Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

-Supporting Information-

TFAA mediated One-Pot Synthesis of *N*-Protected Chiral -Amino Acid-Derived 1,2,4-Oxadiazoles

Srinivasan Pon Saravanakumar,^{ab} Nagarajan Nagasundaram,^a Jayaraman DhineshKumar,^b Periyaswamy Rajalakshmi,^c and Appaswami Lalitha^{*a}

^aDepartment of Chemistry, Periyar University, Salem 620024, India ^bSyngene International Ltd, Bangalore 560100, India. ^cDepartment of Science, Christ College of Science and Management, Alambadi, Karnataka 563 160, India *E-mail:* <u>lalitha2531@yahoo.co.in</u>

General remarks S2 General Experimental Procedure S2 Characterization data of (S)-2,2,2-trifluoro-N-(1-(3-aryl-1,2,4-oxadiazol-5yl)ethyl)acetamide (4) S3 Copies of ¹H NMR, ¹³C NMR and Mass spectra S11 Crystal data S101

Table of Contents

General Remarks

All the reagents were purchased commercially and used without further purification. ¹H NMR and ¹³C NMR were recorded with Bruker 400 MHz. Proton nuclear magnetic resonance spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹C NMR) were recorded at 400 MHz and 100 MHz respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ¹H NMR: CDCl₃ = 7.26 ppm, DMSO-d₆ = 2.50 ppm; for ¹³C NMR: CDCl₃ = 77.16 ppm, DMSO-d₆ = 39.52 ppm with tetramethylsilane as the internal standard. Coupling constants (J) are expressed in hertz (Hz).Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance. All the NMR spectra were recorded at ambient temperature. Analytical thin layer chromatography (TLC) was performed using Silica Gel 60 Å F₂₅₄ pre-coated plates (0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and staining with KMnO₄. LC-MS mass were recorded with Agilent 6330 Ion Trap Instrument.

General Procedure for the Preparation of (*S*)-(*S*)-2-(2,2,2-trifluoroacetamido)propanoic 2,2,2-trifluoroacetic anhydride (1):

Trifluoroacetic anhydride (6.0 mmol) was added dropwise into the round bottom flask containing amino acid (1.0 mmol) at 20 °C under N_2 atmosphere and then stirred at room temperature for 10 min. then, the content was allowed to stir for 30 minutes. The reaction mixture was concentrated to remove excess trifluoroacetic anhydride. Dichloromethane (10 V) was added and concentrated. It was repeated in three times and dried under high vacuum. Hexane (10 V) was added to make a slurry and allowed to stir for 10 minutes under nitrogen. (S)-(S)-2-(2,2,2-trifluoroacetamido)propanoic 2,2,2-trifluoroacetic anhydride (**1a-1g**) was filtered as white solid under nitrogen atmosphere.

General Procedure for the Preparation of Amidoxime (2):

Sodium bicarbonate (2 equivalents) was added to a stirred suspension of nitrile compound (1 equivalent) and hydroxylamine hydrochloride (2 equivalents) in ethanol (10 ml per gram of nitrile). The reaction mixture was stirred under reflux for 6 hours. After the reaction is completed, the reaction mass was concentrated under pressure. The residue was diluted with cold water. The resulting precipitate was filtered off and washed with cold water to obtain amidoxime **(2)** as a white solid.

General Procedure for the Preparation of *(S)*-2,2,2-trifluoro-*N*-(1-(3-phenyl-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4):

Amidoxime **2** (1.0 mmol) and compound **1**(2.0 mmol) were taken with 1,2 dichloroethane (10 ml per gram of compound **1**) and stirred at room temperature for 30 minutes and heated to reflux for 60 minutes. The progress of the reaction was monitored by TLC for the absence of aromatic amidoxime **2**. After completion of the reaction, the mixture was cooled to 27 °C, quenched with cold water. The reaction mixture extracted with Dichloromethane (2 x 10 mL). The combined dichloromethane layer was washed with brine solution. Then the organic layer was separated, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude was purified by column chromatography using petroleum ether/ethyl acetate as eluent in silica gel (230-400 mesh) to give 1,2,4 - oxadiazoles **4**.

Characterization Data of (S)-2,2,2-trifluoro-N-(1-(3-aryl-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4) (S)-2,2,2-trifluoro-N-(1-(3-phenyl-1,2,4-oxadiazol-5-yl) ethyl)acetamide (4aa)

The reaction was carried out according to general procedure, using (*Z*)-*N*'hydroxybenzimidamide **2a** (1.0 mmo l), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 1 h which afforded **4aa** (90%) as white solid. Eluent: petroleum ether/ethyl acetate = 96:04.

mp = 78-80 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.35-10.34 (d, *J*=7.2Hz,1H), 8.03-8.00(m,2H), 7.62-7.56(m,3H), 5.46-5.39(q, *J*=7.2Hz,1H), 1.69-1.67(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.49, 168.17, 156.70 (q, *J*_{C-F} = 37 Hz), 131.21, 129.80, 127.49, 126.32, 120.45, 117.59, 114.73, 111.87, 43.45, 17.82 ppm; MS (ES): m/z calcd for $C_{12}H_{10}F_3N_3O_2$, 285.07; found, 286.12(M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-(m-tolyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4ab)

The reaction was carried out according to general procedure, using (*Z*)-*N*'hydroxy-3-methylbenzimidamide **2b** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 2 h which afforded **4ab** (80%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 106-109 °C. ¹H NMR (400 MHz, DMSO-*d*₆): 10.35-10.34 (d, *J*=7.2Hz,1H), 7.83-7.80(d, *J*=12Hz, 2H), 7.48-7.40(m,2H), 5.44-5.39(q, *J*=7.2Hz,1H), 2.40(s,3H), 1.69-1.67(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.36, 168.22, 156.69 (q, *J*_{C-F} = 37 Hz), 139.20, 132.82, 129.67, 127.82, 126.27, 124.66, 120.46, 117.60, 114.73, 111.87, 43.43, 21.29, 17.82 ppm; MS (ES): m/z calcd for C₁₃H₁₂F₃N₃O₂, 299.09; found, 300.13(M⁺).

(S)-N-(1-(3-(3,5-dimethylphenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4ac)

The reaction was carried out according to general procedure, using (Z)-N'hydroxy-3,5-dimethylbenzimidamide **2c** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 1 h which afforded **4ac** (79%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 141-143 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.34 (s,1H), 7.63(s,2H), 7.23(s,1H), 5.43-5.40(m, 1H), 2.36(s,6H), 1.68-1.66(d, *J*= 8Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.25, 168.28, 156.68 (q, *J*_{C-F} = 37 Hz), 139.04, 133.56, 126.20, 125.08, 120.46, 117.60, 114.74, 111.87, 43.41, 21.19 ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -64.50 (s, 3F). MS (ES): m/z calcd for C₁₄H₁₄F₃N₃O₂, 313.10; found, 314.16(M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4ad)

The reaction was carried out according to general procedure, using (*Z*)-*N*'hydroxy-4-methoxybenzimidamide **2d** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 30 min which afforded **4ad** (89%) as white solid. Eluent: petroleum ether/ethyl acetate = 98:02. mp = 120-123 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.01-7.98 (m, 2H), 7.21-7.20(b, 1H), 7.00-6.97(m,2H), 5.49-5.41(m, 1H), 3.87(s,3H), 1.75-1.73(d, *J*= 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.27, 168.06, 162.26, 156.50 (q, *J*_{C-F} = 38 Hz), 129.18, 119.84, 118.36, 116.98, 114.37, 114.12, 111.26, 55.41, 43.66, 29.71, 19.40 ppm;. MS (ES): m/z calcd for C₁₃H₁₂F₃N₃O₃, 315.08; found, 314.14(M⁻).

(S)-2,2,2-trifluoro-N-(1-(3-(o-tolyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4ae)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxy-2-methylbenzimidamide **2e** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 90 min which afforded **4ae** (70%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 90-92 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.36-10.34 (d, *J*=7.6Hz,1H), 7.93-7.91(m,1H), 7.50-7.47(m,1H), 7.43-7.38(m,2H), 5.47-5.40(m,1H), 2.56(s, 3H), 1.70-1.68(d, *J*=7.6Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 177.37, 168.76, 156.73 (q, *J*_{C-F} = 37 Hz), 138.03, 131.95, 131.45, 130.12, 129.84, 126.97, 126.73, 125.68, 120.47, 117.61, 114.75, 111.89, 55.32, 43.41, 21.98, 17.82 ppm; MS (ES): m/z calcd for C₁₃H₁₂F₃N₃O₂, 299.09; found, 300.12(M⁺).

(S)-N-(1-(3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4af)

The reaction was carried out according to general procedure, using (*Z*)-2-chloro-*N'*hydroxybenzimidamide **2f** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 2 h which afforded **4af** (80%) as white solid. Eluent: petroleum ether/ethyl acetate = 98:03.

mp = 87-89 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 10.37-10.35 (d, *J*=7.6Hz,1H), 7.92-7.90(d, *J*=8Hz, 1H), 7.70-7.68 (d, *J*=8Hz, 1H), 7.64-7.60(t, *J*=8Hz, 1H), 7.57-7.53(t, *J*=8Hz, 1H), 5.49-5.42(p, *J*=7.2Hz, 1H), 1.69-1.67(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 178.96, 166.97, 156.72 (q, *J*_{C-F} = 37 Hz), 133.16, 132.59, 132.14, 131.85, 131.37, 128.42, 128.19, 125.61, 120.45, 117.59, 114.73, 111.87, 43.44, 17.81 ppm; MS (ES): m/z calcd for C₁₂H₉ClF₃N₃O₂, 319.03; found, 320.04(M⁺).

(S)-N-(1-(3-(3-chlorophenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4ag)

The reaction was carried out according to general procedure, using (*Z*)-3chloro-*N'*-hydroxybenzimidamide **2g** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 90 min which afforded **4ag** (86%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 90-92 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.36-10.34 (d, *J*=7.2Hz,1H), 7.99-7.96(m, 2H), 7.71-7.68 (m, 1H), 7.64-7.59(m, 1H), 5.46-5.39(p, *J*=7.2Hz, 1H), 1.68-1.66(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.85, 167.14, 156.71 (q, *J*_{C-F} = 37Hz), 134.47, 132.13, 131.92, 128.27, 126.18, 120.44, 117.57, 114.71, 111.85, 43.47, 17.78 ppm; MS (ES): m/z calcd for C₁₂H₉ClF₃N₃O₂, 319.03; found, 320.02(M⁺).

(S)-N-(1-(3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4ah)

The reaction was carried out according to general procedure, using (*Z*)-4chloro-*N'*-hydroxybenzimidamide **2h** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 20 min which afforded **4ah** (94%) as white solid. Eluent: petroleum ether/ethyl acetate = 98:02. mp = 123-124 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 10.34 (s,1H), 8.03-8.01(d, *J*=8Hz, 2H), 7.67-7.65 (d, *J*=8Hz, 2H), 5.43-5.41(b, 1H), 1.68-1.66(d, *J*= 6.8Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 179.73, 167.39, 156.69 (q, *J*_{C-F} = 37 Hz), 136.96, 130.01, 129.30, 125.16, 120.44, 117.58, 114.72, 43.45, 17.78 ppm; m/z calcd for C₁₂H₉ClF₃N₃O₂, 319.03; found, 320.05(M⁺).

(S)-N-(1-(3-(3-bromophenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4ai)

The reaction was carried out according to general procedure, using (*Z*)-3bromo-*N'*-hydroxybenzimidamide **2i** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 100 min which afforded **4ai** (88%) white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 103-105 °C. ¹H NMR (400 MHz, DMSO-*d*₆): 10.34 (s, 1H), 8.13 (s,1H), 8.04-8.02(d, *J*=7.6Hz, 1H), 7.86-7.84(d, *J*=7.6Hz, 1H), 7.61-7.56(m,1H), 5.45-5.44(b, 1H), 1.70-1.68(d, *J*=8Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.84, 167.03, 156.71 (q, *J*_{C-F} = 37Hz), 135.02, 132.14, 129.82, 128.47, 126.53, 122.84, 120.44, 117.58, 114.71, 111.85, 43.47, 17.79 ppm; MS (ES): m/z calcd for C₁₂H₉BrF₃N₃O₂, 362.98; found, 365.89(M⁺).

(S)-N-(1-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4aj)

Br The reaction was carried out according to general procedure, using (*Z*)-4bromo-*N'*-hydroxybenzimidamide **2j** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 35 min which afforded **4aj** (96%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 130-133 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.95-7.92 (m, 2H), 7.65-7.63(m, 2H), 7.14-7.13 (b,1H), 5.51-5.44(p, *J*= 7.2Hz, 1H), 1.76-1.75(d, *J*= 7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 177.85, 167.72, 156.73 (q, *J*_{C-F} = 38 Hz), 132.30, 129.00, 126.30, 124.92, 116.95, 114.09, 43.62, 19.38 ppm; MS (ES): m/z calcd for C₁₂H₉BrF₃N₃O₂, 362.98; found, 363.86(M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-(4-nitrophenyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4ak)

The reaction was carried out according to general procedure, using (*Z*)-*N*'hydroxy-4-nitrobenzimidamide **2k** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 40 min which afforded **4ak** (93%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 144-146 °C. ¹H NMR (400 MHz, CDCl₃): 8.36-8.33 (m, 2H), 8.26-8.24(m, 2H), 7.16-7.14(b,1H), 5.55-5.48(p, *J*=7.6Hz, 1H), 1.80-1.79(d, *J*= 7.6Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 178.56, 166.91, 156.83 (q, *J*_{C-F} = 38Hz), 149.67, 131.88, 128.55,124.19, 116.93, 114.07, 43.59, 19.23 ppm; m/z calcd for C₁₂H₉F₃N₄O₄, 330.06; found, 329.13(M⁻).

(S)-N-(1-(3-(4-bromo-2-methoxyphenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4al)

The reaction was carried out according to general procedure, using (Z)-4-

bromo-*N'*-hydroxy-2-methoxybenzimidamide **2l** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 35 min which afforded **4al** (92%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 129-130 °C. ¹H NMR (400 MHz, DMSO-*d6*) 10.34-10.32 (d, *J*=7.2Hz,1H), 7.80-7.78(d, *J*=8Hz, 1H), 7.46 (s,1H), 7.35-7.33(d, *J*=8Hz, 1H), 5.42-5.37(b, 1H), 3.92(s,3H), 1.67-1.65(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 178.16, 165.98, 158.81, 156.68 (q, *J*_{C-F} = 37Hz), 132.56, 126.36, 124.14, 120.45, 117.59, 116.24, 114.73, 114.67, 111.87, 56.92, 43.34, 17.86pm; MS (ES): m/z calcd for C₁₃H₁₁BrF₃N₃O₃, 392.99; found, 395.90M⁺).

(S)-N-(1-(3-(2-bromo-5-(trifluoromethyl)phenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4am)

The reaction was carried out according to general procedure, using (Z)-2-bromo-

N'-hydroxy-5-(trifluoromethyl)benzimidamide**2m** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 40 min which afforded **4am** (82%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 116-119 °C. ¹H NMR (400 MHz, DMSO-*d*₆): 10.40-10.38 (d, *J*=6.8Hz, 1H), 8.15-8.13(d, *J*=8.8Hz, 2H), 7.92-7.91(d, *J*=6.8Hz, 1H), 5.50-5.44(p, *J*=6.8Hz, 1H), 1.70-1.69(d, *J*=6.8Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.49, 166.86, 156.77 (q, *J*_{C-F} = 37Hz), 136.08, 129.65, 129.43, 129.11, 18.88, 128.76, 128.72, 127.93, 126.49, 125.22, 120.43,

119.81, 117.57, 114.70, 111.85, 43.48, 17.86 ppm; MS (ES): m/z calcd for C₁₃H₈BrF₆N₃O₂, 430.97; found, 433.76 (M⁺).

(S)-N-(1-(3-(3,4-difluorophenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4an)

F The reaction was carried out according to general procedure, using (*Z*)-3,4difluoro-*N'*-hydroxybenzimidamide **2n** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 30 min which afforded **4an** (91%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 91-93 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.35 (s, 1H), 7.98-7.96(m, 1H), 7.90-7.87(m,1H), 7.70-7.63(m,1H), 5.44-5.41(m,1H), 1.69-1.67(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.90, 166.69, 156.72, (q, *J*_{C-F} = 37Hz), 153.35, 153.22, 151.56, 151.43, 150.85, 150.72, 148.97, 125.15, 125.11, 125.07, 125.04, 123.80, 123.77, 123.74, 123.70, 119.24, 117.56, 116.80, 116.61, 114.70, 43.47, 17.74 ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -64.50 (s, 3F). MS (ES): m/z calcd for C₁₂H₈F₅N₃O₂, 321.05; found, 321.99 (M⁺).

(S)-N-(1-(3-(3,5-dibromo-4-chlorophenyl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4ao)

Br The reaction was carried out according to general procedure, using (*Z*)-3,5dibromo-4-chloro-*N*'-hydroxybenzimidamide **2o** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 90 min which afforded **4ao** (79%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 185-187 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.36 (s, 1H), 8.26 (s, 2H), 5.46-5.41(q, *J*=7.2Hz,1H), 1.69-1.67(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 180.19, 165.51, 156.72 (q, *J*_{C-F} = 36 Hz), 137.29, 131.30, 129.03, 127.40, 124.32, 120.42, 117.56, 114.70, 43.49, 17.79 ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -64.50 (s, 3F). MS (ES): m/z calcd for C₁₂H₇Br₂ClF₃N₃O₂, 474.85; found, 477.61(M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-(5-fluoropyridin-2-yl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4ap)

The reaction was carried out according to general procedure, using (*Z*)-5-fluoro-*N*'-hydroxypicolinimidamide **2p** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 30 min which afforded **4ap** (88%) as white solid. Eluent: petroleum ether/ethyl acetate = 4:1.

mp = 109-111 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 10.40-10.38 (d, *J*=7.2Hz,1H), 8.58-8.54(m,1H), 8.50-8.49 (m,1H), 7.63-7.60 (m,1H), 5.51-5.44(p, *J*=7.2Hz, 1H), 1.71-1.69(d, *J*=7.2Hz, 3H) ¹³C NMR (100 MHz, DMSO- d_6): δ 179.53, 164.09, 164.00, 161.36, 158.93, 156.74 (q, *J*_{C-F} = 32 Hz), 150.99, 150.85, 142.24, 142.22, 123.25, 123.21, 120.42, 117.56, 114.70, 111.84, 109.96, 109.62, 43.44, 17.75 ppm; MS (ES): m/z calcd for C₁₁H₈F₄N₄O₂, 304.06; found, 305.09 (M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-(pyrimidin-2-yl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4aq)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxypyrimidine-2-carboximidamide **2q** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 45 min which afforded **4aq** (83%) as white solid. Eluent: petroleum ether/ethyl acetate = 75:25.

mp = 157-159 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.00-8.98 (d, *J*=4.8Hz, 2H), 7.78-7.60(d, *J*=7.2Hz, 1H), 7.53-7.50(t, *J*=4.8Hz, 1H), 5.64-5.56(p, *J*=7.2Hz, 1H), 1.81-1.79(d, *J*= 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 179.47, 167.60, 158.08, 156.90 (q, *J*_{C-F} = 38 Hz), 155.53, 122.51, 119.77, 116.90, 114.06, 111.20, 43.51, 19.31 ppm; MS (ES): m/z calcd for C₁₀H₈F₃N₅O₂, 287.06; found, 288.10 (M⁺).

(S)-N-(1-(3-(4,6-dimethylpyrimidin-2-yl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4ar)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxy-4,6-dimethylpyrimidine-2carboximidamide **2r** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 1 h which afforded **4ar** (79%) as white solid. Eluent: petroleum ether/ethyl acetate = 75:25.

mp = 76-79 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.41-10.39 (d, *J*=7.2Hz,1H), 7.47(s,1H), 5.50-5.43(q, *J*=7.2Hz, 1H), 2.53(s,6H), 1.69-1.68(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.89, 168.08, 168.04, 156.66 (q, *J*_{C-F} = 37 Hz), 154.97, 121.87, 121.58, 120.44, 117.58, 114.72, 111.86, 55.36, 43.40, 23.83, 17.93 ppm; MS (ES): m/z calcd for $C_{12}H_{12}F_3N_5O_2$, 315.09; found, 316.12(M⁺).

(S)-N-(1-(3-(1H-indol-5-yl)-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4as)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxy-1H-indole-5-carboximidamide **2s** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 75 min which afforded **4as** (85%) as white solid. Eluent: petroleum ether/ethyl acetate = 50:50.

mp = 159-161 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.48 (s,1H), 10.37-10.36 (d, *J*=7.2Hz, 1H), 8.30-8.29(m,1H), 7.80-7.77(m,1H), 7.59-7.57(m,1H), 7.50-7.48(m,1H), 6.64-6.63(m,1H), 5.47-5.40(q, *J*=7.2Hz, 1H), 1.72-1.70(d, *J*= 7.2Hz, 3H) ¹³C NMR (100 MHz, DMSO-*d*₆): δ 178.74, 172.91, 169.31, 156.68 (q, *J*_{C-F} = 36 Hz), 138.0, 128.2, 127.46, 120.50, 120.37, 120.19, 117.64, 117.04, 114.77, 112.71, 111.91, 102.70, 48.66, 43.42, 17.90, 16.67ppm; MS (ES): m/z calcd for $C_{14}H_{11}F_{3}N_{4}O_{2}$, 324.08; found, 325.10 (M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-(thiophen-2-yl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4at)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxythiophene-2-carboximidamide **2t** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 75 min which afforded **4at** (85%) as white solid. Eluent: petroleum ether/ethyl acetate = 90:10.

mp = 104-106 °C. ¹H NMR (400 MHz, DMSO-*d*₆): 10.37-10.35 (d, *J*=6.8Hz,1H), 7.91-7.89(dd, *J*=5.2Hz,1.2Hz,1H), 7.84-7.83(dd, *J*=3.6Hz,1.2Hz,1H), 7.29-7.27(dd, *J*=5.2Hz,3.6Hz,1H), 5.45-5.38(p, *J*=6.8Hz, 1H), 1.69-1.67(d, *J*=6.8Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.40, 164.30, 156.71 (q, *J*_{C-F} = 36Hz), 131.39, 131.10, 130.57, 129.25, 129.03, 127.49, 120.43, 117.57, 114.71, 111.85, 55.30, 43.39, 17.76ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -64.50 (s, 3F). MS (ES): m/z calcd for C₁₀H₈F₃N₃O₂S, 291.03; found, 292.04(M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-(4-methylbenzyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4au)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxy-2-(p-tolyl)acetimidamide **2u** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 1h which afforded **4au** (94%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 81-83 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.20-7.18 (d, *J* = 8.0 Hz, 2H), 7.14-7.12 (d, *J* = 8.0 Hz, 2H), 5.37-5.30 (p, *J* = 7.2Hz, 1H), 4.01 (s,2H), 2.32 (s, 3H), 1.64-1.62(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 177.60, 169.75, 156.71(q, *J*_{C-F} = 38 Hz), 137.04, 131.77, 129.49, 129.03, 128.88, 119.79, 116.93, 114.07, 111.22, 43.59, 31.76, 21.06, 19.16 ppm; MS (ES): m/z calcd for C₁₄H₁₄F₃N₃O₂, 313.10; found, 314.12(M⁺).

(S)-2,2,2-trifluoro-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4av)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxyacetimidamide 2v (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 90 min which afforded **4av** (80%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 60-62 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.28 (s, 1H), 5.42-5.35 (p, *J* =7.2Hz, 1H), 2.41 (s, 3H), 1.70-1.68(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 177.38, 167.30, 156.75(q, *J*_{C-F} = 38 Hz), 119.79, 116.93, 114.07, 111.21, 43.47, 29.69, 19.17, 11.41 ppm;. MS (ES): m/z calcd for C₇H₈F₃N₃O₂, 223.06; found, 224.05(M⁺).

(S)-N-(1-(3-cyclopropyl-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4aw)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxycyclopropanecarboximidamide **2w** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 90 min which afforded **4aw** (84%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 60-62 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (s, 1H), 5.37-5.30 (p, *J* =7.2Hz, 1H), 2.12-2.06 (m, 1H), 1.67-1.65(d, *J*=7.2Hz, 3H), 1.11-1.05(m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 177.01, 172.54, 156.66 (q, *J*_{C-F} = 38 Hz), 119.78,116.93, 114.07, 111.21, 43.55, 19.27, 7.90, 6.66 ppm; MS (ES): m/z calcd for C₉H₁₀F₃N₃O₂, 249.07; found, 250.05(M⁺).

(S)-N-(1-(3-cyclohexyl-1,2,4-oxadiazol-5-yl)ethyl)-2,2,2-trifluoroacetamide (4ax)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxycyclohexanecarboximidamide 2x (1.0 mmol), Compound 1a (2.0 mmol) with 1,2 dichloroethane in reflux condition for 45 min which afforded 4ax (91%) as colorless liquid. Eluent: petroleum ether/ethyl acetate = 95:05.

mp = NA ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.25-10.23 (d, *J*=7.2Hz,1H), 5.34-5.26(p, *J*=7.6Hz, 1H), 2.86-2.76(m, 1H), 1.95-191(m, 2H), 1.77-172(m, 2H), 1.68-164(m, 1H), 1.59-1.57(d, *J*=7.2Hz, 3H), 1.52-146(m, 2H), 1.43-123(m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 178.44, 174.03, 156.57 (q, *J*_{C-F} = 36 Hz), 120.43, 117.57, 114.71, 111.85, 43.27, 35.39, 30.56, 30.53, 25.74, 25.40, 17.87ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ -64.50 (s, 3F). MS (ES): m/z calcd for C12H16F3N302, 291.12; found, 292.14M⁺).

N,N'-((1*S*,1'*S*)-(1,4-phenylenebis(1,2,4-oxadiazole-3,5-diyl))bis(ethane-1,1-diyl))bis(2,2,2-trifluoroacetamide) (4ay)

The reaction was carried out according to general procedure, using (1Z,4Z)-N'1,N'4-dihydroxyterephthalimidamide **2y** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 10 h which afforded **4ay** (51%) as white solid. Eluent: petroleum ether/ethyl acetate = 60:40.

mp = 250-252 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.38-10.37 (d, *J*=7.2Hz,2H), 8.23(m, 4H), 5.48-5.41(p, *J*=7.2Hz, 2H), 1.70-1.68(d, *J*=7.2Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.86, 167.58, 156.53 (q, *J*_{C-F} = 37 Hz), 129.10, 128.49, 117.58, 114.72, 111.86, 43.48, 17.81 ppm; MS (ES): m/z calcd for C18H14F6N6O4, 492.10; found, 493.01(M⁺).

(S,Z)-2,2,2-trifluoro-*N*-(1-(3-(4-(1-(hydroxyimino)ethyl)phenyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4az)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxy-4-((*Z*)-1-(hydroxyimino)ethyl)benzimidamide **2z** (1.0 mmol), Compound **1a** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 2 h which afforded **4az** (86%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03. mp = 175-178 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.48 (s, 1H), 10.36-10.35 (d, *J*=7.2Hz, 1H), 8.04-8.01(d, *J*=8.8Hz, 2H), 7.87-7.85(d, *J*=8.8Hz, 2H), 5.46-5.39(p, J=7.2Hz, 1H), 2.20(s, 3H), 1.69-1.67(d, *J*=7.2Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.52, 167.86, 155.01 (q, *J*_{C-F} = 36 Hz), 152.77, 140.38, 127.55, 126.81, 126.19, 120.45, 117.59, 114.73, 111.87, 43.45, 17.82, 11.81ppm; m/z calcd for C₁₄H₁₃F₃N₄O₃, 342.09; found, 342.90(M⁻).

N-((3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)methyl)-2,2,2-trifluoroacetamide (4bj)

The reaction was carried out according to general procedure, using (*Z*)-4-bromo-*N*'-hydroxybenzimidamide **2j** (1.0 mmol), Compound **1b** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 30 min which afforded **4bj** (80%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 105 -107 °C. ¹H NMR (400 MHz, DMSO-*d*₆): 10.44 (s, 1H), 7.96-7.93(d, *J*=8.4Hz, 2H), 7.80-7.78(d, *J*=8.4Hz, 2H), 4.87(s,2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 176.73, 167.53, 157.43 (q, *J*_{C-F} = 37 Hz), 133.17, 132.88, 132.61, 129.65, 129.41, 129.12, 125.81, 125.48, 120.46, 117.60, 114.74, 111.89, 39.33, 36.04 ppm; ¹⁹F NMR (377 MHz, DMSO-*d*₆) δ - 64.50 (s, 3F). MS (ES): m/z calcd for $C_{11}H_7BrF_3N_3O_2$, 348.97; found, 347.94(M⁻).

(S)-N-(1-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-3-methylbutyl)-2,2,2-trifluoroacetamide (4cj)

The reaction was carried out according to general procedure, using (*Z*)-4-bromo-*N*'-hydroxybenzimidamide **2j** (1.0 mmol), Compound **1c** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 150 min which afforded **4cj** (72%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 76-79 °C. ¹H NMR (400 MHz, DMSO-*d*₆): 10.33 (s, 1H), 7.96-7.93(d, *J*=8.4Hz, 2H), 7.81-7.79(d, *J*=8.4Hz, 2H), 5.35-5.34(b,1H), 2.07-2.00(m,1H), 1.96-1.89(m,1H), 1.71-1.62(m,1H), 0.98-0.93 (m,6H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 179.38, 167.49, 156.87 (q, *J*_{C-F} = 37 Hz), 132.93, 129.48, 125.84, 125.48, 120.47, 117.61, 114.74, 45.86, 24.64, 23.07, 21.58 ppm; MS (ES): m/z calcd for C₁₅H₁₅BrF₃N₃O₂, 406.20; found, 404.11(M⁻).

N-((2R)-1-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-2-methylbutyl)-2,2,2-trifluoroacetamide (4dj)

The reaction was carried out according to general procedure, using (*Z*)-4-bromo-*N*'-hydroxybenzimidamide **2j** (1.0 mmol), Compound **1d** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 2 h which afforded **4dj** (76%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 76-79 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.93(d, *J*=8.4Hz, 2H), 7.65-7.63(d, *J*=8.4Hz, 2H), 7.05-7.03(d, *J*=8.4Hz, 1H), 5.41-5.37(q, *J*=6Hz, 1H), 2.21-2.12 (m, 1H), 1.60-1.50(m,1H), 1.35-1.26(m, 1H), 1.01-0.96 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 176.84, 167.55, 156.89 (q, *J*_{C-F} = 38 Hz), 132.28, 129.03, 126.26, 124.97, 119.91, 117.05, 114.19, 51.70, 38.96, 25.16, 14.91, 11.21 ppm; MS (ES): m/z calcd for C₁₅H₁₅BrF₃N₃O₂, 406.20; found, 404.07(M⁻).

(S)-N-(1-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-3-(methylthio)propyl)-2,2,2-trifluoroacetamide (4ej)

The reaction was carried out according to general procedure, using (*Z*)-4-bromo-*N*'-hydroxybenzimidamide **2j** (1.0 mmol), Compound **1e** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 5 h which afforded **4ej** (68%) as white solid. Eluent: petroleum ether/ethyl acetate = 97:03.

mp = 95-97 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.36 (s, 1H), 7.96-7.94(d, *J*=8.8Hz, 2H), 7.81-7.89(d, *J*=8.8Hz, 2H), 5.48-5.44(dd, J=5.2Hz,3.2Hz,1H), 2.69-2.56(m,2H), 2.41-2.28(m,2H), 2.09(s.3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 178.8, 167.51, 157.20 (q, *J*_{C-F} = 37 Hz), 132.92, 129.48, 125.86, 125.46, 117.55, 114.69, 46.48, 30.98, 30.19, 29.55, 14.94 ppm; MS (ES): m/z calcd for C₁₄H₁₃BrF₃N₃O₂S, 422.99; found, 422.04(M⁻).

(S)-2,2,2-trifluoro-N-(2-hydroxy-1-(3-(4-nitrophenyl)-1,2,4-oxadiazol-5-yl)ethyl)acetamide (4fk)

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxy-4-nitrobenzimidamide **2k** (1.0 mmol), Compound **1f** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 120 min which afforded **4fk** (70%) as white solid. Eluent: petroleum ether/ethyl acetate = 6:4.

mp = 104-106 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.39-10.37 (d, *J*=7.2Hz, 1H), 8.42-8.40 (d, *J*=9.2Hz, 2H), 8.27-8.25 (d, *J*=9.2Hz, 2H), 5.55 (br s,1H), 5.36-5.31(q, *J*=7.2Hz, 1H), 4.06-4.02(m,1H), 3.99-3.94(m,1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 178.09, 166.94, 157.41 (q, *J*_{C-F} = 37 Hz), 149.76, 132.00, 128.99, 125.01, 117.52, 60.91, 50.24, ppm; MS (ES): m/z calcd for $C_{12}H_9F_3N_4O_5$, 346.22; found, 345.04(M⁻).

The reaction was carried out according to general procedure, using (*Z*)-*N*'-hydroxy-4-nitrobenzimidamide **2k** (1.0 mmol), Compound **1g** (2.0 mmol) with 1,2 dichloroethane in reflux condition for 3 h which afforded **4ej** (64%) as white solid. Eluent: petroleum ether/ethyl acetate = 8:2.

mp = 128-130 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.43-10.41 (d, *J*=8Hz, 1H), 8.43-8.40 (d, *J*=8.8Hz, 2H), 8.28-8.26 (d, *J*=8.8Hz, 2H), 5.45-5.44 (d, *J*=6Hz, 1H), 3.35-3.28 (m,1H), 3.17-3.13(m,1H), 2.93-2.89(m,1H) ; ¹³C NMR (100

MHz, DMSO-*d*₆): δ 178.28, 166.95, 157.22 (q, *J*_{C-F} = 37 Hz), 149.79, 131.94, 128.98, 125.01, 120.42, 117.56, 114.70, 111.84, 50.19, 25.76, ppm; MS (ES): m/z calcd for C₁₂H₉F₃N₄O₄S, 362.28; found, 360.98(M⁻).

Fig. 1. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4aa

Fig. 2. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4aa

Fig. 3. Mass spectrum of compound 4aa

Fig. 4. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4ab

Fig. 5. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ab

Fig. 6. Mass spectrum of compound 4ab

Fig. 7. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ac

Fig. 8. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ac

Fig. 10. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4ad

Fig.11. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4ad

Fig. 12. Mass spectrum of compound 4ad

Fig. 13. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4ae

Fig. 14. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ae

Fig. 15. Mass spectrum of compound 4ae

Fig. 16. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4af

Fig. 17. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4af

Fig. 18. Mass spectrum of compound 4af

Fig.19. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ag

Fig. 20. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ag

Fig. 21. Mass spectrum of compound 4ag

Fig. 22. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ah

Fig. 23. ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4ah

Fig. 24. Mass spectrum of compound 4ah

Fig. 25. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4ai

Fig. 27. Mass spectrum of compound 4ai

Fig. 28. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4aj

Fig.29. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4aj

Fig. 30. Mass spectrum of compound 4aj

Fig. 31. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4ak

Fig.32. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4ak

Fig. 33. Mass spectrum of compound 4ak

Fig. 34. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4al

Fig. 35. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4al

Fig. 36. Mass spectrum of compound 4al

Fig. 37. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4am

Fig. 38. ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4am

Fig. 39. Mass spectrum of compound 4am

Fig. 40. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4an

Fig. 41. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4an

Fig. 42. Mass spectrum of compound 4an

Fig. 43. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4ae

Fig. 44. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ae

Fig. 45. Mass spectrum of compound 4ao

Fig. 46. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ap

Fig. 47. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ap

Fig. 48. Mass spectrum of compound 4ap

Fig. 49. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4aq

Fig. 50. ¹³C NMR spectrum (CDCl₃, 400 MHz) of compound 4aq

Fig. 52. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ar

Fig. 53. ¹³C NMR spctrum (DMSO- d_6 , 100 MHz) of compound 4ar

ig. 54. Mass spectrum of compound 4ar

Fig. 55. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4as

Fig. 56. ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4as

Fig. 57. Mass spectrum of compound 4as

Fig. 58. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4at

ig. 59. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4at

Fig. 60. Mass spectrum of compound 4at

Fig. 61. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4au

Fig. 63. Mass spectrum of compound 4au

ig. 64. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4av

ig.65. 13 C NMR spectrum (CDCl₃, 100 MHz) of compound 4av

Fig. 66. Mass spectrum of compound 4av

ig.67. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4aw

Fig.68. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 4aw

Fig. 69. Mass spectrum of compound 4aw

Fi. 70. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ax

Fig. 71. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ax

Fig. 72. Mass spectrum of compound 4ax

Fig. 73. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ay

Fig. 74. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ay

Fig. 75. Mass spectrum of compound 4ay

Fig. 76. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4az

Fig. 77. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4az

ig. 78. Mass spectrum of compound 4az

Fig. 79. ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound 4bj

Fig. 80. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4bj

Fig. 81. Mass spectrum of compound 4bj

Fig. 82. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4cj

Fig. 83. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4cj

ig. 84. Mass spectrum of compound 4cj

Fig. 85. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 4dj

Fig. 86. ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4dj

Fig. 87. Mass spectrum of compound 4dj

Fig. 88. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4ej

Fig. 89. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4ej

S105

Fig.91 . ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4fk

Fig. 92. ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of compound 4fk

Fig. 93. Mass spectrum of compound 4fk

Fig.94 . ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound 4gk

Fig. 95. ¹³C NMR spectrum (DMSO- d_6 , 100 MHz) of compound 4gk

Fig. 96. Mass spectrum of compound 4gk

Fig. 97. Chiral HPLC of racemic compound 4aj

Fig. 98. Chiral HPLC of compound 4aj

Table S1. Crystal data and structure refinement for 4an.

Identification code	4an	
Empirical formula	$C_{12}H_8F_5N_3O_2$	
Formula weight	321.21	
Temperature	297(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 5.2116(2) Å	α=97.903(2)°.
	b = 7.7885(3) Å	β= 98.647(2)°.
	c = 16.4336(7) Å	$\gamma = 97.738(2)^{\circ}.$
Volume	644.93(4) Å ³	
Z	2	
Density (calculated)	1.654 Mg/m ³	
Absorption coefficient	1.458 mm ⁻¹	
F(000)	324	
Crystal size	0.290 x 0.134 x 0.103 mm ³	
Theta range for data collection	2.756 to 70.211°.	
Index ranges	-6<=h<=6, -9<=k<=9, -20<=l<	=20
Reflections collected	20587	
Independent reflections	2434 [R(int) = 0.0382]	

Completeness to theta = 67.679°	99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8404 and 0.7143
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2434 / 0 / 204
Goodness-of-fit on F ²	1.081
Final R indices [I>2sigma(I)]	R1 = 0.0731, wR2 = 0.2152
R indices (all data)	R1 = 0.0833, wR2 = 0.2304
Extinction coefficient	n/a
Largest diff. peak and hole	0.895 and -0.470 e.Å ⁻³

	x	у	Z	U(eq)	
C(1)	3804(6)	6886(4)	5720(2)	57(1)	
C(2)	5076(8)	7418(5)	6538(2)	64(1)	
C(3)	7462(7)	8457(5)	6724(2)	63(1)	
C(4)	8703(7)	9002(5)	6110(2)	69(1)	
C(5)	7485(7)	8494(5)	5295(2)	62(1)	
C(6)	5027(6)	7454(4)	5090(2)	49(1)	
C(7)	3751(5)	6975(4)	4214(2)	49(1)	
C(8)	3108(5)	6795(4)	2919(2)	48(1)	
C(9)	3115(5)	6907(4)	2011(2)	47(1)	
C(10)	5541(6)	8072(5)	1886(2)	60(1)	
C(11)	498(6)	4218(4)	1200(2)	52(1)	
C(12)	553(7)	2486(5)	639(2)	65(1)	
N(1)	4877(5)	7496(3)	3561(1)	49(1)	
N(2)	1447(6)	6037(4)	3989(2)	66(1)	
N(3)	2855(5)	5150(3)	1532(2)	50(1)	
O(1)	983(4)	5895(3)	3114(1)	66(1)	

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **4an**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(2)	-1597(4)	4646(3)	1288(2)	69(1)	
F(1)	8614(5)	8942(4)	7531(1)	89(1)	
F(2)	3964(6)	6940(4)	7164(2)	101(1)	
F(3)	-175(9)	2606(4)	-134(2)	135(1)	
F(4)	-1121(6)	1200(3)	806(2)	107(1)	
F(5)	2815(6)	1930(4)	742(2)	120(1)	

Table S3. Bond lengths [Å] and angles $[\circ]$ for **4an**.

C(1)-C(2)	1.387(5)
C(1)-C(6)	1.387(4)
C(1)-H(1)	0.9300
C(2)-F(2)	1.325(4)
C(2)-C(3)	1.357(5)
C(3)-F(1)	1.351(4)
C(3)-C(4)	1.362(5)
C(4)-C(5)	1.373(5)
C(4)-H(4)	0.9300
C(5)-C(6)	1.388(4)
C(5)-H(5)	0.9300
C(6)-C(7)	1.467(4)
C(7)-N(2)	1.292(4)
C(7)-N(1)	1.380(4)
C(8)-N(1)	1.294(4)
C(8)-O(1)	1.334(3)
C(8)-C(9)	1.507(4)
C(9)-N(3)	1.460(4)
C(9)-C(10)	1.511(4)

C(9)-H(10)	0.9800
С(10)-Н(10А)	0.9600
C(10)-H(10B)	0.9600
С(10)-Н(10С)	0.9600
C(11)-O(2)	1.207(4)
C(11)-N(3)	1.335(4)
C(11)-C(12)	1.532(5)
C(12)-F(3)	1.290(4)
C(12)-F(5)	1.305(4)
C(12)-F(4)	1.324(4)
N(2)-O(1)	1.409(3)
N(3)-H(3A)	0.81(4)

- C(2)-C(1)-C(6) 118.3(3)
- C(2)-C(1)-H(1) 120.9
- C(6)-C(1)-H(1) 120.9
- F(2)-C(2)-C(3) 118.1(3)
- F(2)-C(2)-C(1) 120.6(4)
- C(3)-C(2)-C(1) 121.3(3)
- F(1)-C(3)-C(2) 119.0(3)
- F(1)-C(3)-C(4) 120.0(3)

- C(2)-C(3)-C(4) 121.0(3)
- C(3)-C(4)-C(5) 118.8(4)
- C(3)-C(4)-H(4) 120.6
- C(5)-C(4)-H(4) 120.6
- C(4)-C(5)-C(6) 121.3(3)
- C(4)-C(5)-H(5) 119.4
- C(6)-C(5)-H(5) 119.4
- C(1)-C(6)-C(5) 119.3(3)
- C(1)-C(6)-C(7) 120.9(3)
- C(5)-C(6)-C(7) 119.8(3)
- N(2)-C(7)-N(1) 114.2(3)
- N(2)-C(7)-C(6) 122.4(3)
- N(1)-C(7)-C(6) 123.4(3)
- N(1)-C(8)-O(1) 113.5(3)
- N(1)-C(8)-C(9) 129.1(3)
- O(1)-C(8)-C(9) 117.4(2)
- N(3)-C(9)-C(8) 110.0(2)
- N(3)-C(9)-C(10) 111.2(2)
- C(8)-C(9)-C(10) 111.8(2)
- N(3)-C(9)-H(10) 107.9
- C(8)-C(9)-H(10) 107.9

- C(10)-C(9)-H(10) 107.9
- C(9)-C(10)-H(10A)109.5
- C(9)-C(10)-H(10B)109.5
- H(10A)-C(10)-H(10B)
- C(9)-C(10)-H(10C)109.5
- H(10A)-C(10)-H(10C)
- H(10B)-C(10)-H(10C)
- O(2)-C(11)-N(3) 125.9(3)
- O(2)-C(11)-C(12) 119.1(3)
- N(3)-C(11)-C(12) 115.1(3)
- F(3)-C(12)-F(5) 110.3(4)
- F(3)-C(12)-F(4) 106.4(3)
- F(5)-C(12)-F(4) 104.3(3)
- F(3)-C(12)-C(11) 110.6(3)
- F(5)-C(12)-C(11) 114.1(3)
- F(4)-C(12)-C(11) 110.8(3)
- C(8)-N(1)-C(7) = 102.4(2)
- C(7)-N(2)-O(1) 103.9(2)
- C(11)-N(3)-C(9) 121.3(2)
- C(11)-N(3)-H(3A)118(3)
- C(9)-N(3)-H(3A) 120(3)

C(8)-O(1)-N(2) 105.9(2)

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (Å²x 10³) for **4an**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	60(2)	57(2)	54(2)	6(1)	9(1)	8(1)
C(2)	82(2)	69(2)	46(2)	13(1)	15(2)	23(2)
C(3)	70(2)	65(2)	49(2)	-2(1)	-1(1)	19(2)
C(4)	65(2)	79(2)	58(2)	2(2)	2(2)	7(2)
C(5)	59(2)	69(2)	51(2)	3(1)	6(1)	1(2)
C(6)	54(2)	48(2)	45(2)	4(1)	7(1)	14(1)
C(7)	48(2)	49(2)	48(2)	3(1)	10(1)	10(1)
C(8)	41(1)	51(2)	49(2)	0(1)	9(1)	5(1)
C(9)	41(1)	52(2)	46(1)	1(1)	6(1)	7(1)
C(10)	55(2)	63(2)	59(2)	4(1)	15(1)	-2(1)
C(11)	49(2)	56(2)	46(2)	4(1)	2(1)	2(1)
C(12)	67(2)	65(2)	52(2)	-4(1)	1(1)	-1(2)
N(1)	45(1)	54(1)	45(1)	1(1)	6(1)	3(1)
N(2)	57(2)	87(2)	49(1)	8(1)	9(1)	-8(1)
N(3)	39(1)	56(1)	50(1)	-3(1)	6(1)	7(1)
O(1)	50(1)	92(2)	47(1)	4(1)	7(1)	-16(1)

O(2)	41(1)	76(2)	84(2)	-2(1)	6(1)	2(1)
F(1)	99(2)	113(2)	45(1)	0(1)	-6(1)	14(1)
F(2)	110(2)	124(2)	63(1)	20(1)	21(1)	-14(2)
F(3)	247(4)	99(2)	47(1)	-1(1)	-1(2)	28(2)
F(4)	124(2)	68(2)	113(2)	-3(1)	21(2)	-19(1)
F(5)	89(2)	96(2)	150(3)	-54(2)	1(2)	24(2)

	х	у	Z	U(eq)	
H(1)	2174	6169	5598	69	
H(4)	10345	9706	6241	83	
H(5)	8323	8853	4872	74	
H(10)	1579	7425	1805	57	
H(10A)	7081	7644	2124	90	
H(10B)	5559	9250	2155	90	
H(10C)	5523	8063	1301	90	
H(3A)	4150(80)	4750(50)	1430(20)	66(11)	

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)

for 4an

 Table S6.
 Torsion angles [°] for 4an.

C(6)-C(1)-C(2)-F(2)	178.6(3)
C(6)-C(1)-C(2)-C(3)	-0.4(5)
F(2)-C(2)-C(3)-F(1)	0.8(5)
C(1)-C(2)-C(3)-F(1)	179.8(3)
F(2)-C(2)-C(3)-C(4)	-179.6(3)
C(1)-C(2)-C(3)-C(4)	-0.6(5)
F(1)-C(3)-C(4)-C(5)	-179.8(3)
C(2)-C(3)-C(4)-C(5)	0.6(6)
C(3)-C(4)-C(5)-C(6)	0.4(6)
C(2)-C(1)-C(6)-C(5)	1.3(5)
C(2)-C(1)-C(6)-C(7)	-178.4(3)
C(4)-C(5)-C(6)-C(1)	-1.4(5)
C(4)-C(5)-C(6)-C(7)	178.3(3)
C(1)-C(6)-C(7)-N(2)	0.9(5)
C(5)-C(6)-C(7)-N(2)	-178.8(3)
C(1)-C(6)-C(7)-N(1)	-179.8(3)
C(5)-C(6)-C(7)-N(1)	0.5(4)
N(1)-C(8)-C(9)-N(3)	121.8(3)
O(1)-C(8)-C(9)-N(3)	-60.2(3)

N(1)-C(8)-C(9)-C(10)	-2.3(4)
O(1)-C(8)-C(9)-C(10)	175.8(3)
O(2)-C(11)-C(12)-F(3)	71.0(4)
N(3)-C(11)-C(12)-F(3)	-107.1(4)
O(2)-C(11)-C(12)-F(5)	-163.9(3)
N(3)-C(11)-C(12)-F(5)	17.9(4)
O(2)-C(11)-C(12)-F(4)	-46.6(4)
N(3)-C(11)-C(12)-F(4)	135.2(3)
O(1)-C(8)-N(1)-C(7)	0.3(3)
C(9)-C(8)-N(1)-C(7)	178.5(3)
N(2)-C(7)-N(1)-C(8)	-0.6(3)
C(6)-C(7)-N(1)-C(8)	-179.9(3)
N(1)-C(7)-N(2)-O(1)	0.6(4)
C(6)-C(7)-N(2)-O(1)	180.0(3)
O(2)-C(11)-N(3)-C(9)	-4.3(5)
C(12)-C(11)-N(3)-C(9)	173.7(3)
C(8)-C(9)-N(3)-C(11)	89.6(3)
C(10)-C(9)-N(3)-C(11)	-146.0(3)
N(1)-C(8)-O(1)-N(2)	0.0(4)
C(9)-C(8)-O(1)-N(2)	-178.3(3)
C(7)-N(2)-O(1)-C(8)	-0.4(3)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(1)-H(1)N(2);	#1 0.93	2.61	3.452(4)	151.0
N(3)-H(3A)O(2	2)#20.81(4)	2.28(4)	3.048(3)	160(4)

Table S7. Hydrogen bonds for sp302f-c [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1 #2 x+1,y,z

General procedure for antibacterial studies:

The in vitro antibacterial activities of the newer chiral N-protected-amino acid-derived 1,2,4-oxadiazoles (4aa-4ej) was performed against human pathogenic bacterial strains viz., three gram positive bacteria, Bacillus cereus (ATCC 11778), Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 19433) and three gram negative bacteria, Klebsiella pneumonia (ATCC 4352), Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 15692). The novel N-protected-amino acid-derived 1,2,4-oxadiazoles (4aa-4ej) were prepared as stock solution of 1000 μ g/mL concentration in DMSO solvent. The agar well diffusion method was used to determine the antibacterial activity of the synthesized compounds (4aa-4ej).¹ The media Muller-Hinton agar (Hi media) was used for the bactericidal study and the nutrient agar plates (13 x 13 cm petridish) were swabbed with cultured bacteria and the agar plates were incubated at 37°C for 24 h in aerobic conditions. A total of 4 mm diameter wells were punched into the agar and filled with 50 µL (From 1000 µg/mL) of synthesized compounds (4aa-4ej). The standard drug Gentamycin and Tetracycline was used as a positive control and the bare DMSO solvent was used as negative control.

Minimum Inhibitory Concentration (MIC)

The antibacterial efficacy of newly synthesized chiral *N*-protected-amino acid-derived 1,2,4-oxadiazole compound (**4al**) was studied by using broth dilution method and the MIC was determined in Muller Hinton broth using serial dilution method in various concentrations like 100, 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, 0.39 and 0.19 μ g/mL in sterile 96 well plates. According to the McFarland turbidity standards, 50 μ L of 106 colony forming unit (cfu/mL) of standard microorganism suspensions were inoculated on

to 96 well micro plates and incubated at 37 °C between 18 and 24 h. At the end of the incubation period, the plates were screened for the presence or absence of growth. The lowest level of concentration that inhibited the visible growth of bacteria was taken as the minimum inhibitory concentration (MIC). The sample of **4al** was evaluated for three times (triplicate) against each microorganism.

References:

D. Natarajan, S. J. Britto, K. Srinivasan, N. Nagamurugan, C. Mohanasundari, G. Perumal, *J. Ethnopharmacol.*, 2005, **102**, 123–126.