Visible light-induced PPh₃/MI-promoted δ-C(sp³)-H Chlorination and Cyclization with N-chloro-arylsulfonamides via EDA Complex

Xiaotao Qin, Hui Liu, Jinkai Hu, Chenglei Yang, Ao-Tong Shi, Qing-Long Lv, Jinhui Yang*, and Dianjun Li*

State KeyLaboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China

Supporting Information

General information	S-2
General procedure for synthesis of compound 2	S-2
General procedure for synthesis of compound 3	S-2
Gram-scale reactions	S-3
Mechanistic studies	S-3
Screening of the Reaction Conditions: chlorination reaction	S-3
The absorption spectra of individual compounds and mixture	S-5
Derivatization Experiments	S-5
Spectroscopic data	S-5
References	S-13
Copies of NMR spectra of substrates and products	S-14

1.General information

Unless otherwise flame-dried quartz noted, all reactions were carried out in tube under argon atmosphere. Anhydrous solvents were purified and dried by standard procedures. All commercially available reagents were used as received without further purification. PPh₃ and LiI were purchased from Innochem. Other reagents were purchased from Energy Chemical. Acetonitrile and acetone were distilled over P2O5 before use. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products were visualized by UV detection. Melting points were measured on SGW® X-4 melting point apparatus and uncorrected. ¹H NMR spectra were recorded on a Bruker AVANCE III 500 spectrometer at room temperature. Chemical shifts (ppm) were referenced to tetramethylsilane (TMS, $\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C{¹H} NMR spectra were obtained by the same NMR spectrometer and calibrated with $CDCl_3$ (δ = 77.00 ppm). ¹⁹F NMR spectra were obtained by the same NMR spectrometer. Data for ¹H NMR spectra were reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, br = broad singlet), coupling constant (Hz) and integration. Data for ¹³C{¹H} NMR spectra were reported in terms of chemical shift and multiplicity where appropriate. High-Resolution Mass Spectrometry (HRMS) were performed on an ThermoFisher LTQ Orbitrap XL. The starting Materials 1 were obtained by previous reports ¹.

2.General procedure for synthesis of compound 2:

To a 25 mL of flame-dried quartz tube were added N-chloro-N-pentylbenzenesulfonamide **1** (0.5 mmol, 1.0 equiv.), N-Chlorosuccinimide (NCS) (0.9 mmol, 120.2 mg, 1.8 equiv.), PPh₃ (0.5 mmol, 131.1 mg, 1.0 equiv.), KI (0.5 mmol, 83.0 mg, 1.0 equiv.) and MeCN (2 mL). The mixture was stirred for 36 h under 3 W blue LED irradiation at room temperature in ambient air. After completion, the mixture was quenched with saturated NaHCO₃ (5 mL), and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum ether to afford the desired δ -chlorosulfonamides **2**.

3.General procedure for synthesis of compound 3:

To a 25 mL of flame-dried quartz tube were added N-chloro-N-pentylbenzenesulfonamide **1** (0.5 mmol, 1.0 equiv.), selectfluor (0.9 mmol, 318.8 mg 1.8 equiv.), PPh₃ (0.5 mmol, 131.1 mg, 1.0 equiv.), NaI (0.5 mmol, 74.9 mg, 1.0 equiv.) and MeCN (2 mL). The mixture was stirred for 48 h under 3 W blue LED irradiation at room temperature under Ar atmosphere. After completion,

the mixture was quenched with saturated NaHCO₃ (5 mL), and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum to obtain the cycled products **3**.

4. Gram-scale reactions

То 25 mL of flame-dried quartz added N-chloro-4-methyl-Nа tube were pentylbenzenesulfonamide 1j (2.5 mmol, 0.6877 g, 1.0 equiv.), NCS (4.5 mmol, 0.601 g, 1.8 equiv.), PPh₃ (2.5 mmol, 0.655 g 1.0 equiv.), KI (2.5 mmol, 0.415 g, 1.0 equiv.) and MeCN (8 mL). The mixture was stirred for 48 h under 6 W blue LED irradiation at room temperature in ambient air. After completion, the mixture was quenched with saturated NaHCO₃ (5 mL), and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure The residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/petroleum to give pure products 2j (42%).

5. Mechanistic studies

To a 25 mL of flame-dried quartz tube were added **1j** (0.5 mmol, 0.137 g, 1.0 equiv.), NCS (0.9 mmol, 120.2 mg, 1.8 equiv.), PPh₃ (0.5 mmol, 131.1 mg, 1.0 equiv.), KI (0.5 mmol, 83.0 mg, 1.0 equiv.), TEMPO (2.0 mmol, 4.0 equiv.) or BHT (2.0 mmol, 4.0 equiv.) or 1,1-Diphenylethylene (2.0 mmol, 4.0 equiv.) in MeCN (2 mL). The mixture was stirred for 36 h under 3 W blue LED irradiation at room temperature in ambient air. Product **2j** can not obtained.

6. Screening of the Reaction Conditions

2		PPh ₃	KI	MeCN	<10	
3	NCS	PPh ₃	Csl	MeCN	33	
4	NCS	PPh ₃	Nal	MeCN	0	<10
5	NCS	,0 ¹ 0,	KI	MeCN	15	
6	NCS	00	KI	MeCN	0	
7	NCS		KI	MeCN	16	
8	NCS	$\begin{array}{c} & & \\$	кі	MeCN	20	
9	NCS	PPh ₃	KI (0.5 equiv.)	MeCN	20	
10	NCS	PPh ₃ (0.5 equiv.)	КІ	MeCN	23	
11	NCS	PPh ₃	KI	CH_2Cl_2	30	
12	NCS	PPh_3	КІ	DMF	0	
13 ^b	NCS	PPh ₃	КІ	MeCN	0	
14 ^c	NCS	PPh ₃	KI	MeCN+ 3Å MS	50	
15	NCS	PPh ₃	KI	MeCN+H ₂ O	25	
16 ^{<i>d</i>}	NCS	PPh ₃	КІ	MeCN	53	
17	seletfluor	PPh ₃	Nal	MeCN		20
18	Cul	PPh ₃	Nal	MeCN		0
19	AgF	PPh_3	Nal	MeCN		0

20	seletfluor	PPh ₃	Nal	Ethyl ether	 14
21	seletfluor	PPh ₃	Nal	THF	 0
22	seletfluor	PPh ₃	Nal	CH_2Cl_2	 15
23 ^e	seletfluor	PPh ₃	Nal	MeCN	 0
24 ^f	seletfluor	PPh_3	Nal	MeCN	 16

^{*a*} Reaction conditions: **1a** (0.50 mmol, 1.0 equiv.), additive (0.90 mmol, 1.8 equiv.), iodine (0.50 mmol, 1.0 equiv.), phosphorus (0.50 mmol, 1.0 equiv.), MeCN (2.0 mL) at room temperature under LED irradiation (3.0 W) in argon. ^{*b*} Dark conditions. ^{*c*} dried molecular sieve. ^{*d*} Under ambient air. ^{*e*} Dark conditions. ^{*f*} Under ambient air. ^{*g*} Isolated yield

7. The absorption spectra of individual compounds and mixture^a

^{*a*} Optical absorption spectra recorded in a 1 cm path quartz cuvettes using a Shimadzu UV-1800 UV-visible spectrophotometer. b mixture = 1j, KI and PPh₃

Figure S1 the absorption spectra of individual compounds and mixture

The PPh₃ sample is 0.01 M in 2.00 mL MeCN. **1j** is 0.01 M in 2.00 mL MeCN. The mixed sample is **1j** (0.01 M), PPh₃ (0.01 M), KI (0.01 M) in 2.00 mL MeCN. The samples were tested after 1 hour of sonication. Then the solutions were measured in a quartz cuvette with a UV-Vis spectrometer. The parameters were shown below: Scan range: 400-600 nm; scan rate: 60 nm/min; smooth: 6 nm; slit: 1 nm.

8. Derivatization Experiments

To a 25 mL of flame-dried Schlenk flask were added product **2j** (0.1 mmol, 1.0 equiv.), phthalimide (0.1 mmol, 1. 0 equiv.), KOH (0.12 mmol, 1.2 equiv.), Methyltrioctylammonium chloride (aliquat 336) (0.025 mmol, 0.25 equiv.) and MeCN (2 mL) under argon atmosphere. The reaction mixture was stirred at 100 °C (oil bath temperature) for 16 h. After the reaction was completed as indicated by TLC, the system was quenched with water (50 mL), and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude products were purified by silica gel chromatography to give pure product in 93% yield.

9.Spectroscopic data

N-(4-chloropentyl)benzenesulfonamide(2a)

Yellow oil. $R_f = 0.35$ (petroleum ether/EtOAc = 5:1); 60 mg (46%); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.4 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.5 Hz, 2H), 4.69 (t, J = 5.8 Hz, 1H), 3.99-3.92 (m, 1H), 2.99 (q, J = 6.4 Hz, 2H), 1.76-1.60 (m, 4H), 1.46 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.9, 132.7, 129.2, 127.0, 57.9, 42.7, 37.0 26.8, 25.3. Analytical data were in accordance with the literature^{1a}.

4-bromo-N-(4-chloropentyl)benzenesulfonamide(2b)

Yellow oil. $R_f = 0.32$ (petroleum ether/EtOAc = 5:1); 89 mg (53%); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 4.53 (s, 1H), 4.01-3.94 (m, 1H), 3.00 (q, J = 6.3 Hz, 2H), 1.77-1.58 (m, 4H), 1.48 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.0, 132.5, 128.6, 127.7, 57.8, 42.7, 37.0, 26.8, 25.4. Analytical data were in accordance with the literature².

4-chloro-N-(4-chloropentyl)benzenesulfonamide(2c)

Yellow oil. $R_f = 0.37$ (petroleum ether/EtOAc = 5:1); 81 mg (55%); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 4.63 (t, J = 5.8 Hz, 1H), 4.01-3.92 (m, 1H), 2.99 (q, J = 6.3 Hz, 2H), 1.78-1.57 (m, 4H), 1.48 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.2, 138.4, 129.5, 128.5, 57.8, 42.7, 36.9, 26.8, 25.4. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-4-cyanobenzenesulfonamide(2d)

Yellow oil. $R_f = 0.58$ (petroleum ether/EtOAc = 3:1); 75 mg (53%); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 8.3 Hz, 2H), 4.92 (t, J = 6.1 Hz, 1H), 4.01-3.94 (m, 1H), 3.03 (q, J = 6.3Hz, 2H), 1.78-1.58 (m, 4H), 1.48 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 144.3, 133.03, 133.00, 127.6, 117.2, 116.4, 57.8, 42.8, 36.8, 26.8, 25.3. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-4-iodobenzenesulfonamide(2e)

Yellow oil. $R_f = 0.35$ (petroleum ether/EtOAc = 5:1); 79 mg (41%); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.5, 1.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 4.77 (s, 1H), 4.01-3.93 (m, 1H), 2.98 (q, J = 6.3 Hz, 2H), 1.78-1.56 (m, 4H), 1.47 (d, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.76, 138.4, 128.4, 100.0, 57.8, 42.7, 36.9, 26.8, 25.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for C₁₁H₁₅NO₂NaSClI ⁺: 409.9454, found: 409.9457.

N-(4-chloropentyl)-4-fluorobenzenesulfonamide(2f)

Yellow oil. $R_f = 0.62$ (petroleum ether/EtOAc = 3:1); 60 mg (43%); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (q, J = 4.6 Hz, 2H), 7.14 (t, J = 8.5 Hz, 2H), 4.29 (s, 1H), 3.95-3.86 (m, 1H), 2.97-2.87 (m, 2H), 1.72-1.55 (m, 4H), 1.42 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.1 (d, J = 255.1 Hz), 136.0, 129.8 (d, J = 9.4 Hz), 116.4 (d, J = 22.6 Hz), 57.9, 42.7, 37.0, 26.8, 25.4; ¹⁹F NMR (471 MHz, CDCl₃) δ -105.21. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-4-nitrobenzenesulfonamide(2g)

Yellow oil. $R_f = 0.28$ (petroleum ether/EtOAc = 5:1); 67 mg (44%); ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.7 Hz, 2H), 7.99 (d, J = 8.7 Hz, 2H), 4.50 (s, 1H), 3.96-3.87 (m, 1H), 3.00 (q, J = 6.0 Hz, 2H), 1.73-1.55 (m, 4H), 1.43 (d, J = 6.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 145.8, 128.3, 124.4, 57.8, 42.8, 36.8, 26.8, 25.3. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-4-(trifluoromethyl)benzenesulfonamid(2h)

Yellow oil. $R_f = 0.37$ (petroleum ether/EtOAc = 5:1); 67 mg (41%); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 4.81 (t, J = 6.0 Hz, 1H), 4.00-3.93 (m, 1H), 3.03 (q, J = 6.3 Hz, 2H), 1.78-1.58 (m, 4H), 1.47 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.6, 134.5 (q, J = 33.2 Hz), 127.5, 126.4 (q, J = 3.6 Hz), 123.2 (q, J = 272.8 Hz), 57.8, 42.8, 36.9, 26.8, 25.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -63.74. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-4-methoxybenzenesulfonamide(2i)

Yellow oil. $R_f = 0.52$ (petroleum ether/EtOAc = 3:1); 49 mg (34%); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 4.30 (s, 1H), 4.01-3.93 (m, 1H), 3.88 (s, 3H), 2.97 (q, J = 6.4 Hz, 2H), 1.78-1.57 (m, 4H), 1.48 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 131.5, 129.2, 114.3, 58.0, 55.6, 42.6, 37.0, 26.7, 25.4. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-4-methylbenzenesulfonamide(2j)

Yellow oil. $R_f = 0.24$ (petroleum ether/EtOAc = 5:1); 66 mg (48%);¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.53 (s, 1H), 4.00-3.92 (m, 1H), 2.97 (q, J = 6.4 Hz, 2H), 2.43 (s, 3H), 1.79-1.55 (m, 4H), 1.47 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.5, 136.9, 129.7, 127.1, 58.0, 42.6, 37.0, 26.7, 25.3, 21.5. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-3-methylbenzenesulfonamide(2k) Yellow oil. R_f= 0.37 (petroleum ether/EtOAc = 5:1); 44 mg (32%); ¹H NMR (500 MHz, CDCl₃) δ

7.73-7.61 (m, 2H), 7.44-7.34 (m, 2H), 4.53 (t, J = 5.9 Hz, 1H), 4.02-3.91 (m, 1H), 2.99 (q, J = 6.4 Hz, 2H), 2.43 (s, 3H), 1.81-1.59 (m, 4H), 1.47 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 139.4, 133.5, 129.0, 127.4, 124.2, 57.9, 42.7, 37.0, 26.8, 25.3, 21.3; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for C₁₂H₁₈NO₂NaSCl ⁺: 298.0644, found: 298.0643.

3-bromo-N-(4-chloropentyl)benzenesulfonamide(21)

Yellow oil. Rf = 0.32 (petroleum ether/EtOAc = 5:1); 66 mg (39%); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 1H), 4.37 (t, *J* = 5.6 Hz, 1H), 4.01-3.91 (m, 1H), 3.05-2.95 (m, 2H), 1.79-1.56 (m, 4H), 1.48 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 141.9, 135.8, 130.7, 130.0, 125.6, 123.2, 57.8, 42.8, 37.0, 26.8, 25.4. Analytical data were in accordance with the literature².

N-(4-chloropentyl)-3-nitrobenzenesulfonamide(2m)

Yellow oil. $R_f = 0.55$ (petroleum ether/EtOAc = 3:1); 36 mg (24%); ¹H NMR (500 MHz, CDCl₃) δ 8.64 (t, J = 1.8 Hz, 1H), 8.37 (dd, J = 8.0, 1.5 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 4.62 (t, J = 6.0 Hz, 1H), 3.95-3.87 (m, 1H), 3.01 (q, J = 6.2 Hz, 2H), 1.73-1.51 (m, 4H), 1.42 (d, J = 6.6 Hz, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 148.4, 142.3, 132.5, 130.6, 127.2, 122.2, 57.8, 42.9, 36.9, 26.9, 25.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for C₁₁H₁₅N₂O₄NaSCl ⁺: 329.0339, found: 329.0343.

N-(4-chloropentyl)-2-methylbenzenesulfonamide(2n)

Yellow oil. $R_f = 0.35$ (petroleum ether/EtOAc = 5:1); 34 mg (25%); ¹H NMR (500 MHz, CDCl₃) δ 7.98-7.96 (m, 1H), 7.48-7.44 (m, 1H), 7.34-7.30 (m, 2H), 4.39 (d, J = 6.0 Hz, 1H), 3.97-3.90 (m, 1H), 2.98 (q, J = 6.4 Hz, 2H), 2.65 (s, 3H), 1.55-1.76 (m, 4H), 1.46 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 137.9, 136.9, 132.8, 132.6, 129.5, 126.2, 57.8, 42.5, 37.0, 26.9, 25.3, 20.3. Analytical data were in accordance with the literature³.

3,5-dichloro-N-(4-chloropentyl)benzenesulfonamide(2p)

Yellow oil. $R_f = 0.54$ (petroleum ether/EtOAc = 5:1); 44 mg (27%); ¹H NMR (500 MHz, CDCl₃)

δ 7.67 (d, J = 1.6 Hz, 2H), 7.49 (s, 1H), 4.47 (d, J = 5.5 Hz, 1H), 3.96-3.88 (m, 1H), 2.98 (q, J = 6.3 Hz, 2H), 1.74-1.53 (m, 4H), 1.43 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.0, 136.2, 132.7, 125.4, 57.8, 42.9, 36.9, 26.8, 25.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for C₁₁H₁₄NO₂NaSCl₃ ⁺: 351.9709, found: 351.9716.

3,4-dichloro-N-(4-chloropentyl)benzenesulfonamide(2q)

Yellow oil. $R_f = 0.54$ (petroleum ether/EtOAc = 5:1); 50 mg (31%); ¹H NMR (500 MHz, CDCl₃) δ 7.88 (s,1H), 7.62 (dd, J = 8.5, 2.0 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 4.51 (t, J = 5.8 Hz, 1H), 3.96-3.87 (m, 1H), 2.96 (q, J = 6.2 Hz, 2H), 1.74-1.50 (m, 4H), 1.42 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.8, 137.6, 133.9, 131.2, 129.0, 126.1, 57.8, 42.8, 36.9, 26.8, 25.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for C₁₁H₁₄NO₂NaSCl₃ ⁺: 351.9709, found: 351.9708.

4-chloro-N-(4-chloropentyl)-3-nitrobenzenesulfonamide(2r)

Yellow oil. $R_f = 0.63$ (petroleum ether/EtOAc = 3:1); 34 mg (20%);¹H NMR (500 MHz, CDCl₃) δ 8.35 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 4.71 (t, J = 5.8 Hz, 1H), 4.05-3.94 (m, 1 H), 3.07 (q, J = 6.0 Hz, 1 H), 1.82-1.71 (m, 2H), 1.71-1.64 (m, 2H), 1.50 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.0, 140.4, 133.0, 131.7, 131.0, 124.3, 57.8, 42.9, 36.9, 26.8, 25.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for C₁₁H₁₄N₂O₄NaSCl₂ ⁺: 362.9949, found: 362.9944.

N-(4-chloropentyl)naphthalene-1-sulfonamide(2s)

Yellow oil. $R_f = 0.31$ (petroleum ether/EtOAc = 5:1); 62 mg (40%); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, J = 8.6 Hz, 1H), 8.22 (d, J = 7.3 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.65-7.62 (m, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 4.67 (s, 1H), 3.79-3.70 (m, 1H), 2.89 (q, J = 6.1 Hz, 2H), 1.59-1.50 (m, 2H), 1.48-1.39 (m, 2H), 1.28 (d, J = 6.5 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 134.5, 134.3, 134.3, 129.7, 129.2, 128.4, 128.2, 126.9, 124.3, 124.2, 57.8, 42.7, 36.8, 26.7, 25.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for $C_{15}H_{18}NO_2NaSC1 +: 334.0644$, found: 334.0649.

N-(4-chloropentyl)naphthalene-2-sulfonamide(2t)

Yellow oil. Rf = 0.61 (petroleum ether/EtOAc = 3:1); 66 mg (43%); ¹H NMR (500 MHz, CDCl₃) δ 8.44 (s, 1H), 7.98 (d, *J* = 2.0 Hz, 1H), 7.96 (s, 1H), 7.84 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.63-7.59 (m, 2H), 4.67 (t, *J* = 6.1 Hz, 1H), 3.96-3.92 (m, 1H), 3.02 (q, *J* = 6.3 Hz, 2H), 1.76-1.57 (m, 4H), 1.43 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 136.7, 134.8, 132.2, 129.6, 129.2, 128.8, 128.4, 127.9, 127.6, 122.2, 57.9, 42.7, 37.0, 26.8, 25.3. Analytical data were in accordance with the literature^{1a}.

2-methyl-1-(phenylsulfonyl)pyrrolidine(3a)

Yellow oil. $R_f = 0.46$ (petroleum ether/EtOAc = 5:1); 50 mg (45%); ¹H NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 2H), 7.53-7.47 (m, 1H), 7.45 (t, J = 7.6 Hz, 2H), 3.70-3.63 (m, 1H), 3.40-3.34 (m, 1H), 3.14-3.07 (m, 1H), 1.81-1.71 (m, 1H), 1.66-1.58 (m, 1H), 1.51-1.39 (m, 2H), 1.25 (d, J = 6.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 137.9, 132.4, 129.0, 127.4, 56.2, 49.0, 33.5, 23.9, 22.8. Analytical data were in accordance with the literature⁴.

1-((4-bromophenyl)sulfonyl)-2-methylpyrrolidine(3b)

Yellow oil.Rf = 0.56 (petroleum ether/EtOAc = 5:1); 30 mg (20%); ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 3.68-3.60 (m, 1H), 3.40-3.34 (m, 1H), 3.10-3.03 (m, 1H), 1.84-1.74 (m, 1H), 1.70-1.62 (m, 1H), 1.55-1.41 (m, 2H), 1.24 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 137.0, 132.2, 128.9, 127.4, 56.3, 49.0, 33.5, 23.9, 22.8. Analytical data were in accordance with the literature⁴.

1-((4-chlorophenyl)sulfonyl)-2-methylpyrrolidine(3c)

Yellow oil. $R_f = 0.66$ (petroleum ether/EtOAc = 3:1); 20 mg (16%); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 3.68-3.61 (m, 1H), 3.40-3.35 (m, 1H), 3.11-3.04 (m, 1H), 1.83-1.74 (m, 1H), 1.70-1.62 (m, 1H), 1.55-1.49 (m, 1H), 1.47-1.41 (m, 1H), 1.24 (d, J = 6.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 138.9, 136.7, 129.3, 128.8, 56.3, 49.0, 33.5, 23.9, 22.7. Analytical data were in accordance with the literature⁵.

1-((4-fluorophenyl)sulfonyl)-2-methylpyrrolidine(3d)

Yellow oil. $R_f = 0.51$ (petroleum ether/EtOAc = 5:1); 23 mg (19%); ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.76 (m, 2H), 7.15-7.09 (m, 2H), 3.68-3.61 (m, 1H), 3.39-3.34 (m, 1H), 3.10-3.04 (m, 1H), 1.83-1.74 (m, 1H), 1.69-1.61 (m, 1H), 1.54-1.41 (m, 2H), 1.24 (d, J = 6.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.0 (d, J = 254.3 Hz), 134.3 (d, J = 3.0 Hz), 130.0 (d, J = 9.2 Hz), 116.2 (d, J = 22.7 Hz), 56.2, 49.0, 33.5, 23.9, 22.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -105.85. Analytical data were in accordance with the literature⁵.

2-methyl-1-tosylpyrrolidine(3e)

Yellow oil. $R_f = 0.67$ (petroleum ether/EtOAc = 3:1); 20 mg (17%); ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 3.67-3.60 (m, 1H), 3.39-3.33 (m, 1H), 3.11-3.04 (m, 1H), 2.35 (s, 3H), 1.80-1.70 (m, 1H), 1.67-1.57 (m, 1H), 1.50-1.37 (m, 2H), 1.24 (d, J = 6.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.1, 134.9, 129.5, 127.4 , 56.1, 49.0, 33.4, 23.9, 22.9, 21.5. Analytical data were in accordance with the literature⁵.

1-((3-bromophenyl)sulfonyl)-2-methylpyrrolidine(3f)

Yellow oil.R_f = 0.51 (petroleum ether/EtOAc = 5:1); 33 mg (22%); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (s, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 3.80-3.69 (m, 1H), 3.52-3.41 (m, 1H), 3.19-3.14 (m, 1H), 1.93-1.82 (m, 1H), 1.79-1.69 (m, 1H), 1.64-1.57 (m, 1H), 1.57-1.48 (m, 1H), 1.32 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.9, 135.5, 130.5, 130.2, 125.9, 123.1, 56.3, 49.1, 33.5, 23.9, 22.8; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for C₁₁H₁₄NO₂NaSBr ⁺: 325.9826, found: 325.9831.

1-((2-bromophenyl)sulfonyl)-2-methylpyrrolidine(3g)

Yellow oil.R_f = 0.35 (petroleum ether/EtOAc = 3:1); 19 mg (13%); ¹H NMR (500 MHz, CDCl₃), 8.06 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H) δ 4.06-3.97 (m, 1H), 3.48-3.40 (m, 1H), 3.40-3.33 (m, 1H), 2.02-1.93 (m, 1H), 1.93-1.84 (m, 1H), 1.81-1.71 (m, 1H), 1.60-1.53 (m, 1H), 1.10 (d, J = 6.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.6, 135.6, 133.2, 132.1, 127.5, 120.5, 56.2, 48.5, 33.9, 24.1, 21.6; HRMS (ESI-TOF) m/z [M + Na]⁺ calculated for $C_{11}H_{14}NO_2NaSBr$ ⁺: 325.9826, found: 325.9829.

10. References

1. (a)Zhu, Y.; Shi, J.; Yu, W., Photoinduced Site-Selective C(sp3)–H Chlorination of Aliphatic Amides. *Org. Lett.* **2020**, *22*, 8899-8903; (b)Qin, Q.; Yu, S., Visible-Light-Promoted Remote C(sp3)–H Amidation and Chlorination. *Org. Lett.* **2015**, *17*, 1894-1897.

2. Wang, C.; Tan, C.; Zhu, Y.; Liu, G.; Huang, Y.; Liu, R., A Site-Selective C(sp3)-H Chlorination Boosted by an Imidazolium-Functionalized Cage in Water. *ACS Catal.* **2023**, *13*, 13896-13901.

3. Liu, R. Z.; Li, J.; Sun, J.; Liu, X. G.; Qu, S.; Li, P.; Zhang, B., Generation and Reactivity of Amidyl Radicals: Manganese-Mediated Atom-Transfer Reaction. *Angew. Chem. Int. Ed.* **2020**, *59*, 4428-4433.

4. Ji, Y.-X.; Li, J.; Li, C.-M.; Qu, S.; Zhang, B., Manganese-Catalyzed N–F Bond Activation for Hydroamination and Carboamination of Alkenes. *Org. Lett.* **2020**, *23*, 207-212.

Novaes, L. F. T.; Ho, J. S. K.; Mao, K.; Liu, K.; Tanwar, M.; Neurock, M.; Villemure, E.; Terrett,
J. A.; Lin, S., Exploring Electrochemical C(sp3)–H Oxidation for the Late-Stage Methylation of
Complex Molecules. J. Am. Chem. Soc. 2022, 144, 1187-1197.

11. Copies of ¹H NMR , $^{13}C\{^{1}H\}$ NMR and ^{19}F NMR spectra of the substrates and products 2a ^{1}H NMR (500 MHz, CDCl_3)

2c ¹H NMR (500 MHz, CDCl₃)

2d ¹H NMR (500 MHz, CDCl₃)

2e¹H NMR (500 MHz, CDCl₃)

2h ¹³C{¹H} NMR (126 MHz, CDCl₃)

2i¹H NMR (500 MHz, CDCl₃)

2j¹H NMR (500 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

2m¹H NMR (500 MHz, CDCl₃)

2q ¹H NMR (500 MHz, CDCl₃)

2r ¹H NMR (500 MHz, CDCl₃)

350 9830 738 732	.724 .713 .701	.003 998 9704	.088 .076 .052	776 7465 6949 6577 7911 7971	000.
$\bigvee_{\infty} \bigvee_{\infty} \bigvee_{\Gamma} \bigvee_{\Gamma}$	4 4 4 4	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0

2s ¹H NMR (500 MHz, CDCl₃)

2t ¹H NMR (500 MHz, CDCl₃)

3a ¹H NMR (500 MHz, CDCl₃)

3b ¹H NMR (500 MHz, CDCl₃)

3c¹H NMR (500 MHz, CDCl₃)

3d ¹H NMR (500 MHz, CDCl₃)

S-37

3g ¹³C{¹H} NMR (126 MHz, CDCl₃)

