Table of Content

1 General Information	S2
2 Synthetic Procedures	S3
2.1 Synthesis of Pyrene-Precursors	S3
2.2 Synthesis of Fused Mono-Pyrene-Porphyrin	S5
2.3 Synthesis of Double-Fused Bis-Pyrene-Porphyrin	S8
2.4 Synthesis of Doubled-Fused Bis-Porphyrin-Pyrene	S12
3 Spectral Appendix	S14
4 DFT Calculations	S52
5 References	S65

1 General Information

All chemicals were purchased from Sigma-Aldrich and used without any further purification. Solvents were distilled prior to usage. Dichloromethane was neutralized with K₂CO₃ before distillation. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F524, detected by UV-light (254 nm, 366 cnm). Column chromatography and flash column chromatography were performed on Macherey-Nagel silica gel 60 M (deactivated, 230-400 mesh, 0.04-0.063 mm). NMR spectroscopy was performed on Bruker Avance Neo Cryo-Probe DCH (¹H: 600 MHz, ¹³C: 150 MHz), Bruker Avance Neo 500 (¹H: 500 MHz, ¹³C: 126 MHz) and Bruker Avance 400 (¹H: 400 MHz, ¹³C{¹H}: 101 MHz). Deuterated solvents were purchased from Sigma-Aldrich and used as received. Chemical shifts are referenced to residual protic impurities in the solvents (¹H: CHCl₃: 7.24 ppm) and (¹H: CH₂Cl₂: 5.32 ppm) or solvent itself $({}^{13}C{}^{1}H{}: CDCI_{3}: 77.0 \text{ ppm})$ and $({}^{13}C{}^{1}H{}:$ the deuterated CD₂Cl₂: 53.8 ppm). The resonance multiplicities are indicated as "s" (singlet), "d" (doublet), "t" (triplet), "q" (quartet) and "m" (multiplet). Signals referred to as "bs" (broad singlet) are not clearly resolved or significantly broadened. IR spectra were recorded on a Bruker FT-IR Tensor 27 spectrometer with a Pike MIRacle ATR unit. LDI/MALDI-ToF mass spectrometry was performed on a Bruker Ultraflex Extreme machine. In case of MALDI, the following matrix were used: 2,5-dihydroxybenzoic acid (DHB or trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyl-idene]malononitrile (DCTB). High resolution mass spectrometry was performed on an ESI/APPI-ToF mass spectrometer Bruker maXis 4G UHR MS/MS spectrometer, a Bruker micrOTOF II focus TOF MSspectrometer, or on a MALDI-ToF Bruker Ultraflex Extreme spectrometer. Microwave reactions were carried out in a monomode microwave reactor Biotage Initiator+ with an external IR surface temperature sensor. The microwave assisted reactions were carried out exclusively in the fixed hold time mode using an external IR temperature sensor. UV/vis spectroscopy was carried out on a Varian Cary 5000 UV-vis-NIR spectrometer.

2 Synthetic Procedures

2.1 Synthesis of Pyrene-Precursors

Scheme S1. Synthesis of borylated pyrene precursors 6 and 7.

2-tert-butylpyrene 9

Adapting a procedure from Bédard *et al.*¹, pyrene **8** (5.00 g, 24.5 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ in a 100 mL flask. The solution was cooled to 0 °C with an ice bath, and *tert*-butyl chloride (3.50 mL, 31.0 mmol, 1.3 equiv) was added. AlCl₃ (3.60 g, 27.0 mmol, 1.1 equiv) was added slowly in small portions, and the reddish, viscous, mixture was stirred for 3 h under slow warming to rt. The reaction was subsequently quenched by pouring the mixture into a beaker filled with ice water (200 mL). CH₂Cl₂ (100 mL) was added, and the phases separated. The aqueous phase was extracted with CH₂Cl₂ (3 x 100 mL), and the combined organic layers were washed with brine. After drying over Na₂SO₄, the solvent was removed, and the residue was recrystallized from hot MeOH. The precipitate was filtered off, the solvent removed under reduced pressure, and the crude recrystallized from hot hexanes. **9** was obtained as ambercolored, crystalline, plates in 35% yield (2.21 g, 8.56 mmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.22 (s, 2H), 8.14 (d, *J* = 7.6 Hz, 2H), 8.06 - 8.03 (m, 4H), 7.98 - 7.94 (m, 1H), 1.59 (s, 9H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 149.03, 131.00, 130.99, 127.60, 127.28, 125.52, 124.76, 124.64, 122.94, 122.24, 77.36, 77.04, 76.73, 35.27, 31.99.

HRMS (APPI, CH₂Cl₂) for C₂₀H₁₈ (M⁺), calcd.: 258.1403, found: 258.1407.

2-(7-(tert-butyl)pyren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 6

Adapting a procedure from Bédard *et al.*¹, 2-*tert*-butylpyrene **8** (250 mg, 0.970 mmol, 1 equiv), B₂Pin₂ (270 mg, 1.06 mmol, 1.1 equiv) and dtbpy (26.0 mg, 97.0 µmol, 0.1 equiv) were added into a dry 25 mL Schlenk flask. Dry cyclohexane (3 mL) and [Ir(COD)(OMe)]₂ (32.0 mg, 51.0 µmol, 0.05 equiv) were added and the mixture heated to 80 °C for 20 h. The solvent was removed under reduced pressure and the crude purified by filtration through silica (SiO₂, hexanes/CH₂Cl₂ 1:1 \rightarrow CH₂Cl₂, Ø 3 cm x 12 cm). **6** was obtained as a colorless crystalline solid in 59% yield (220 mg, 0.57 mmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.58 (s, 2H), 8.19 (s, 2H), 8.03 (q, *J* = 8.9 Hz, 4H), 1.56 (s, 9H), 1.44 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 149.59, 131.48, 131.16, 130.25, 127.66, 127.45, 126.35, 122.85, 122.12, 84.12, 77.34, 77.03, 76.71, 35.30, 31.95, 25.09, 25.03.

HRMS (APPI, CH₂Cl₂) for C₂₆H₃₀BO₂ (MH⁺), calcd.: 385.2333, found: 385.2348.

2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene 7

Adapting a procedure from Coventry *et al.*², pyrene **8** (789 mg, 3.90 mmol, 1 equiv), B_2Pin_2 (2.18 g, 8.60 mmol, 2.2 equiv) and dtbpy (105 mg, 0.4 mmol, 0.1 equiv) were added into a dry 50 mL Schlenk flask. Dry cyclohexane (15 mL) and [Ir(COD)(OMe)]₂ (129 mg, 0.195 mmol, 0.05 equiv) were added, and the mixture was heated to 80 °C for 20 h. The solvent was removed under reduced pressure, and the crude was purified by filtration through silica (SiO₂, CH₂Cl₂, Ø 3 cm x 12 cm). **7** was obtained after recrystallization from CH₂Cl₂/MeOH as a colorless crystalline solid in 69% yield (1.22 g, 2.69 mmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.60 (s, 4H), 8.06 (s, 4H), 1.44 (s, 24H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 131.21, 130.90, 127.65, 126.33, 84.19, 77.34, 77.02, 76.71, 25.02.

HRMS (APPI, CH₂Cl₂) for C₂₈H₃₃B₂O₄ (MH⁺), calcd.: 455.2559, found:455.2582.

2.2 Synthesis of Fused Mono-Pyrene-Porphyrin

Scheme S2. Synthesis of fused Pyrene-Porphyrin PyrPor. Ar = mesityl.

Nickel-5,10,15-Trimesitylporphyrin 14

Ethanol (2 mL) stabilized CHCl₃ (775 mL) was degassed for 20 min (bubbling N₂) through the solution). dipyrromethane **11** (284 mg, 1.94 mmol, 0.5 equiv), mesitaldehyde 12 (572 µL, 3.88 mmol, 1 equiv) and mesityl-dipyrromethane 10 (513 mg, 1.94 mmol, 0.5 equiv) were added to the solution and the reaction was stirred for 5 min at rt. BF3 OEt2 (316 µL, 2.57 mmol, 0.33 equiv) was added and the solution was stirred for 1 h at rt under the exclusion of light. DDQ (1.32 g, 5.81 mmol, 0.75 equiv) was added and the mixture was stirred for further 45 min. The acid was quenched via the addition of NEt₃ (3.60 mL, 25.7 mmol, 3.3 equiv) and the solvent was removed. The crude was purified by column chromatography (SiO₂, hexanes/CH₂Cl₂, 3:1, Ø 8 x 40 cm). The first isolated fraction contained both A₄-porphyrin and the target A_3B porphyrin which were subsequently separated by a second column (SiO₂, hexanes/toluene, 3:1, Ø 8 x 40 cm, 2nd band). The product was obtained as a purple solid. Free base porphyrin **13** (125 mg, 188 µmol, 1 equiv.) and Ni(acac)₂ (241 mg, 940 µmol, 5 equiv.) were dissolved in toluene (30 mL) and heated to reflux (heat-on temperature: 140 °C) for 5 h. The solvent was removed under reduced pressure, the product poured over a plug (SiO₂, CH₂Cl₂, Ø 3 x 6 cm) and afterwards recrystallized from CH₂Cl₂/MeOH yielding 12% of nickel-porphyrin **14** (136 mg, 188 µmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.79 (s, 1H), 9.07 (d, *J* = 4.8 Hz, 2H), 8.69 (d, *J* = 4.7 Hz, 2H), 8.57 (s, 4H), 7.22 (m, 6H), 2.56 (m, 9H), 1.79 (s, 18H).

¹³C NMR (101 MHz, CDCl₃, rt): δ [ppm]: 142.93, 142.74, 142.59, 142.37, 139.11, 139.08, 137.88, 137.63, 137.59, 137.52, 137.44, 132.17, 131.24, 131.21, 131.15, 129.04, 128.23, 127.72, 127.69, 125.30, 117.32, 116.81, 104.26, 21.48, 21.39.

UV/Vis (CH₂Cl₂): *λ* [nm] (ε [M⁻¹cm⁻¹]): 407 (247000), 521 (18000), 553 (5000).

MS (MALDI, DCTB): m/z (rel. Int.): 720 (M⁺, 100%).

HRMS (MALDI, CH₂CI₂) for C₄₇H₄₂N₄Ni (M⁺) calcd.: 720.2757, found: 720.2775.

TLC: R_f**[%]:** 0.75 (hexanes/CH₂Cl₂- 2:1).

Nickel-(5-Bromo)-10,15,20-Trimesitylporphyrin 2

To a solution of CHCl₃ (11 mL), pyridine (250 μ L) and porphyrin **14** (130 mg, 180 μ mol, 1 equiv) *N*-bromosuccinimide (32.0 mg, 180 μ mol, 1 equiv) in CHCl₃ (3 mL) was added slowly at rt. The mixture was stirred for 15 min at rt before the reaction was quenched with acetone (3 mL). The solvents were removed under reduced pressure, and the crude was purified by silica plug filtration (hexanes/CH₂Cl₂ - 2:1, Ø 3 x 12 cm). The product **2** was obtained as a dark-orange solid in 94% yield (135 mg, 169 μ mol).

¹**H NMR (400 MHz, CDCl**₃, **rt)**: δ **[ppm]**: 9.46 (d, *J* = 5.0 Hz, 2H), 8.60 (d, *J* = 5.0 Hz, 2H), 8.48 (s, 4H), 7.19 - 7.17 (m, 6H), 2.55 (m, 9H), 1.79 (m, 18H).

¹³C NMR (101 MHz, CDCl₃, rt): δ [ppm]: 143.04, 143.00, 142.76, 142.43, 139.00, 138.95, 137.80, 137.75, 136.94, 133.20, 132.03, 131.84, 131.80, 127.77, 117.71, 117.54, 101.91, 21.46, 21.37.

UV/Vis (CH₂Cl₂): *λ* [nm] (ε [M⁻¹cm⁻¹]): 415 (225000), 530 (17000).

HRMS (MALDI, CH₂CI₂) for C₄₇H₄₁BrN₄Ni (M⁺) calcd.: 798.1863, found: 798.1853.

TLC: R_f [%]: 0.80 (hexanes/CH₂Cl₂-2:1).

Nickel-Pyrene-Porphyrin 5

Nickel-(5-bromo)-10,15,20-trimesitylporphyrin **2** (50.0 mg, 62.5 µmol, 1 equiv), 2-(7-(*tert*-butyl)pyren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (25.3 mg, 65.5 µmol, 1.05 equiv), Cs_2CO_3 (60.5 mg, 188 µmol, 3 equiv) and $Pd(PPh_3)_4$ (14.5 mg, 12.5 µmol, 0.2 equiv) were dissolved in toluene (5 mL) and DMF (2.5 mL) and were degassed. The reaction was heated with an oil bath to 80 °C for 20 h. The solvent was removed, and the crude was purified by silica plug filtration (SiO₂, hexanes/CH₂Cl₂ - 1:1, Ø 3 cm x 8 cm). After recrystallization from CH₂Cl₂/MeOH the product **5** was obtained as a red crystalline solid in 86% yield (52.0 mg, 54.0 µmol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.82 (s, 2H), 8.60 (d, *J* = 4.9 Hz, 2H), 8.55 - 8.53 (m, 6H), 8.34 (s, 2H), 8.26 - 8.14 (m, 4H), 7.22 - 7.15 (m, 6H), 2.56 - 2.52 (m, 9), 1.83 - 1.82 (m, 18H), 1.64 (s, 9H).

¹³C NMR (101 MHz, CDCl₃, rt): δ [ppm]: 148.40, 142.28, 141.66, 141.59, 141.53, 138.06, 138.03, 137.55, 136.58, 136.57, 136.37, 136.34, 131.50, 130.35, 130.20, 129.89, 128.99, 128.29, 127.56, 126.70, 126.67, 126.40, 122.97, 121.94, 121.62, 117.57, 116.27, 115.93, 34.34, 30.99, 20.49, 20.38, 20.36.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 417 (260000), 527 (20000).

HRMS (MALDI, CH₂CI₂) for C₆₇H₅₈N₄Ni (M⁺) calcd.: 976.4009, found: 976.3996.

TLC: R_f [%]: 0.75 (hexanes/CH₂Cl₂-3:1).

Fused-Nickel-Pyrene-Porphyrin PyrPor

A 20 mL vial was filled with a solution of nickel-pyrene-porphyrin **5** (20.0 mg, 20.5 μ mol, 1 equiv) in CH₂Cl₂ (10 mL) and cooled with an ice bath. The solution was degassed (bubbling N₂ through the solution for 15 min). The N₂ flow through the solution was increased, and a solution of dry FeCl₃ (53.1 mg, 327 μ mol, 16 equiv) in CH₃NO₂ (0.2 mL) was added. The N₂ bubbling through the solution was stopped 15 min after FeCl₃ was added and the solution was stirred under slow warming to rt for 1 h. MeOH (10 mL) was added to quench the reaction. After adding NEt₃ (1 mL), the solvent was removed, and the crude was purified by a silica plug (hexanes/ CH₂Cl₂ -

1:1, Ø 3 x 10 cm). The product was obtained as a dark-brown solid in 97% yield (19.5 mg, 19.9 μ mol).

¹H NMR (601 MHz, CD₂Cl₂, rt): δ [ppm]: 9.29 (d, *J* = 4.8 Hz, 1H), 8.66 (s, 1H), 8.49 (d, *J* = 4.8 Hz, 1H), 8.14 – 8.05 (m, 5H), 8.06 – 8.02 (m, 2H), 7.99 - 7.98 (m, 1H), 7.93 - 7.91 (m, 2H), 7.88 – 7.87 (m, 1H), 7.25 (s, 2H), 7.22 (s, 2H), 7.18 (s, 2H), 2.59 (s, 3H), 2.56 (s, 3H), 2.52 (s, 3H), 1.99 (s, 6H), 1.86 (s, 12H), 1.55 (s, 9H)

¹³C NMR (151 MHz, CD₂Cl₂, rt): δ [ppm]: 156.32, 149.93, 147.66, 147.60, 146.88, 146.23, 145.23, 144.81, 144.07, 143.98, 142.03, 139.14, 139.00, 138.93, 138.32, 138.19, 138.16, 137.40, 137.10, 136.07, 134.14, 133.08, 132.58, 132.28, 132.11, 131.73, 131.10, 130.37, 130.09, 129.42, 128.24, 128.18, 128.15, 128.13, 128.10, 127.74, 127.09, 126.32, 124.83, 124.60, 123.83, 123.57, 122.26, 122.09, 121.73, 121.46, 118.40, 112.78, 31.80, 21.52, 21.46, 21.42, 21.36, 21.24.

UV/Vis (CH₂Cl₂): λ [nm] (ϵ [M⁻¹cm⁻¹]): 401 (58000), 473 (82000), 500 (84000), 586 (10000).

HRMS (MALDI, CH₂CI₂) for C₆₇H₅₆N₄Ni (M⁺) calcd.: 974.3853, found: 974.3840.

TLC: R_f [%]: 0.50 (hexanes/CH₂Cl₂ - 4:1).

2.3 Synthesis of Double-Fused Bis-Pyrene-Porphyrin

Scheme S3. Synthesis of double-fused Bis-Pyrene-Porphyrin PyrPorPyr.

5,15-Dimesitylporphyrin 15

5,15-dimesitylporphyrin was synthesized adapting a procedure from Chen *et al.*.³ Ethanol (4.5 mL) stabilized CHCl₃ (600 mL) was degassed for 15 min (bubbling N₂ through the solution). Dipyrromethane **11** (890 mg, 6.00 mmol, 1 equiv) and mesitaldehyde **12** (885 μ L, 6.00 mmol, 1 equiv) were added to the solution, and the reaction was degassed for another 10 min. BF₃·OEt₂ (500 μ L) was added, and the solution was stirred for 3 h at rt under the exclusion of light. DDQ (2.04 g, 9.00 mmol, 3 equiv) was added, and the mixture was stirred for a further 30 min. The acid was quenched via the addition of NEt₃ (8 mL), and the solvent was removed under reduced pressure. The crude was purified by filtration through silica (SiO₂, hexanes/CH₂Cl₂, 1:1, Ø 13 x 8 cm). The product **15** was obtained as a purple crystalline solid in 25% yield (407 mg, 744 µmol).

¹H NMR (400 MHz, CD₂Cl₂, rt): δ [ppm]: 10.25 (s, 2H), 9.37 (d, J = 4.6 Hz, 4H), 8.86 (d, J = 4.6 Hz, 4H), 7.35 (s, 4H), 2.66 (s, 6H), 1.84 (s, 12H), -3.13 (s, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 139.34, 138.00, 137.47, 131.85, 129.92, 127.80, 117.31, 104.45, 21.36, 21.19.

HRMS (MALDI, DCTB) for C₃₈H₃₄N₄(M⁺), calcd.: 546.2778, found: 546.2793.

Nickel-5,15-Dimesitylporphyrin 16

5,15-Dimesitylporphyrin **15** (350 mg, 640 μ mol, 1 equiv) and Ni(acac)₂ (822 mg, 3.20 mmol, 5 equiv) were dissolved in toluene (60 mL). The mixture was heated to reflux for 7 h (heat-on temperature: 140 °C). The solvent was removed under reduced pressure, and the crude was purified by silica plug filtration (SiO₂, CH₂Cl₂, Ø 3.5 cm x 12 cm). After removal of the solvent, the residue was dissolved in CH₂Cl₂ (10 mL), and the product precipitated with MeOH (50 mL). The precipitate was filtered off and dried *in vacuo*. The product **16** was obtained as a red-brown solid in 100% yield (386 mg, 640 μ mol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.88 (s, 2H), 9.13 (d, *J* = 4.7 Hz, 4H), 8.76 (d, *J* = 4.7 Hz, 4H), 2.60 (s, 6H), 1.78 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 13 141.71, 141.65, 138.06, 136.68, 136.32, 131.31, 130.21, 126.74, 115.69, 103.70, 20.40, 20.33.

HRMS (MALDI, DCTB) for C₃₈H₃₂N₄Ni (M⁺), calcd.: 602.1975, found: 602.1961.

Nickel-5,15-Dibromo-10,20-Dimesitylporphyrin 1

To a solution of CHCl₃ (50 mL), pyridine (1.8 mL) and porphyrin **16** (372 mg, 616 μ mol, 1 equiv) *N*-bromosuccinimide (219 mg, 1.23 mmol, 1 equiv) in CHCl₃ (9 mL) was added slowly at rt. The mixture was stirred for 15 min at rt before the reaction was quenched with acetone (3 mL). The solvents were removed under reduced pressure, and the crude was purified by silica plug filtration (CH₂Cl₂, Ø 3 x 12 cm). The product was obtained as a dark-orange solid in 96% yield (450 mg, 591 μ mol).

¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 9.41 (d, *J* = 5.0 Hz, 4H), 8.56 (d, *J* = 5.0 Hz, 4H), 7.20 (s, 4H), 2.56 (s, 6H), 1.78 (s, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃, rt): δ [ppm]: 143.19, 142.91, 138.91, 138.07, 136.41, 133.86, 132.70, 127.88, 21.41, 21.31.

HRMS (MALDI, DCTB) for C₃₈H₃₀N₄Br₂Ni (M⁺), calcd.: 758.0185, found: 758.0190.

Nickel-Bis-Pyrene-Porphyrin 3

Nickel-5,15-dibromo-10,20-dimesitylporphyrin **1** (80.0 mg, 105 µmol, 1 equiv), 2-(7-(*tert*-butyl)pyren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **7** (85.0 mg, 221 µmol, 2.1 equiv), Cs₂CO₃ (103 mg, 316 µmol, 3 equiv) and Pd(PPh₃)₄ (49.0 mg, 42.0 µmol, 0.4 equiv) were dissolved in toluene (8 mL) and DMF (4 mL) and were degassed. The reaction was heated with an oil bath to 80 °C for 20 h. The solvent was removed, and the crude product separated from inorganics by silica plug filtration (SiO₂, hexanes/CH₂Cl₂ - 1:1, Ø 3 cm x 8 cm). Further purification was achieved by size exclusion chromatography (Biobeads SX1, toluene, Ø 5 cm x 130 cm) After recrystallization from CH₂Cl₂/MeOH the product was obtained as a red crystalline solid in 77% yield (90.0 mg, 81.0 µmol). ¹H NMR (400 MHz, CDCl₃, rt): δ [ppm]: 8.85 (s, 4H), 8.64 (d, *J* = 5.0 Hz, 4H), 8.58 (d, *J* = 4.9 Hz, 4H), 8.34 (s, 4H), 8.25 - 8.18 (m, 8H), 7.17 (s, 4H), 2.52 (s, 6H), 1.83 (s, 12H), 1.64 (s, 18H).

¹³C NMR (101 MHz, CDCl₃, rt): δ [ppm]: 149.48, 143.41, 142.71, 139.02, 138.47, 137.68, 137.33, 132.82, 131.25, 131.17, 130.07, 129.36, 128.65, 127.75, 127.44, 124.05, 122.98, 122.70, 118.82, 117.73, 35.39, 32.04, 21.41, 21.39.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 422 (300000), 529 (25000).

HRMS (MALDI, CH₂CI₂) for C₇₈H₆₄N₄Ni (M⁺) calc.: 1114.4479, found: 1114.4473.

TLC: R_f [%]: 0.30 (hexanes/CH₂Cl₂-4:1).

Double-Fused Nickel-Bis-Pyrene-Porphyrin PyrPorPyr

A 20 mL vial was filled with a solution of nickel-bis-pyrene-porphyrin **3** (20.0 mg, 17.9 μ mol, 1 equiv) in CH₂Cl₂ (10 mL) and cooled with an ice bath. The solution was degassed (bubbling N₂ through the solution for 15 min). The N₂ flow through the solution was increased, and a solution of dry FeCl₃ (46.5 mg, 287 μ mol, 16 equiv.) in CH₃NO₂ (0.2 mL) was added. The N₂ bubbling through the solution was stopped 15 min after FeCl₃ was added and the solution was stirred under slow warming to rt for 1 h. MeOH (10 mL) was added to quench the reaction. After adding NEt₃ (1 mL), the solvent was removed, and the crude was separated from inorganics by a silica plug (hexanes/ CH₂Cl₂ - 1:1, Ø 3 x 10 cm). Further purification was achieved by column chromatography (hexanes/ CH₂Cl₂ - 4:1, Ø 7 x 40 cm). The product was obtained as a dark-purple solid in 40% yield (7.96 mg, 7.16 μ mol).

¹H NMR (500 MHz, $C_2D_2Cl_4$, 80 °C): δ [ppm]: 8.93 (d, J = 5.0 Hz, 2H), 8.50 (s, 2H), 8.10 (d, J = 4.9 Hz, 2H), 8.02 - 7.81 (m, 13H), 7.55 (s, 2H), 7.24 (s, 2H), 7.17 (s, 2H), 2.62 (s, 3H), 2.54 (s, 3H), 2.16 (s, 6H), 1.89 (s, 6H), 1.53 (s, 18H).

¹³C NMR (126 MHz, C₂D₂Cl₄, 80 °C): δ [ppm]: 139.05, 138.83, 138.24, 138.09, 137.03, 134.71, 134.28, 129.99, 128.34, 128.19, 128.07, 127.79, 127.79, 125.57, 124.83, 124.56, 124.52, 123.71, 123.25, 122.02, 121.70, 120.62, 74.54, 74.46, 32.00, 21.76, 21.71, 21.63, 21.40, 14.27.

UV/Vis (CH₂Cl₂): λ [nm] (ϵ [M⁻¹cm⁻¹]): 300 (29000), 415 (47000), 522 (62000), 600 (150000).

HRMS (MALDI, CH₂CI₂) for C₇₈H₆₀N₄Ni (M⁺) calcd.: 1110.4166, found:1110.4194.

TLC: R_f [%]: 0.40 (hexanes/CH₂Cl₂ - 3:1).

2.4 Synthesis of Doubled-Fused Bis-Porphyrin-Pyrene

Scheme S4. Synthesis of fused bis-porphyrin-pyrene PorPyrPor.

Bis-Porphyrin-Pyrene 4

Nickel-(5-bromo)-10,15,20-trimesitylporphyrin **2** (20.0 mg, 25.0 µmol, 2 equiv), 2,7-bis-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene (5.70 mg, 12.5 µmol, 1 equiv), Cs₂CO₃ (12.2 mg, 37.5 µmol, 3 equiv) and Pd(PPh₃)₄ (2.90 mg, 2.50 µmol, 0.2 equiv) were dissolved in toluene (2 mL) and DMF (1 mL) and were degassed. The reaction was heated with an oil bath to 80 °C for 20 h. The solvent was removed, and the crude product separated from inorganics by silica plug filtration (SiO2, hexanes/CH₂Cl₂ - 1:1, Ø 3 cm x 8 cm). Further purification was achieved by size exclusion chromatography (Biobeads SX1, toluene, Ø 3 cm x 30 cm). After recrystallization from CH₂Cl₂/MeOH the product was obtained as a red crystalline solid in 58% yield (23.8 mg, 14.5 µmol).

¹H NMR (500 MHz, CS₂/CDCl₃, rt): δ [ppm]: 8.98 (s, 4H), 8.67 (d, *J* = 4.8 Hz, 4H), 8.59 (d, *J* = 4.8 Hz, 4H), 8.56 (s, 8H), 8.39 (s, 4H). 7.20 - 7.19 (m, .12H), 2.57 (s, 6H), 2.56 (s, 12H), 1.86 (s, 36H).

¹³C NMR (126 MHz, CS₂/CDCl₃, rt): δ [ppm]: 143.21, 142.61, 142.52, 142.47, 139.30, 138.95, 138.93, 137.54, 137.32, 137.27, 132.46, 131.37, 131.34, 130.96, 130.51, 129.72, 128.61, 127.73, 124.08, 118.33, 117.27, 116.99, 21.48, 21.41.

UV/Vis (CH₂Cl₂): λ [nm] (ε [M⁻¹cm⁻¹]): 425 (476000), 529 (47000).

HRMS (MALDI, CH₂CI₂) for C₁₁₀H₉₀N₈Ni₂ (M⁺) calcd.: 1638.5990, found: 1638.6003.

TLC: R_f [%]: 0.50 (hexanes/CH₂Cl₂ - 2:1).

Double-Fused Nickel-Bis-Porphyrin-Pyrene PorPyrPor

A 20 mL vial was filled with a solution of nickel-bis-porphyrin-pyrene **4** (20.0 mg, 12.2 µmol, 1 equiv) in CH₂Cl₂ (8 mL) and CS₂ (2 mL) and cooled with an ice bath. The solution was degassed (bubbling N₂ through the solution for 15 min). The N₂ flow through the solution was increased, and a solution of dry FeCl₃ (32.0 mg, 195 µmol, 16 equiv) in CH₃NO₂ (0.2 mL) was added. The N₂ bubbling through the solution was stopped 15 min after FeCl₃ was added and the solution was stirred under slow warming to rt for 24 h. MeOH (10 mL) was added to quench the reaction. After adding NEt₃ (1 mL), the solvent was removed, and the crude was separated from inorganics by a silica plug (hexanes/CH₂Cl₂ - 1:1, Ø 3 x 10 cm). Further purification was achieved by column chromatography (hexanes/CH₂Cl₂ - 4:1, Ø 7 x 40 cm). The product was obtained as a dark-purple solid in 36% yield (7.19 mg, 4.39 µmol).

¹H NMR (500 MHz, C₂D₂Cl₄, 80 °C): δ [ppm]: 9.21 (d, *J* = 5.0 Hz, 2H), 8.49 (d, *J* = 4.8 Hz, 2H), 8.47 (s, 2H), 8.13 - 8.04 (m, 10H), 7.96 (s, 2H), 7.81 (s, 2H), 7.23 (s, 4H), 7.17 (s, 4H), 7.11 (s, 4H), 2.62 (s, 6H), 2.54 (s, 6H), 2.49 (s, 6H), 1.97 (s, 12H), 1.84 (s, 12H), 1.82 (s, 12H).

¹³C NMR (126 MHz, C₂D₂Cl₄, 80 °C): δ [ppm]: 147.99, 147.61, 146.24, 146.21, 145.94, 145.39, 144.75, 144.35, 144.22, 141.90, 139.16, 139.03, 138.91, 137.96, 137.92, 137.45, 137.17, 136.15, 134.16, 132.06, 131.19, 130.50, 130.23, 128.71, 128.24, 128.08, 128.02, 126.73, 126.44, 122.61, 121.68, 120.63, 118.69, 29.88, 21.76, 21.65, 21.53, 21.39.

UV/Vis (CH₂Cl₂): *λ* [nm] (*ε* [M⁻¹cm⁻¹]): 391 (48000), 451 (42000), 554 (76000), 630 (21000), 688 (11000).

HRMS (MALDI, CH₂CI₂) for C₁₁₀H₈₆N₈Ni₂ (M⁺) calcd.: 1634.5677, found: 1634.5668.

TLC: R_f [%]: 0.40 (hexanes/CH₂Cl₂ - 3:1).

3 Spectral Appendix

¹H NMR (400 MHz, CDCl₃, rt)

Figure S1. ¹H and ¹³C NMR of 9.

MS (APPI)

HRMS (APPI)

Figure S2. MS/HRMS (APPI) of 9.

¹H NMR (400 MHz, CDCl₃, rt)

Figure S3. ¹H and ¹³C NMR of 6.

MS (APPI)

HRMS (APPI)

Figure S4. MS/HRMS (APPI) of 6.

Figure S5. ¹H and ¹³C NMR of 7.

MS (APPI)

HRMS (APPI)

Figure S6. MS/HRMS (APPI) of 7.

¹H NMR (400 MHz, CDCl₃, rt)

¹³C NMR (101 MHz, CDCl₃, rt)

Figure S7. ¹H and ¹³C NMR of **14**.

HRMS (MALDI)

Figure S8. MS/HRMS (MALDI) of 14.

¹H NMR (400 MHz, CDCl₃, rt)

Figure S9. ¹H and ¹³C NMR of 2.

HRMS (MALDI)

Figure S10. MS/HRMS (MALDI) of 2.

Figure S11. ¹H and ¹³C NMR of 5.

MS (MALDI)

HRMS (MALDI)

Figure S12. MS/HRMS (MALDI) of 5.

¹H NMR (601 MHz, CD₂Cl₂, rt)

Figure S13. ¹H and ¹³C NMR (DEPTQ135) of PyrPor.

¹H- ¹H COSY (601 MHz, CD₂Cl₂, rt)

Figure S14. ¹H- ¹H COSY of PyrPor.

¹H- ¹³C HSQC (601 MHz, CD₂Cl₂, rt)

Figure S15. ¹H- ¹³C HSQC of PyrPor.

¹H- ¹³C HMBC (601 MHz, CD₂Cl₂, rt)

Figure S16. ¹H- ¹³C HMBC of PyrPor.

MS (MALDI)

HRMS (MALDI)

Figure S17. MS/HRMS (MALDI) of PyrPor.

Figure S18. ¹H and ¹³C NMR of 15.

MS (MALDI)

HRMS (MALDI)

Figure S19. MS/HRMS (MALDI) of 15.

δ (ppm)

Figure S20. ¹H and ¹³C NMR of 16.

HRMS (MALDI)

Figure S21 MS/HRMS (MALDI) of 16.

Figure S22. ¹H and ¹³C NMR of 1.

MS (MALDI)

HRMS (MALDI)

Figure S23. MS/HRMS (MALDI) of 1.

¹H NMR (400 MHz, CDCl₃, rt)

Figure S24. ¹H and ¹³C NMR of 3.

HRMS (MALDI)

Figure S25. MS/HRMS (MALDI) of 3.

¹³C NMR - DEPTQ135 (126 MHz, C₂D₂Cl₄, 80°C)

Figure S26. ¹H and ¹³C NMR (DEPTQ135) of PyrPorPyr.

¹H- ¹H COSY (500 MHz, C₂D₂Cl₄, 80°C)

Figure S27. ¹H- ¹H COSY of PyrPorPyr.

¹H- ¹³C HSQC (500 MHz, C₂D₂Cl₄, 80°C)

Figure S28. ¹H- ¹³C HSQC of PyrPorPyr.

¹H- ¹³C HMBC (500 MHz, C₂D₂Cl₄, 80°C)

Figure S29. ¹H- ¹³C HMBC of PyrPorPyr.

HRMS (MALDI)

Figure S30. MS/HRMS (MALDI) of PyrPorPyr.

¹³C NMR (126 MHz, CDCl₃, rt)

Figure S31. ¹H and ¹³C NMR of 4.

MS (MALDI)

HRMS (MALDI)

Figure S32. MS/HRMS (MALDI) of 4.

Figure S33. ¹H and ¹³C NMR (DEPTQ135) of PorPyrPor.

¹H- ¹H COSY (500 MHz, C₂D₂Cl₄, 80°C)

Figure S34. ¹H- ¹H COSY of PorPyrPor.

¹H- ¹³C HSQC (500 MHz, C₂D₂Cl₄, 80°C) Ш ш بللد 20 . 0 0.89 30 ? 40 50 60 70 (udd) g Ģ 90 100 110 120 600 130 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 δ (ppm)

Figure S35. ¹H- ¹³C HSQC of PorPyrPor.

¹H- ¹³C HMBC (500 MHz, C₂D₂Cl₄, 80°C)

Figure S36. ¹H- ¹³C HMBC of PorPyrPor.

MS (MALDI)

HRMS (MALDI)

Figure S37. MS/HRMS (MALDI) of PorPyrPor.

Assignment of Regiochemistry in the Double-Fused Conjugates

PyrPorPyr

Figure S38. Aromatic region of the ¹H NMR spectrum of **PyrPorPyr** (500 MHz, C₂D₂Cl₄, 80 °C, Figure S26). Highlighted are the two signals associated with the mesitylene aromatic protons (*yellow/green*), which would appear as a single singlet in the case of the "*trans*"-isomer.

PorPyrPor

Figure S39. Aromatic region of the ¹H NMR spectrum of **PorPyrPor** (500 MHz, C₂D₂Cl₄, 80 °C, Figure S33). Highlighted are the three singlet signals associated with the pyrene protons (*yellow/green/blue*), which would appear as a mix of doublet and singlet signals in the case of the "*trans*"-isomer.

4 DFT Calculations

Geometries were relaxed using density-functional theory (DFT). The calculations were carried out with the plane-wave code PWScf of the Quantum Espresso software package,⁴ utilizing the gradient-corrected Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional,⁵ Grimme D3 dispersion correction with Becke-Johnson damping,^{6,7} Vanderbilt ultrasoft pseudopotentials,⁸ and a plane-wave basis set with a kinetic energy cutoff of 30 Ry. Structures were assumed to be relaxed when a force convergence threshold of 5 meV/Å was reached.

Electronic properties were determined with the ORCA code,⁹ using the B3LYP hybrid exchange-correlation functional,^{10,11} the triple-zeta def2-TZVPP basis set,¹² and the RIJCOSX approximation with def2/J auxiliary basis functions.¹³ Time-dependent density functional theory (TD-DFT) was used for the calculation of absorption spectra, utilizing the same settings but changing to the CAM-B3LYP long-range corrected hybrid exchange-correlation functional.¹⁴ The lowest 150 vertical transitions were included in the TD-DFT calculations. In Figures S43-S45, the transitions were shifted by 80 nm to higher wavelengths to facilitate comparison. Solvation effects in DCM were taken into account by employing the implicit conductor-like continuum polarization model (C-PCM).

Figure S40. Optimized structures and orbitals of PyrPor, PyrPorPyr and PorPyrPor.

Figure S41. Geometry optimized structures and orbitals of PyrPor, PyrPorPyr and PorPyrPor.

Figure S42. Geometry optimized structures and orbitals of Por and Pyr.

	PyrPor	PyrPorPyr	PorPyrPor	Por	Pyr
Orbital	Energy (eV)				
HOMO-3	-6.260	-5.884	-5.604	-6.273	-7.528
HOMO-2	-5.755	-5.440	-5.509	-6.272	-7.039
HOMO-1	-5.379	-5.331	-5.160	-5.478	-6.145
HOMO	-5.118	-4.997	-5.054	-5.411	-5.458
LUMO	-2.842	-3.082	-2.904	-2.441	-1.706
LUMO+1	-2.531	-2.665	-2.859	-2.439	-0.823
LUMO+2	-1.763	-1.985	-2.534	-1.503	-0.431
LUMO+3	-1.610	-1.739	-2.467	-0.945	0.164
GAP	2.276	1.916	2.150	2.970	3.752

Table S1. Energy eigenvalues of selected orbitals of PyrPor, PyrPorPyr, PorPyrPor, Por, and Pyr.

Excited state	Energy (nm)	Energy (eV)	Oscillator strength <i>f</i>	Excited state	Energy (nm)	Energy (eV)	Oscillator strength f
1	621.1	1.996	0.0477	16	320.4	3.870	0.0031
2	579.0	2.141	0.0001	17	319.1	3.886	0.1737
3	557.1	2.226	0.0003	18	316.2	3.921	0.2592
4	555.1	2.233	0.0001	19	312.0	3.974	0.0003
5	551.5	2.248	0.0273	20	309.3	4.009	0.2016
6	470.0	2.638	0.0025	21	308.2	4.023	0.0226
7	453.6	2.734	0.6347	22	301.0	4.119	0.0219
8	412.9	3.002	2.8786	23	300.6	4.124	0.0566
9	389.3	3.185	0.2555	24	298.5	4.154	0.0003
10	363.9	3.407	0.0870	25	297.6	4.166	0.4073
11	362.7	3.419	0.6342	26	292.6	4.237	0.0633
12	355.4	3.488	0.2447	27	289.2	4.287	0.0023
13	341.1	3.635	0.2075	28	287.9	4.307	0.0002
14	337.1	3.678	0.5961	29	287.2	4.317	0.0045
15	336.1	3.689	0.0325	30	286.5	4.327	0.0930

 Table S2. TD-DFT excitation energies and oscillator strengths of PyrPor.

Table S3. Orbital transitions and their relative contributions to optically active excitations with large oscillator strengths from the TD-DFT calculations of **PyrPor**. Only transitions with contributions exceeding 10% are listed.

State	Energy (eV)	Transition	Contribution (%)
1	1.996	$\text{HOMO} \rightarrow \text{LUMO}$	79.5
5	2.248	$\text{HOMO-1} \rightarrow \text{LUMO}$	42.7
		$HOMO \rightarrow LUMO+1$	38.7
7	2.734	$\text{HOMO-2} \rightarrow \text{LUMO}$	32.6
		$\text{HOMO-1} \rightarrow \text{LUMO}$	14.1
		$HOMO-1 \rightarrow LUMO+1$	26.7
8	3.002	$\text{HOMO-1} \rightarrow \text{LUMO}$	27.2
		$HOMO \rightarrow LUMO+1$	47.5
9	3.185	$\text{HOMO-2} \rightarrow \text{LUMO}$	21.3
		HOMO-2 \rightarrow LUMO+1	21.3
		$HOMO \to LUMO+2$	14.2
11	3.419	$\text{HOMO-10} \rightarrow \text{LUMO}$	14.7
		$HOMO-2 \rightarrow LUMO+1$	16.0
		$HOMO-1 \rightarrow LUMO+1$	20.7

Excited state	Energy (nm)	Energy (eV)	Oscillator strength <i>f</i>	Excited state	Energy (nm)	Energy (eV)	Oscillator strength <i>f</i>
1	695.9	1.782	0.0787	16	356.8	3.475	0.0002
2	640.8	1.935	0.0106	17	349.0	3.552	0.3885
3	583.7	2.124	0.0027	18	341.7	3.628	0.214
4	560.9	2.210	0.0001	19	337.5	3.673	0.4016
5	558.7	2.219	0	20	333.9	3.713	0.0026
6	482.6	2.569	1.681	21	330.0	3.757	0.8072
7	481.9	2.573	0.0182	22	327.4	3.787	0.0317
8	467.2	2.654	0.3603	23	323.8	3.829	0.0214
9	459.8	2.696	2.7695	24	316.3	3.920	0.0008
10	410.8	3.018	0.1265	25	310.2	3.997	0.003
11	380.7	3.257	0.0144	26	309.2	4.010	0.0001
12	375.4	3.303	0.1977	27	306.1	4.050	0.0006
13	374.6	3.310	0.8134	28	301.6	4.111	0.0226
14	369.9	3.352	0.0467	29	300.8	4.121	0.1404
15	363.0	3.415	0.0001	30	298.8	4.150	0.0409

 Table S4. TD-DFT excitation energies and oscillator strengths of PyrPorPyr.

Table S5. Orbital transitions and their relative contributions to optically active excitations with large oscillator strengths from the TD-DFT calculations of **PyrPorPyr**. Only transitions with contributions exceeding 10% are listed.

State	Energy (eV)	Transition	Contribution (%)
1	1.782	$\text{HOMO} \rightarrow \text{LUMO}$	86.5
2	1.935	$HOMO-1 \rightarrow LUMO$	55.6
		$\text{HOMO} \rightarrow \text{LUMO+1}$	32.0
6	2.569	$\text{HOMO-2} \rightarrow \text{LUMO}$	62.8
		HOMO-1 \rightarrow LUMO	13.3
8	2.654	$HOMO-26 \to LUMO+5$	56.8
9	2.696	HOMO-1 \rightarrow LUMO	17.6
		$HOMO \rightarrow LUMO+1$	46.2
10	3.018	$\text{HOMO-3} \rightarrow \text{LUMO}$	48.8
12	3.303	HOMO-10 \rightarrow LUMO	55.9
13	3.310	HOMO-11 \rightarrow LUMO	12.3
		$\text{HOMO-4} \rightarrow \text{LUMO}$	46.3
		HOMO-1 \rightarrow LUMO+1	17.4

Excited state	Energy (nm)	Energy (eV)	Oscillator strength <i>f</i>	Excited state	Energy (nm)	Energy (eV)	Oscillator strength f
1	631.3	1.964	0.1619	16	427.5	2.900	0.2136
2	610.3	2.032	0.0545	17	385.3	3.218	0.2256
3	588.7	2.106	0.0002	18	381.9	3.247	0.2634
4	587.3	2.111	0.0001	19	375.8	3.299	0.2197
5	564.3	2.197	0.0012	20	370.2	3.349	0.1118
6	563.4	2.201	0.0005	21	368.4	3.365	0.0005
7	562.3	2.205	0.0004	22	367.0	3.378	0.0007
8	561.7	2.207	0.0001	23	360.1	3.443	0.023
9	560.7	2.211	0.0001	24	356.5	3.477	0.9216
10	548.2	2.261	0.2791	25	355.2	3.490	0.5999
11	483.4	2.565	4.1504	26	354.0	3.502	0.0281
12	471.3	2.631	0.0134	27	347.9	3.564	0.0039
13	470.6	2.634	0.0136	28	345.8	3.585	0.1231
14	460.2	2.694	0	29	339.7	3.649	0.0008
15	432.6	2.866	1.1423	30	339.6	3.650	0.0007

Table S6. TD-DFT excitation energies and oscillator strengths of PorPyrPor.

Table S7. Orbital transitions and their relative contributions to optically active excitations with large oscillator strengths from the TD-DFT calculations of **PorPyrPor**. Only transitions with contributions exceeding 10% are listed.

State	Energy (eV)	Transition	Contribution (%)
1	1.964	HOMO-1 \rightarrow LUMO+1	33.5
		$\text{HOMO} \rightarrow \text{LUMO}$	47.2
2	2.032	$HOMO-2 \rightarrow LUMO+1$	11.3
		$\text{HOMO-1} \rightarrow \text{LUMO}$	35.2
		$\text{HOMO} \rightarrow \text{LUMO+1}$	25.8
10	2.261	$\text{HOMO-3} \rightarrow \text{LUMO+1}$	23.5
		$HOMO-2 \rightarrow LUMO$	20.7
		HOMO-1 \rightarrow LUMO+3	18.2
		$\text{HOMO} \rightarrow \text{LUMO+2}$	17.2
11	2.565	$HOMO-2 \rightarrow LUMO+2$	11.1
		HOMO-1 \rightarrow LUMO+1	21.6
		HOMO-1 \rightarrow LUMO+3	11.1
		$\text{HOMO} \rightarrow \text{LUMO}$	26.5
15	2.866	$\text{HOMO-5} \rightarrow \text{LUMO+1}$	12.1
		$HOMO-4 \rightarrow LUMO$	16.0
		HOMO-3 \rightarrow LUMO+3	16.0
		$\text{HOMO} \rightarrow \text{LUMO+2}$	27.5
16	2.900	HOMO-3 \rightarrow LUMO+2	15.0
		$\text{HOMO-1} \rightarrow \text{LUMO}$	23.9
		$\text{HOMO-1} \rightarrow \text{LUMO+4}$	11.6
		$HOMO \rightarrow LUMO+3$	15.5

Calculated Absorption Spectra

Figure S43. *Left:* Experimental UV/Vis spectrum overlaid with the TD-DFT calculated transitions for **PyrPor** (line spectrum). *Right:* The calculated transitions are broadened by a Gaussian function with a width of 10 nm.

Figure S44. *Left*: Experimental UV/Vis spectrum overlaid with the TD-DFT calculated transitions for **PyrPorPyr** (line spectrum). *Right*: The calculated transitions are broadened by a Gaussian function with a width of 10 nm.

Figure S45. *Left*: Experimental UV/Vis spectrum overlaid with the TD-DFT calculated transitions for **PorPyrPor** (line spectrum). *Right:* The calculated transitions are broadened by a Gaussian function with a width of 10 nm.

Cartesian Coordinates of Calculated Structures

Fused Mono-Pyrene-Porphyrin PyrPor

Cartesian Coordinates (Angstroms)

	Х	Y	Z				
c	15 71756	26 38787	21 80199	н	15 31804	21 55640	31 17372
c	15 64243	26 41442	23 24047	н	14 20906	22 91635	30 91612
c	15 69400	27 62231	23 94544	н	13 57638	21 26193	30 93825
c	15 82437	28 84123	23 19670	н	18 28796	21 88755	27 45197
c	15 90287	28 80974	21 77067	н	16 79278	21 91154	29 24825
c	15 85039	27 56793	21.09081	н	15 41734	19 06599	25 98489
c	15 62792	27 69748	25 37589	н	17 68440	22 72114	25 99789
c	15.68278	28.89700	26.02575	н	12.58672	20.58023	25.35194
c	15 80903	30 13283	25 30647	н	11 60233	21 49112	26 52511
c	15 88035	30 08612	23 87994	C	15 51438	19 17147	24 90835
c	16.03524	30.04610	21.06694	c	15,79985	18.21509	23.97683
c	16.08625	31.24543	21.72740	c	15.80780	18.86827	22.69715
С	16.01091	31.30721	23.15356	C	15.79102	18.82482	20.26637
C	16.06435	32.52778	23.85769	C	15.75315	18.12149	19.01109
С	15.99637	32.58378	25.25120	С	15.42926	19.03549	18.05392
С	15.86880	31.37295	25.95429	С	15.96784	18.19155	21.49008
н	15.92603	27.57055	20.00287	С	16.27251	16.72965	21.51443
н	16.09559	30.01733	19.97648	С	15.22690	15.78571	21.54702
н	16.18719	32.17872	21.16878	С	15.54714	14.42309	21.56609
н	15.53601	26.77026	25.94289	С	16.87189	13.97464	21.55592
н	15.63409	28.93461	27.11657	С	17.89162	14.93183	21.51801
н	16.16374	33.44357	23.27398	С	17.61586	16.30336	21.49774
н	15.81479	31.38086	27.04543	н	15.93190	17.05584	18.90305
С	16.06129	33.90354	26.03082	н	15.97656	17.15361	24.12218
С	14.77517	34.06454	26.86785	С	17.19227	12.50432	21.61323
н	13.88813	34.09303	26.21811	н	17.36520	12.17992	22.65237
н	14.64554	33.23611	27.57825	н	16.36773	11.89780	21.21366
Н	14.81173	35.00180	27.44422	н	18.10206	12.26814	21.04341
С	17.28526	33.87623	26.97036	С	13.78825	16.23023	21.55576
н	18.21556	33.76387	26.39438	н	13.54873	16.82757	20.66250
н	17.34545	34.81342	27.54502	н	13.11063	15.36701	21.58481
С	16.19053	35.12288	25.10712	н	13.57236	16.86821	22.42653
н	17.11103	35.08386	24.50602	С	18.73648	17.30813	21.45270
Н	15.33334	35.20916	24.42311	н	18.68250	17.92555	20.54272
н	16.22688	36.03972	25.71356	Н	18.68385	18.00323	22.30454
н	17.22959	33.04382	27.68579	н	19.71423	16.80953	21.47330
С	15.31333	22.83254	24.15584	н	18.93481	14.60390	21.50141
Ν	15.45570	22.89336	22.76661	н	14.73449	13.69156	21.58692
Ν	15.40112	22.95976	20.00546	Ν	15.55986	20.22616	22.83983
С	15.11003	23.98782	17.93873	Ν	15.53165	20.17709	20.07554
С	15.17395	22.74002	18.65647	С	15.31471	20.31134	18.71268
С	15.09252	21.50290	18.02726	н	15.29244	18.88515	16.98720
С	15.39074	20.41890	24.20752	С	14.82309	21.45176	16.55870
Ni	15.48741	21.55250	21.42504	С	15.60524	21.44322	14.26948
С	15.33550	24.16228	24.73771	С	15.89043	21.49306	15.63855
н	17.48183	22.49914	16.70627	С	17.31482	21.58343	16.11844
C	15.03564	21.67979	26.33954	н	17.56869	20.73895	16.77736
C	13.55/33	21.6/184	28.25410	н	16.43486	21.4/022	13.55/31
C	13.72961	21.61969	26.86698	Н	18.01551	21.58426	15.2/342
C	12.53903	21.50148	25.95281	С	13.49391	21.35564	16.101/6
Н	12.49956	22.33844	25.23901	С	13.25265	21.30965	14./23/5
C	15.5/608	24.21482	22.51400	C	14.29324	21.35525	13.79069
C	15.49882	24.35033	20.12468	C	14.00922	21.33463	12.31192
C	15.33145	24.98086	18.84524	н	13.04482	20.85451	12.09564
C	15.64082	24.97485	21.35460	н	13.96616	22.35/91	11.90444
L L	14.02020	25.03585	23.09238	н	12 24002	20.79768	17.07045
н	15 22120	24.06983	10.8/088	L L	12.34993	21.29/45	17 71 720
гі С	15.22120	24.34/53	23.00191	н	11 20024	22.19400	16 55572
с ц	13 54350	21.0440/	24.00095	н	12 22027	21.21/50	14 27142
п	15 25500	21.02411	20.00100 18 6€026	н	12.22027	21.231/3	17.75616
С	16 14777	20.0008/	10.00930	п	12.44/00	20.43509	11.13040
C C	15 02056	21.78401	28 20134				
C C	11 64252	21.03339	20.30134				
C C	17 54605	21.70430	23.12034				
н	17 7650/	21.04008	20.04424				
Ċ	14 42771	21 879/7	30 61620				
C	17.72//1	21.0/04/	20.01023				

Double-Fused Bis-Pyrene-Porphyrin PyrPorPyr

Cartesian Coordinates (Angstroms)

	Х	Y	z				
с	14.89585	30.16995	20.81667	С	10.09147	30.05503	20.62817
С	13.46486	28.54817	20.69621	С	8.85149	29.33264	20.56808
Ν	14.79423	28.77189	20.76167	С	8.84681	27.90465	20.52414
Ν	14.66730	25.99345	20.79122	С	10.07338	27.19730	20.54584
C	13.27549	26.15349	20.72903	C	10.05029	31.48779	20.66873
C	12.61825	24.8/815	20.79496	C	8.86393	32.16409	20.65508
c	13.59234	23.93340	20.90786	C	7.60781	30.04306	20.59934
c	16.10301	30.86008	20.86024	c	7.59084	27.22616	20.46267
C	12.67805	27.40174	20.65954	C	6.40552	27.91293	20.45041
С	16.07595	23.95690	20.95774	С	6.37930	29.34161	20.49775
Н	11.54492	24.72638	20.77062	С	5.17303	30.07146	20.49160
С	17.30425	30.15968	20.81719	С	5.14966	31.46691	20.53649
C	18.62249	30.75809	20.79441	С	6.37994	32.14569	20.58869
C C	19.52053	29.71654	20.70860	н	7 50250	26.10828	20.50681
N	17 39409	28.32003	20.03378	н	5 45587	20.13411	20.42073
N	17.49978	25.98091	20.78182	н	10.99268	32.03513	20.71287
С	18.89217	26.12990	20.71098	н	8.85221	33.25608	20.68734
С	19.53980	24.84898	20.76150	н	4.24123	29.50641	20.45043
С	18.55909	23.91133	20.87558	н	6.39737	33.23755	20.62355
C	17.30021	24.61482	20.88184	C	3.84351	32.27196	20.52617
C	19.49904	27.37360	20.64915	C	3.76850	33.14069	21.79908
п	20 61168	22.83199	20.94601	п	3.78334 4.61089	32.512/0	22.70100
н	18 78787	31 83082	20.72337	н	2 83749	33 72818	21.80283
Ni	16.08868	27.37980	20.77205	C	3.82079	33.18388	19.28155
С	12.67570	29.74549	20.70819	н	3.86760	32.58641	18.35935
С	13.58267	30.77952	20.79307	н	2.89369	33.77726	19.26177
Н	13.48806	22.85556	20.98773	С	2.60173	31.37003	20.48616
C	16.07002	22.46711	21.08135	н	2.57919	30.74614	19.58047
C	16.09239	21.87009	22.35800	н	2.54957	30.70903	21.36397
c c	16.09080	20.47300	22.45198	п	1.09504	31.99341	20.48377
С	16.04814	20.27392	20.06094	c	22.10637	30.00518	20.63384
c	16.04902	21.66653	19.92173	c	23.34041	29.27318	20.57330
С	16.03592	18.15688	21.44147	С	23.33406	27.84547	20.52115
Н	16.57749	17.81697	22.33546	С	22.10197	27.14780	20.53601
Н	15.00036	17.78929	21.52766	С	22.15737	31.43724	20.68283
Н	16.48265	17.67209	20.56223	C	23.34842	32.10474	20.67669
с ц	15 24857	22./1/59	23.60242	C C	24.59892	31.40245	20.62110
н	16.13191	22.09174	24.50435	c	24.58521	27.15810	20.45945
Н	17.01202	23.36606	23.62356	c	25.77563	27.83619	20.45551
С	16.03382	22.29560	18.55379	С	25.81262	29.26428	20.51170
н	15.15161	22.94021	18.41928	С	27.02396	29.98566	20.51427
Н	16.91541	22.93635	18.39852	С	27.05643	31.38074	20.56674
н	16.02286	21.52852	17.76861	С	25.83111	32.06777	20.61831
н	16.11265	20.01155	23.44297	н	22.12050	26.05868	20.49223
C	16 10894	32 34938	20 93481	н	26 72130	27 29139	20.41052
c	16.10530	33.11445	19.75131	н	21.21879	31.99088	20.72724
С	16.11492	34.51050	19.85051	н	23.36826	33.19647	20.71510
С	16.12622	35.16371	21.08742	Н	27.95198	29.41442	20.47368
С	16.13381	34.38111	22.24717	н	25.82110	33.15949	20.65889
C	16.12449	32.98269	22.19410	C	28.36680	32.17819	20.56297
C	16.10451	36.66/56	21.16/39	C II	28.39994	33.08964	19.31838
п	15 06987	37.12320	20.28415	н	28.35249	32.49308	19 30824
н	16.62874	37.03094	22.06243	н	29.33052	33.67752	19.30248
С	16.09582	32.44696	18.40175	С	28.44099	33.04848	21.83467
Н	15.20501	31.81275	18.27554	н	28.41879	32.42285	22.73878
н	16.10435	33.19186	17.59551	н	29.37504	33.63094	21.84079
H	16.96946	31.78970	18.27391	C	29.60285	31.26864	20.52995
C	16.13530	32.16866	23.46064	Н	29.64439	30.60670	21.40759
п	17 01850	31 51376	23.51962	н	29.02050	30.04482	19.02431 20 53366
н	16.14109	32.81717	24.34614	н	27.60242	33.75620	21.89374
н	16.11628	35.10386	18.93174	C	20.90753	29.28284	20.64740
н	16.14977	34.87116	23.22480	С	20.90609	27.84229	20.60440
н	13.42638	31.85365	20.83702				
C	11.27474	27.88225	20.61300				
C	11.28490	29.32320	20.64868				

Double-Fused Bis-Porphyrin-Pyrene

Cartesian Coordinates (Angstroms)

	Х	Y	Z				
С	33.00576	19.68310	16.62899	С	43,42868	25.56990	16,70495
c	32.24737	20.90930	16.56056	c	43.86557	25.74665	15.38841
C	30.85144	20.89395	16.47773	C	43.09250	25.20081	14.35757
С	30.18066	19.62215	16.45054	С	41.91018	24.49894	14.61440
С	30.93915	18.41045	16.50818	Н	42.52022	21.93890	16.38139
С	32.35418	18.46512	16.59639	Н	39.79250	26.36622	16.03158
С	30.06444	22.08982	16.41863	С	45.11864	26.52414	15.08381
С	28.70222	22.04004	16.34062	Н	44.88032	27.56593	14.81441
С	28.00325	20.78978	16.30745	н	45.79308	26.55451	15.95052
C	28.76341	19.57028	16.36180	Н	45.66583	26.08729	14.23623
C	30.24467	17.16775	16.47489	C	41.81/11	24.69693	18.43/14
C	28.8/519	10.20050	16.38966	н	41.80023	23.03308	10.12176
C C	26.09301	18 25765	16.32940	п	42.49450	25.22377	19.12170
c	25 94150	19 47478	16 17711	C	41 10325	23.07505	13 48229
c	26 61007	20 70327	16 22247	н	41 02683	22 82525	13 56527
н	32,90435	17.52408	16.62614	н	40.07247	24.30634	13.48796
Н	30.82700	16.24452	16.51924	н	41.55664	24.16130	12.51200
н	28.36060	16.15429	16.36537	н	43.41886	25.32188	13.32074
Н	30.57625	23.05274	16.43820	н	44.02095	25.98405	17.52576
Н	28.12274	22.96305	16.29949	Ν	37.77692	23.72661	16.51742
Н	26.19803	17.27897	16.22471	Ν	39.22929	21.37935	16.75518
С	34.85455	23.54441	16.65800	С	39.80397	20.14786	17.03246
Ν	35.51452	22.31093	16.67751	Н	41.90641	19.38377	17.10390
Ν	36.86545	19.91390	16.96796	С	39.91721	17.74243	17.64640
С	37.02968	17.64104	17.44212	С	41.04267	15.71902	16.94532
C	37.74037	18.88188	17.26828	C	40.29899	16.85785	16.61706
C	39.12607	18.96805	17.32442	C	39.92039	17.13403	15.18608
	30.90612	24.81268	16.54466	н	40.31303	18.10563	14.84889
	37.35501	21.84032	16.72800		41.34215	10.03048	10.14490
L L	20 02744	23.304/2	10.01038	п С	40.31027	17 40125	14.51897
п С	38.82/44	17.17889	15.00255	c	40.28450	16 22070	10.96109
c	33 64400	20.02470	17 84002	c	41.02702	15 43433	18 26391
c	34 39852	26 64505	17 85679	c	42 18740	14 18555	18 59632
c	34.86197	26.05320	19.16150	н	42.75835	14.30285	19.52774
н	34.48632	25.02670	19.29084	н	41.50970	13.32698	18,73212
С	34.50783	21.41175	16.63530	н	42.88902	13.92167	17.79235
С	35.60703	19.30414	16.92701	С	39.88757	18.42577	20.08464
С	35.71222	17.90132	17.21310	н	38.79411	18.53964	20.13968
С	34.44487	20.02727	16.70818	н	40.24631	18.06692	21.05810
С	33.20031	22.00641	16.58426	Н	41.31364	16.12997	20.30255
Н	37.50261	16.69723	17.69609	н	40.29797	19.43319	19.91541
Н	32.71385	24.19305	16.60877	С	23.82113	23.14332	16.08611
С	35.51336	24.76122	16.63222	Ν	23.25161	21.86527	16.06987
Н	33.39851	28.30561	18.79050	Ν	22.07913	19.37347	15.79331
Н	34.87805	17.20971	17.25807	С	22.08240	17.08113	15.38861
C	34.28845	26.58652	15.41424	C	21.28544	18.27561	15.50091
C	33.5358/	27.76600	15.44321	c	19.90138	18.26868	16 21 201
c	33.199/9	28.39839	10.04481		21.003/3	24.25944	10.21201
с ц	25 77277	25.95494	12 06057	C	21.45012	21.20376	16 12176
C C	32 35000	29.67857	16 65211	н	20.13908	16 61083	17 71785
н	32 52493	30 24858	15 74623	C	23 77482	25 62766	16 14000
н	31 28640	29 40118	16 68955	c	24 67342	27 53801	14 95976
н	32.58118	30.27599	17.52675	c	24.00964	26.30645	14.92768
Н	34.20927	26.49782	13.25984	c	23.55443	25.71798	13.61856
н	33.20492	28.20315	14.49692	Н	24.02614	24.74034	13.43509
н	37.16575	27.02370	16.36377	С	24.32011	21.04129	16.12446
Н	34.25243	24.90347	14.05362	С	23.37571	18.85420	15.87698
н	35.96028	25.99172	19.20457	С	23.37310	17.43890	15.63716
н	34.51723	26.65590	20.01174	С	24.48188	19.66367	16.08333
С	37.62893	26.04147	16.37097	С	25.58140	21.72878	16.17444
С	38.94216	25.71263	16.20067	Н	21.68132	16.09946	15.15539
С	39.03028	24.28227	16.30288	Н	25.90943	23.94461	16.13791
С	40.30273	22.21869	16.47956	С	23.07666	24.30913	16.12477
C	41.54510	21.49749	16.56387	C	24.19882	26.18571	17.36310
C	41.23840	20.22154	16.92840	C	24.85809	27.42008	17.34967
C C	40.23276	23.58414	10.23/92	L C	25.10956	28.11039	10.15923
c c	41.49039	24.33019	12.92019	ι μ	23.94044	25.4/0/0	10.00402
L	+L.LJLL0	24.0/JZÖ	11.0004/	п	LL.0/0LD	23.23310	10.00027

С	25.85305	29.41990	16.16668
Н	25.67554	29.97765	17.09685
н	26.94009	29.25522	16.08646
н	25.55607	30.05557	15.32089
н	24 28841	26 07241	19 51607
н	25 18129	27 85/95	18 29967
	21.20000	27.03433	16.23507
н	21.26990	26.44175	16.44854
н	24.46936	24.50230	18.69540
н	22.46723	25.54620	13.61330
н	23.80266	26.38237	12.78072
С	20.87573	25.43072	16.40710
С	19.58574	25.00839	16.54447
С	19.59758	23.57911	16.39975
Ċ	18 47435	21 44185	16 12224
ĉ	17 28722	20 64413	15 96455
ĉ	17.20722	10.28006	15.50455
C	17.09510	19.38996	15.02481
C	18.44264	22.80303	16.39467
С	17.12528	23.46281	16.63804
С	16.40573	24.02477	15.56404
С	15.17049	24.62966	15.82129
С	14.63387	24.69381	17.11192
С	15.36600	24.12619	18.15957
С	16.60480	23.51080	17.94628
н	16 27701	21 02260	16.08773
 Ц	10.27701	21.02200	16 71/0/
П	10.00907	25.59741	10.71484
C	13.31686	25.3//21	17.36849
н	13.45/06	26.46076	17.51385
н	12.62627	25.24923	16.52298
н	12.83117	24.98553	18.27292
С	16.95202	23.97270	14.16180
н	17.14610	22.93638	13.84572
н	16.25028	24.42545	13.44930
н	17 91147	24 50758	14 08734
c	17 36605	22 90824	19 09730
	17.50005	22.30024	19.03730
	17.33133	21.05522	10.95005
н	18.35313	23.38153	19.21427
н	16.81397	23.02560	20.03882
н	14.96169	24.15893	19.17518
н	14.61029	25.05961	14.98611
Ν	20.89084	23.11538	16.20200
Ν	19.61321	20.67495	15.90483
С	19.13490	19.40749	15.60613
н	17.09334	18,51080	15.41572
c	19 20758	16 98679	15 05165
ĉ	10 1/001	1/ 02822	15 75256
ĉ	10.14001	16 11806	16,09672
c	10.00304	10.11890	10.08072
C	19.06433	16.46770	17.52821
н	18.56953	17.41097	17.80681
н	17.83227	14.25811	16.55793
н	18.69876	15.67714	18.19641
С	18.95212	16.65658	13.70622
С	18.29477	15.45513	13.41681
С	17.88672	14.57599	14.42497
c	17 20747	13 27427	14 09095
ц	16 60512	12 22620	12 12025
	17 02074	12 451029	14 02202
	10,938/4	12.45103	14.03309
н	16.46867	12.99899	14.85689
С	19.37267	17.58302	12.59616
Н	20.45517	17.77936	12.62685
Н	19.12648	17.15812	11.61436
н	18.09423	15.20232	12.37186
н	18.87551	18.56158	12.68292
н	24.25300	16.80506	15.63429
н	24.85227	28.06499	14.01829

5 References

- A.-C. Bédard, A. Vlassova, A. C. Hernandez-Perez, A. Bessette, G. S. Hanan, M. A. Heuft, S. K. Collins, *Chem. Eur. J.*, 2013, **19**, 16295.
- 2 D. N. Coventry, A. S. Batsanov, A. E. Goeta, J. A. K. Howard, T. B. Marder, R. N. Perutz, *Chem. Commun.*, 2005, 2172.
- 3 Q. Chen, L. Brambilla, L. Daukiya, K. S. Mali, S. de Feyter, M. Tommasini, K. Müllen, A. Narita, *Angew. Chem., Int. Ed. Engl.,* 2018, **57**, 11233.
- 4 P. Giannozzi, et al., J. Condens. Matter Phys., 2009, 21, 395502.
- 5 J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 6 S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 7 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 8 D. Vanderbilt, *Phys. Rev. B*, 1990, **41**, 7892-7895.
- 9 F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.
- 10 C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 11 A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- 12 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- 13 F. Neese, F. Wennmohs, A. Hansen, U. Becker, *Chem. Phys.,* 2009, **356**, 98-109.
- 14 T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.