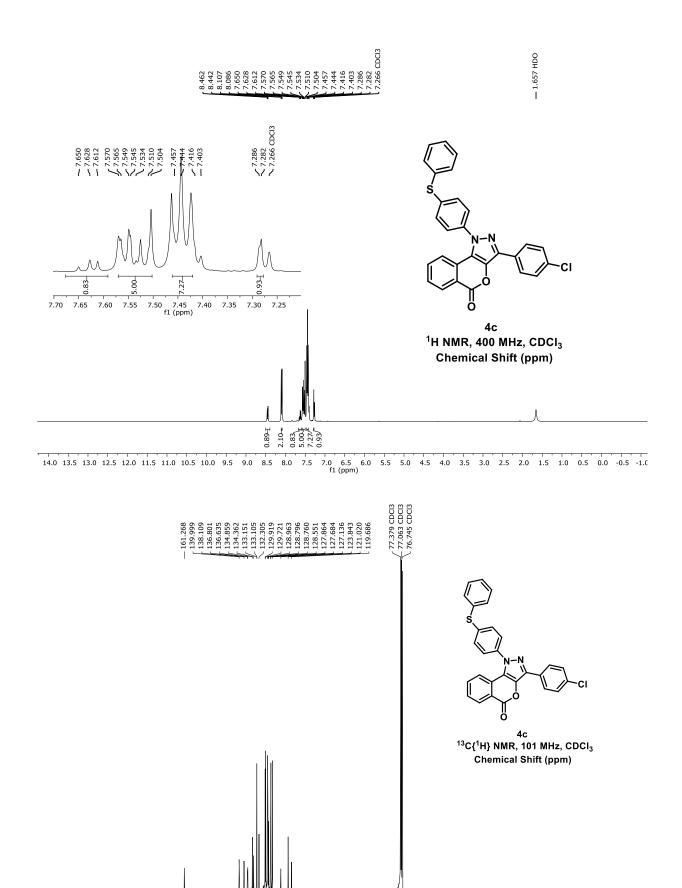


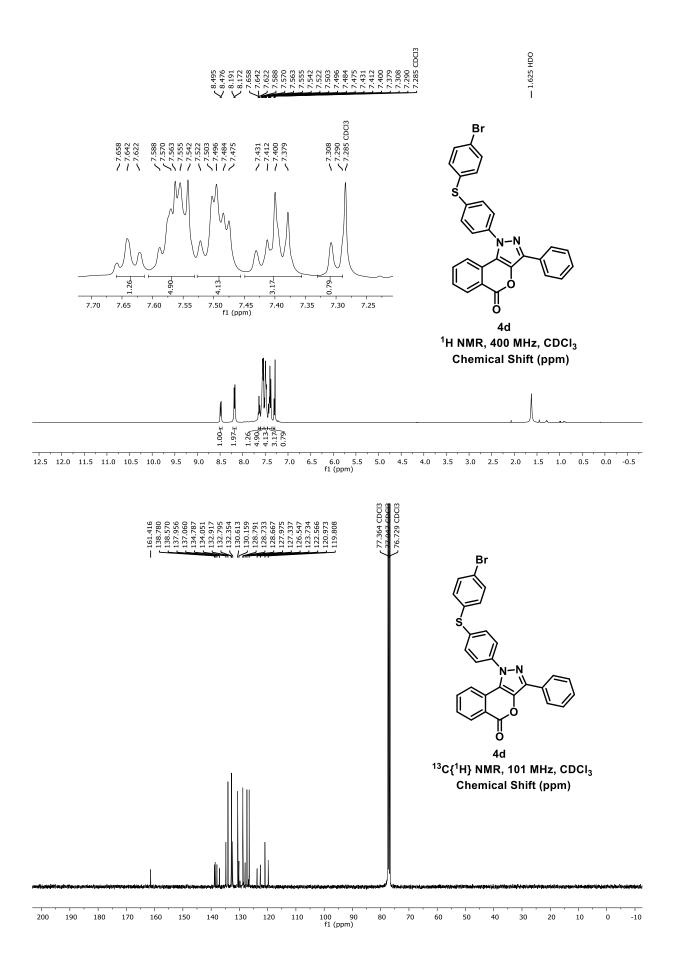


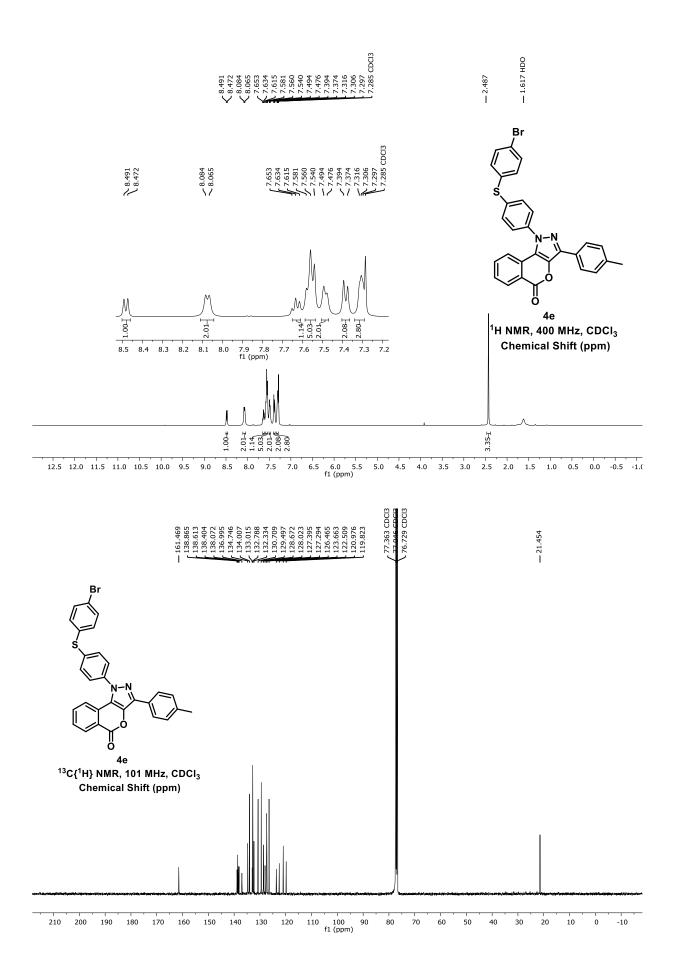


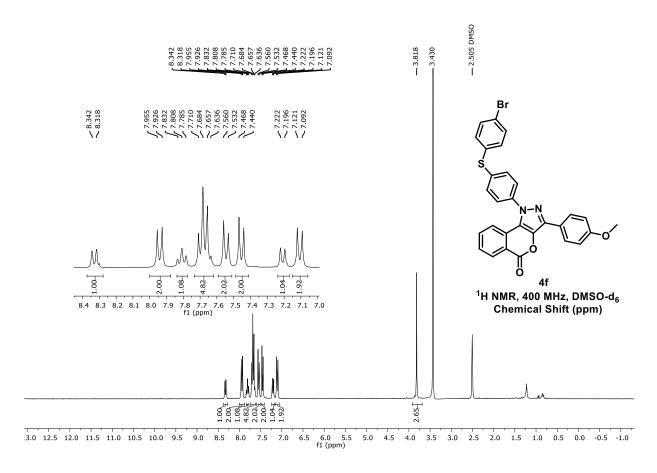


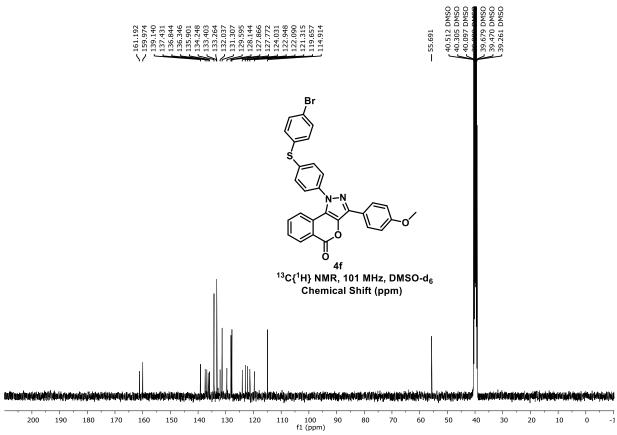


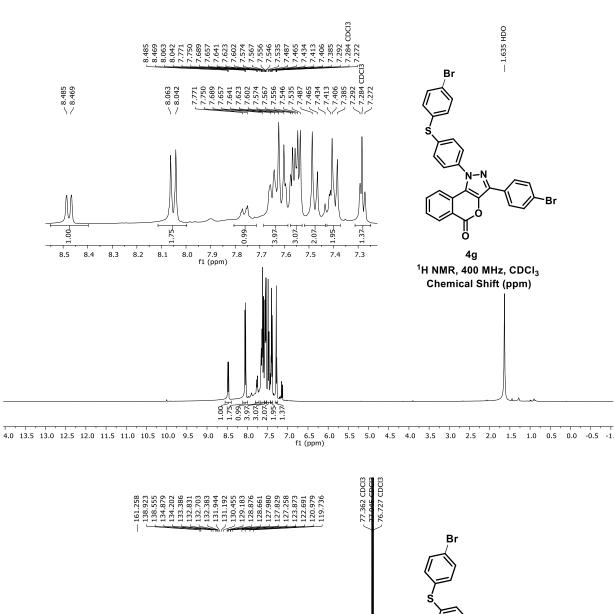


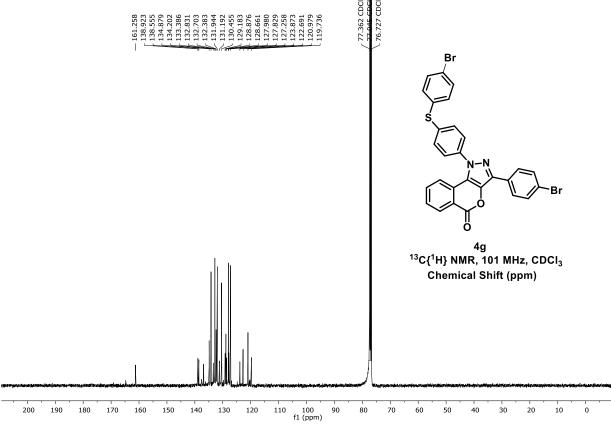


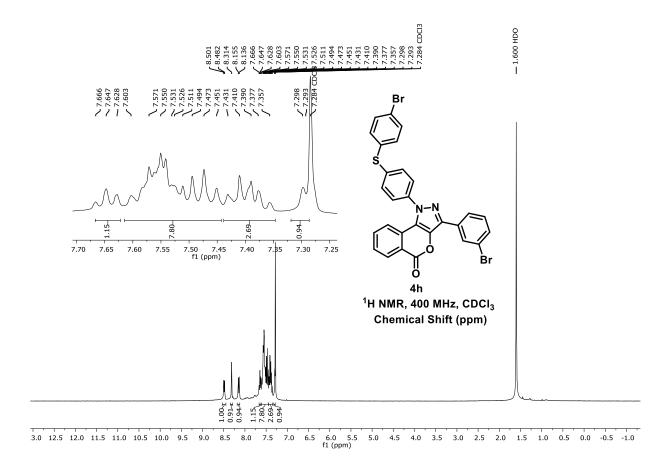

¹H and ¹³C NMR Spectra of compounds 4a-v:

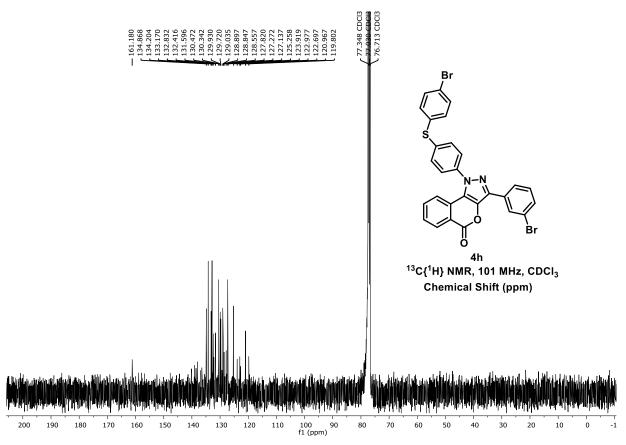


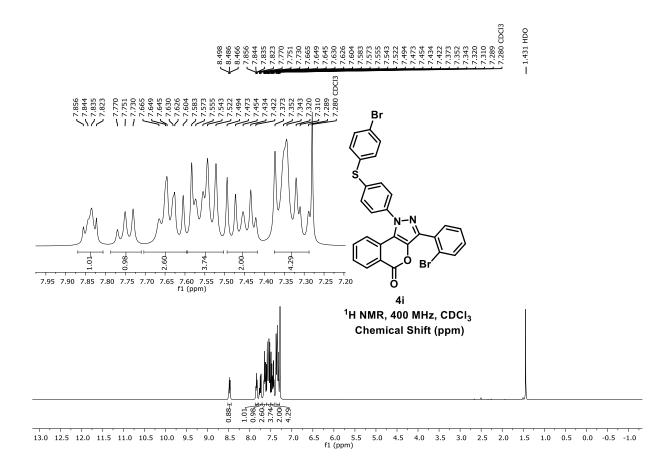


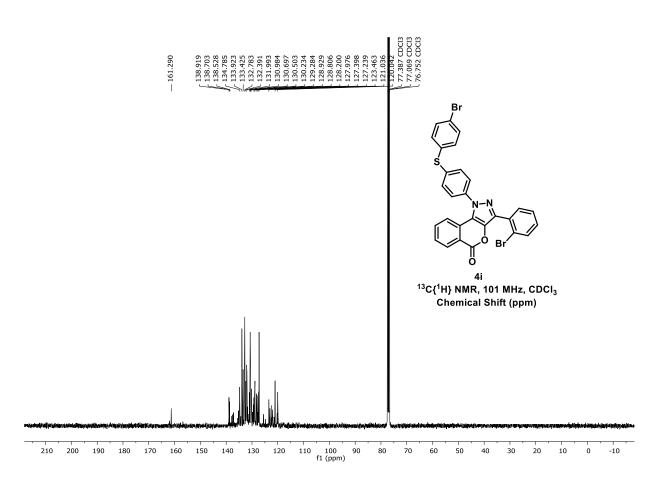


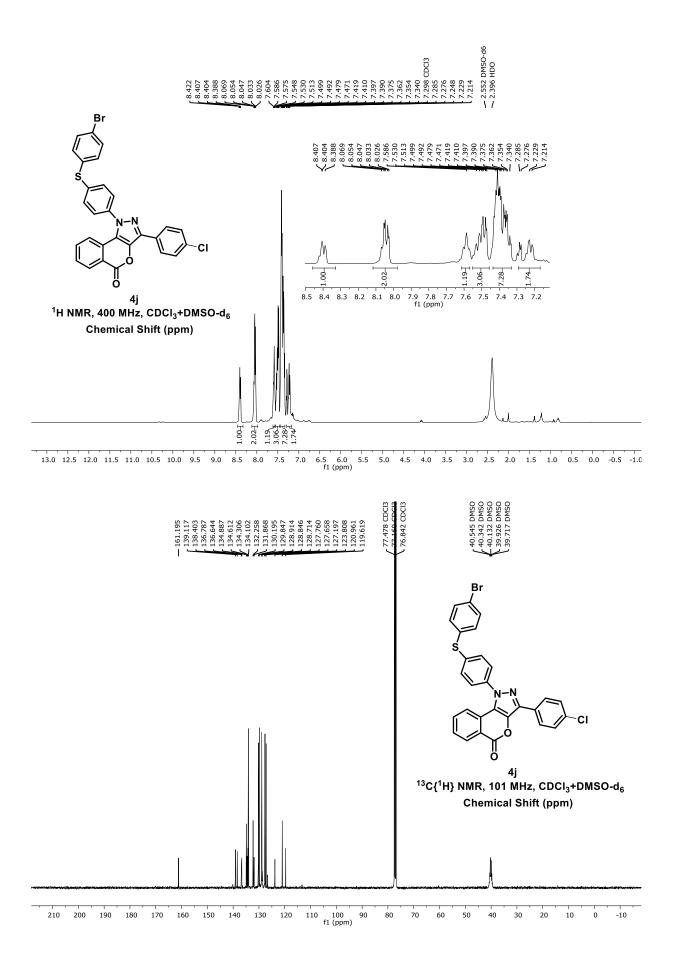


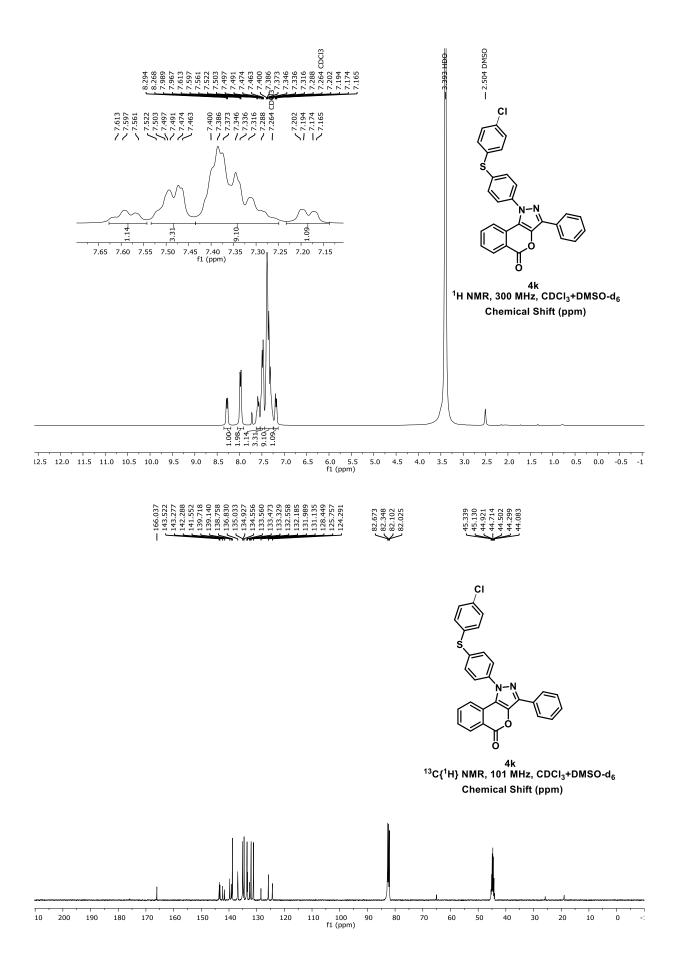


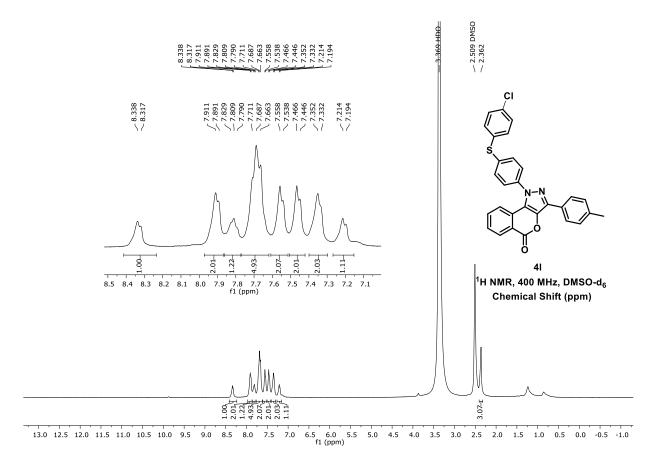


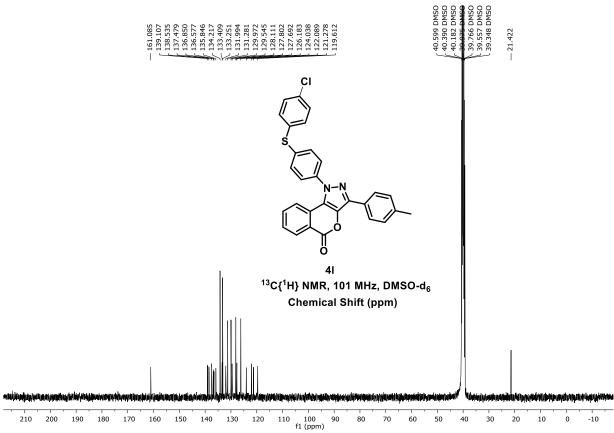


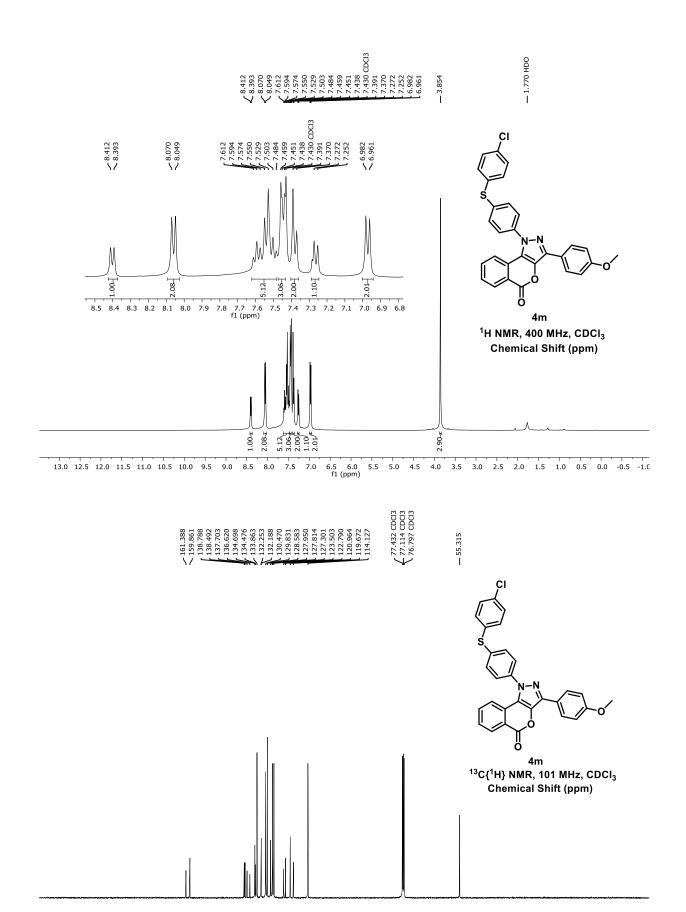


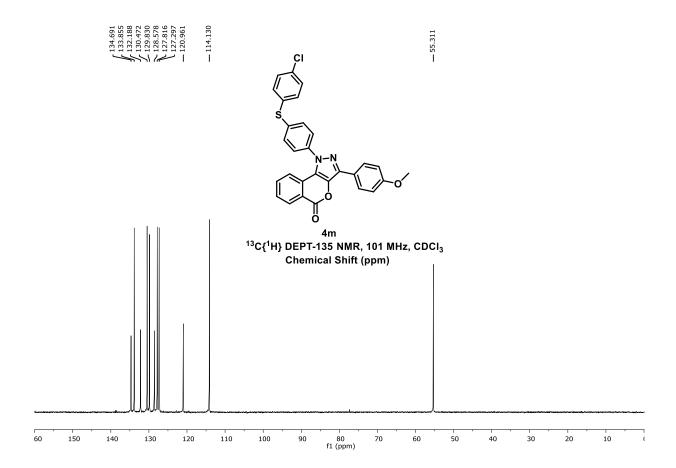


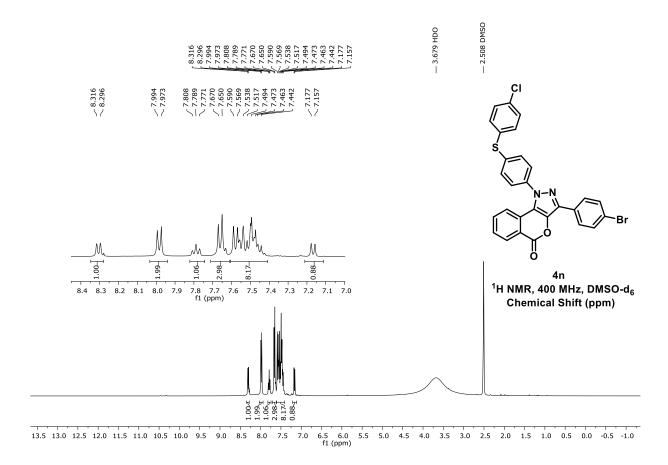


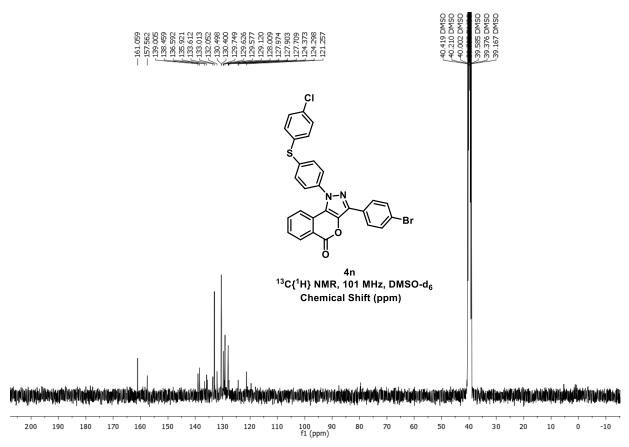


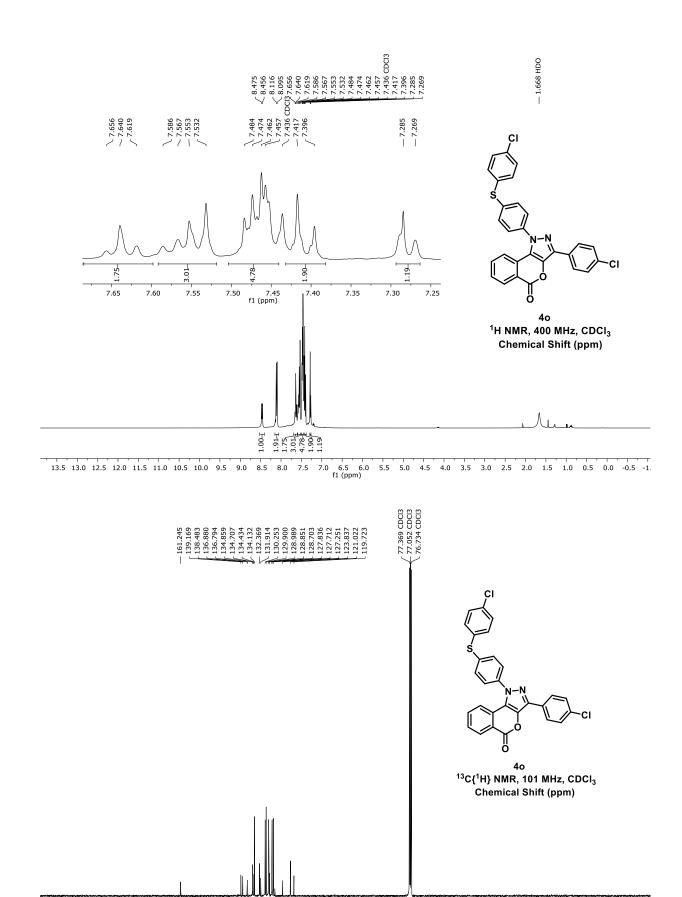


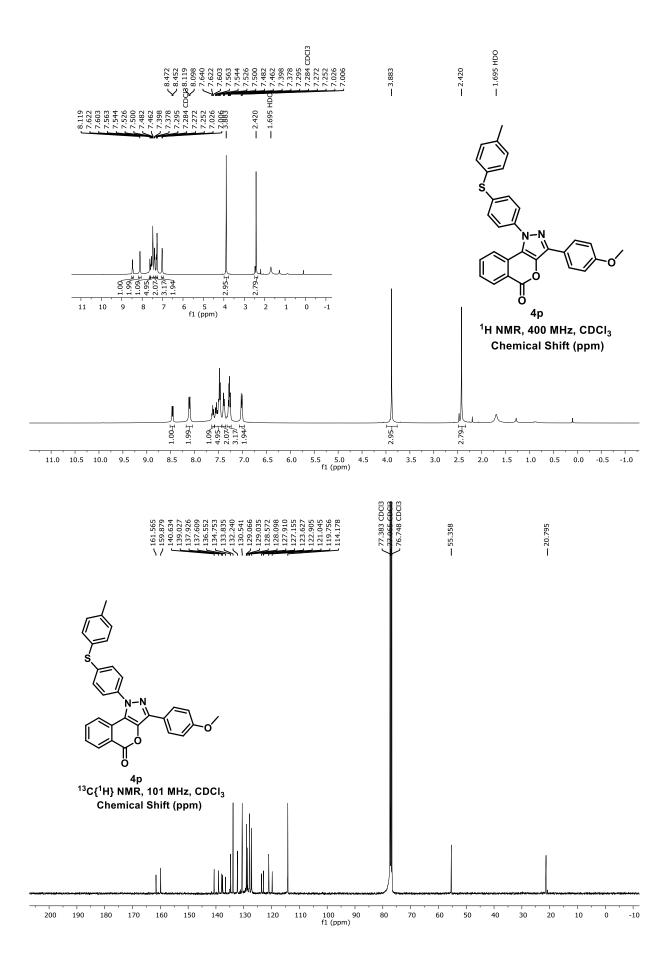


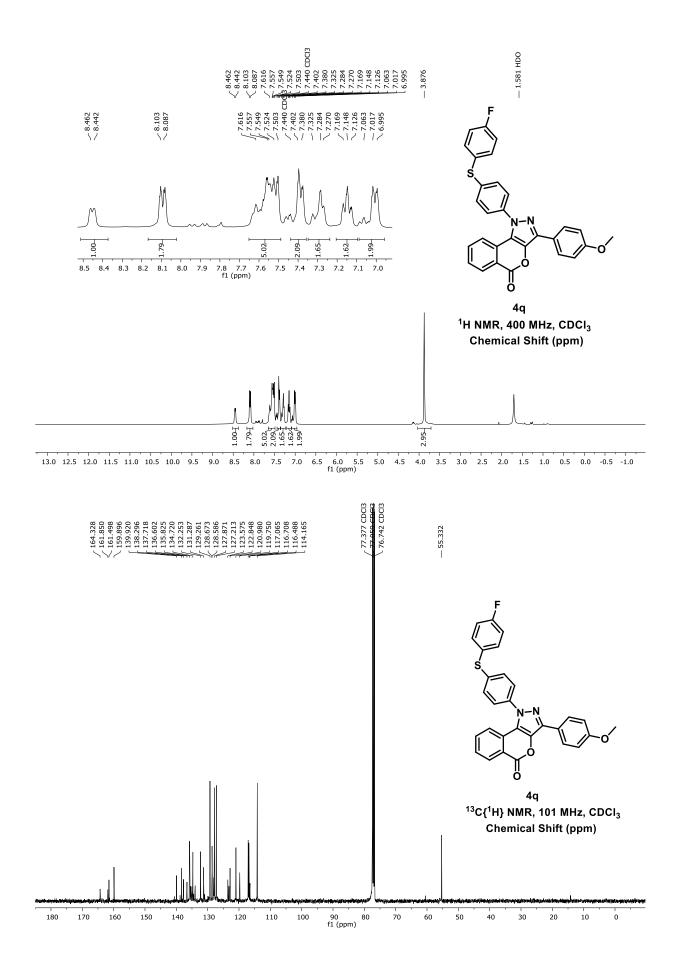


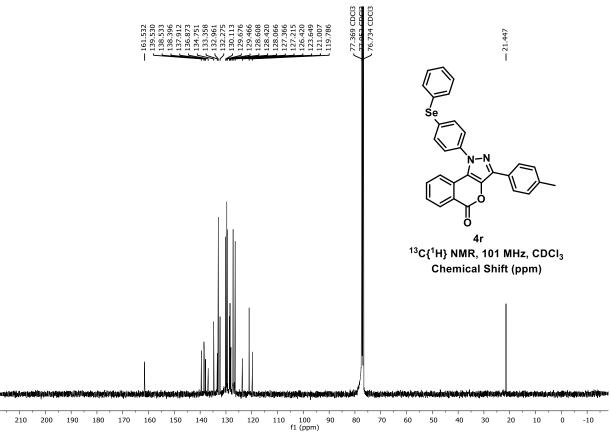


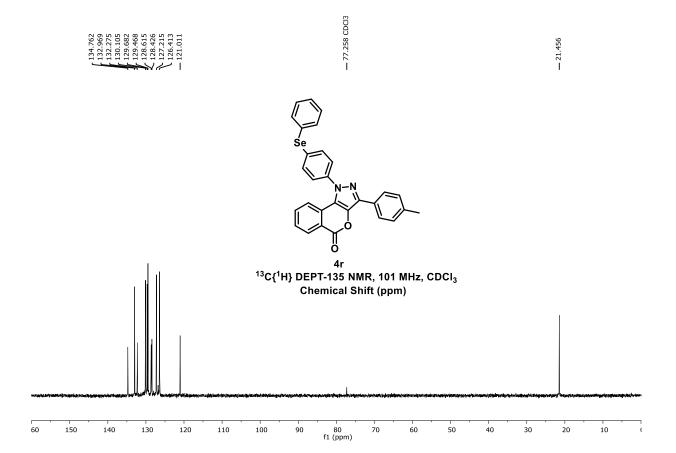


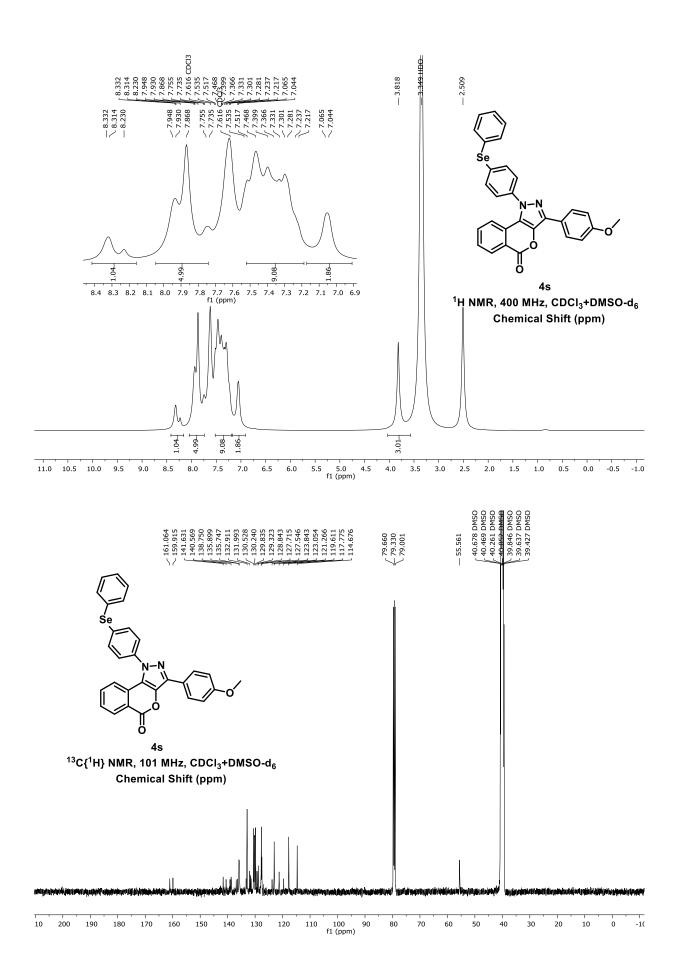

140 130

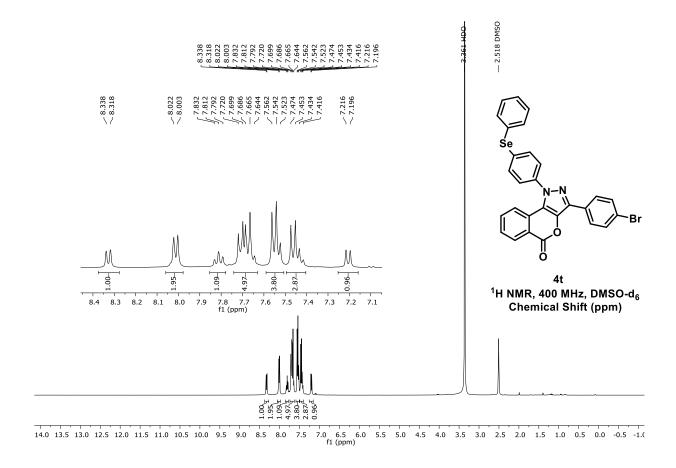

170 160 150

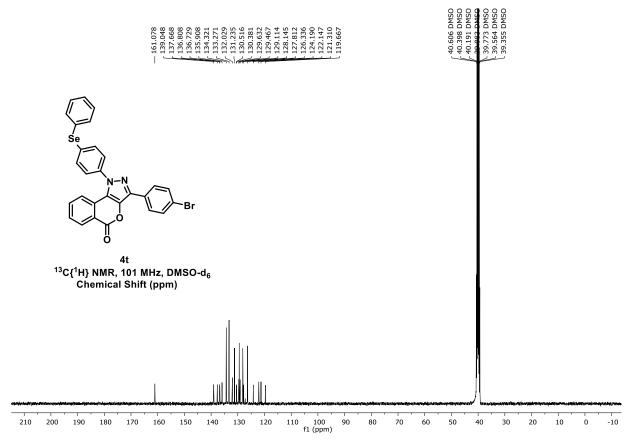


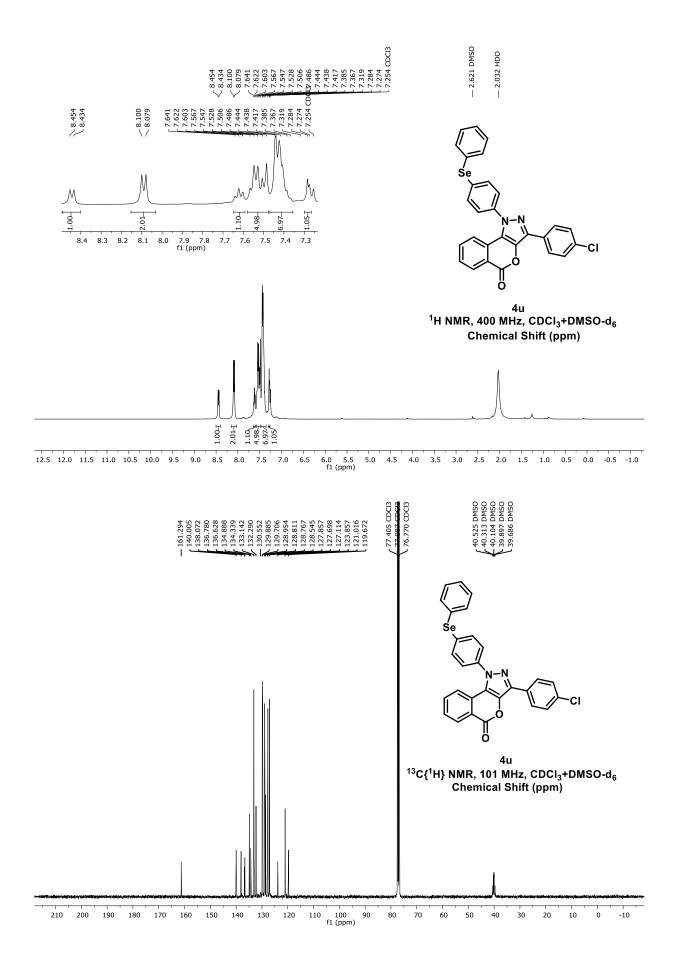


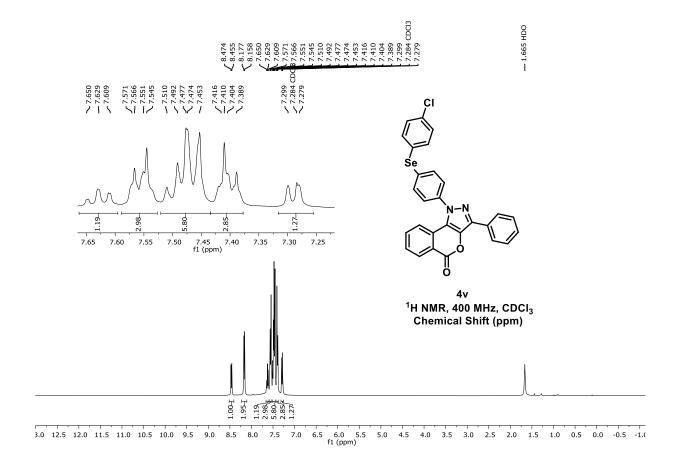


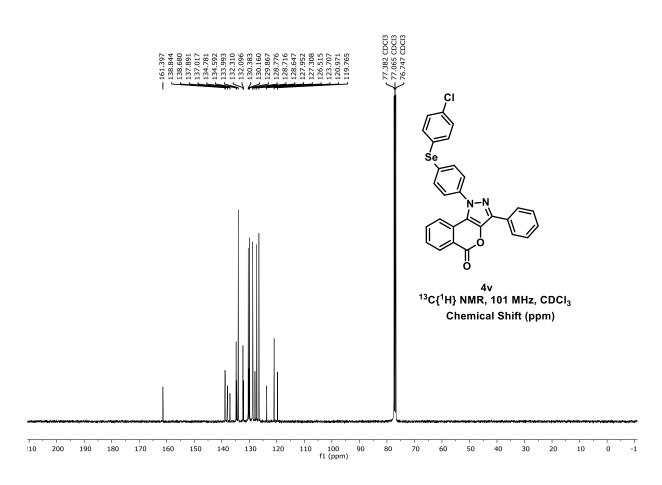

4q ¹⁹F{¹³C} NMR, 377 MHz, CDCI₃ Chemical Shift (ppm)


20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)









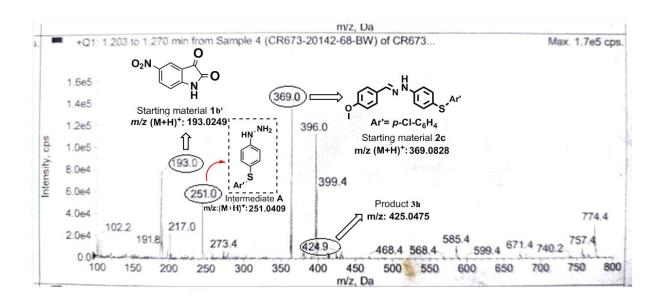


Figure S3. LC-MS Mass Spectrum of reaction mixture (1b'+2c) after 5 min.