Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of Selenium-Containing (*E*)-*N*-Propenolquinazolinones *via* FeCl₃-Mediated Cascade Reaction of Propargyl Quinazoline-4-yl Ethers with Diselenides

Xinqin Zhang, Qin Yang, Xiaofeng Zeng, Yang Fu, Qiuping Ding and Yiyuan Peng*

College of Chemistry and Materials Jiangxi Normal University, 99 Ziyang Avenue,

Nanchang 330022, China

Contents

I. Optimization of reaction conditions for synthesis of products 3	2
II. ¹⁸ O-Labeling Experiment	3
III. X-ray Single Crystal Diffraction Data of 3ca	3
VI. Copies of NMR Spectra	4

I. Optimization of reaction conditions	for syn	nthesis of	f products 3
--	---------	------------	--------------

	Ph Ph PhsesePh 2a	Catalyst Solvent 70 °C	OH Se-Ph N Ph 3aa
Entry	Catalyst (eq.)	solvent	Yield (%) ^₅
1	FeCl ₃ (2.0)	CH_2CI_2	33
2 ^c	FeCl ₃ (2.0)	CH_2CI_2	34
3	FeCl ₃ (2.0)	DCE	30
4	FeCl ₃ (2.0)	NMP	32
5	FeCl ₃ (2.0)	Toluene	31
6	FeCl ₃ (2.0)	DMSO	N.R.
7	FeCl ₃ (2.0)	DMF	N.R.
8	FeCl ₃ (2.0)	CH₃CN	N.R.
9	FeCl ₃ (2.0)	CH₃OH	N.R.
10	FeCl ₃ (2.0)	1,4-dioxane	60
11	FeCl ₃ (2.0)	CH ₃ NO ₂	78
12	Cul (2.0)	CH_3NO_2	No
13	$FeCl_3 \cdot 6H_2O(2.0)$	CH_3NO_2	90
14 ^c	$FeCl_2 \cdot 4H_2O(2.0)$	CH_3NO_2	Trace
15 ^d	$FeCl_2 \cdot 4H_2O(2.0)$	CH_3NO_2	63
16	$FeCl_3 \cdot 6H_2O(2.5)$	CH_3NO_2	91
17	$FeCl_3 \cdot 6H_2O(1.5)$	CH_3NO_2	70
18 ^e	$FeCl_3 \cdot 6H_2O(2.0)$	CH_3NO_2	72
19 ^f	$FeCl_{3}$ ·6H ₂ O (2.0)	CH ₃ NO ₂	85
20 ^g	$FeCl_3 \cdot 6H_2O(2.0)$	CH ₃ NO ₂	91
21 ^h	$FeCl_3 \cdot 6H_2O(2.0)$	CH ₃ NO ₂	90
22 ⁱ	$FeCl_3 \cdot 6H_2O(2.0)$	CH ₃ NO ₂	90
23 ^j	$FeCl_{3}$ ·6H ₂ O (2.0)	CH ₃ NO ₂	85
24 ^ĸ	$FeCl_3 \cdot 6H_2O(2.0)$	CH_3NO_2/H_2O	89
25	-	CH ₃ NO ₂	0

Table S1 Optimization of Reaction Conditions^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol, 1.0 eq.), catalyst (0.4 mmol, 2.0 eq.), solvent (2.0 mL), under air atmosphere, at 70 °C for 2 h. ^b Yields based on isolated ^c The reaction was carried out under argon atmosphere. ^d 29 h. ^eat 60 °C. ^fat 80 °C. ^g 0.75 eq. of PhSeSePh was used. ^h 0.60 eq. of PhSeSePh was used. ⁱ 0.55 eq. of PhSeSePh was used. ^j 0.50 eq. of PhSeSePh was used. ^K20%-30% mL of water was added in the solvent of CH₃NO₂.

II. ¹⁸O-Labeling Experiment

III. X-ray Single Crystal Diffraction Data of 3ca

Bond precision:	C-C = 0.0077 A	Wavelength=0.71073	
Cell:	a=12.5627(11) alpha=90	b=14.7048(7) beta=90	c=14.8441(7) gamma=90
Temperature:	293 K		5
	Calculated	Reported	
Volume	2742.2(3)	2742.2(3)
Space group	P 21 21 21	P 21 21	21
Hall group	P 2ac 2ab	P 2ac 2a	b
Moiety formula	C32 H28 N2 O2 Se	0.33(C32	H28 N2 O2 Se)
Sum formula	C32 H28 N2 O2 Se	C10.67 H	9.33 NO.67 00.67
		Se0.33	
Mr	551.52	183.84	
Dx,g cm-3	1.336	1.336	
Z	4	12	
Mu (mm-1)	1.400	1.400	
F000	1136.0	1136.0	
F000'	1136.02		
h,k,lmax	17,20,20	17,18,20	
Nref	7671[4266]	6380	
Tmin, Tmax		0.313,1.	000
Tmin'			
Correction metho AbsCorr = MULTI-	od= # Reported T Limi -SCAN	ts: Tmin=0.313 T	max=1.000
Data completenes	ss= 1.50/0.83	Theta(max) = 29.52	21
R(reflections) =	0.0474 (4030)		wR2(reflections)=
,,			0.0981(6380)
S = 0.998	Npar= 338		

VI. Copies of NMR Spectra

¹³C-NMR of **3ba** (CDCl₃, 100 Hz)

¹³C-NMR of **3ca** (CDCl₃, 100 Hz)

¹³C-NMR of **3da** (CDCl₃, 100 Hz)

¹³C-NMR of **3ea** (CDCl₃, 100 Hz)

¹³C-NMR of **3fa** (CDCl₃, 100 Hz)

¹³C-NMR of **3ga** (CDCl₃, 100 Hz)

¹³C-NMR of **3ia** (CDCl₃, 100 Hz)

¹⁹F-NMR of **3ia** (CDCl₃, 376 Hz)

¹H-NMR of **3ja** (CDCl₃, 400 Hz)

¹H-NMR of **3ka** (CDCl₃, 400 Hz)

¹³C-NMR of **3ka** (CDCl₃, 100 Hz)

¹H-NMR of **3la** (CDCl₃, 400 Hz)

¹³C-NMR of **3la** (CDCl₃, 100 Hz)

¹³C-NMR of **3ma** (CDCl₃, 100 Hz)

¹H-NMR of **3na** (CDCl₃, 400 Hz)

¹H-NMR of **30a** (CDCl₃, 400 Hz)

¹H-NMR of **3pa** (CDCl₃, 400 Hz)

¹³C-NMR of **3pa** (CDCl₃, 100 Hz)

¹H-NMR of **3qa** (CDCl₃, 400 Hz)

¹H-NMR of **3ra** (CDCl₃, 400 Hz)

¹⁹F-NMR of **3ra** (CDCl₃, 376 Hz)

¹H-NMR of **3sa** (CDCl₃, 400 Hz)

¹³C-NMR of **3sa** (CDCl₃, 100 Hz)

¹H-NMR of **3ta** (CDCl₃, 400 Hz)

¹³C-NMR of **3ta** (CDCl₃, 100 Hz)

¹H-NMR of **3ua** (CDCl₃, 400 Hz)

¹³C-NMR of **3ua** (CDCl₃, 100 Hz)

¹³C-NMR of **3va** (CDCl₃, 100 Hz)

¹³C-NMR of **3wa** (CDCl₃, 100 Hz)

¹H-NMR of **3ab** (CDCl₃, 400 Hz)

¹³C-NMR of **3ab** (CDCl₃, 100 Hz)

¹³C-NMR of **3ac** (CDCl₃, 100 Hz)

¹³C-NMR of **3ad** (CDCl₃, 100 Hz)

¹³C-NMR of **3ae** (CDCl₃, 100 Hz)

¹³C-NMR of **3af** (CDCl₃, 100 Hz)

¹H-NMR of **3ag** (CDCl₃, 400 Hz)

¹H-NMR of **3ah** (CDCl₃, 400 Hz)

¹³C-NMR of **3ah** (CDCl₃, 100 Hz)

¹H-NMR of **4** (CDCl₃, 400 Hz)

¹H-NMR of **5** (CDCl₃, 400 Hz)

¹H-NMR of **6** (CDCl₃, 400 Hz)

¹³C-NMR of **6** (CDCl₃, 100 Hz)

