Supporting Information

Visible-light Photoredox-Catalyzed Three-Component Radical Alkyl-Acylation of [1.1.1]Propellane

Lanqin Liu,^a Shengkun Guo,^a Chengjun Chen,^a Xiaoyu Shen,^a Xiaoyun Chen,^b Huaguang Yu,^c Ying Han,^a Qiu Sun,^a Shaoqun Zhu,^{*,a} and Hong Hou^{*,a}

^aSchool of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225009, China ^bSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China

^cKey Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University Wuhan 430056, China

shaoqun.zhu@yzu.edu.cn; houhong@yzu.edu.cn

1. General information	SI-1
2. General procedure	SI-1
3. Product derivation	SI-2
4. X-ray Structure of products 4b	SI-2
5. Characterization data of products	SI-4
6. ¹ H NMR, ¹³ C{1H} NMR, ¹⁹ F NMR spectra of products	SI-14

1. General information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents used in reactions were p.A. grade and dried only if indicated. Solvents for chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with F-254 indicator, visualized by irradiation with UV light. Column chromatography was performed using silica gel Merck 60 (particle size 0.063-0.2 mm). Melting points were measured on a Yanaco Micro Melting Point Apparatus. ¹H NMR and ¹³C{¹H} NMR were recorded on a Variance VNMR 400 or Bruker AV-600 spectro meter in CDCl₃. For ¹H NMR spectra, data are quoted in the following order: using residual protonated solvent as internal standard (CDCl₃ at 7.26 ppm). Multiplicities are indicated s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), coupling constants (*J*) are in Hertz (Hz). For proton-decoupled ¹³C{¹H} NMR spectra, using deuterated solvent as internal standard (CDCl₃ at 77.0 ppm). High resolution mass spectra (HRMS) were obtained on AB 5800 MALDI-TOF/TOF and are recorded using electrospray ionization (ESI). X-ray crystallographic data were collected using the D8 quest X-ray diffractometer.

2. General procedure

An over-dried 10 mL reaction tube equipped with a magnetic stir bar was charged with **1** (0.5 mmol, 2.5 equiv.), **2** (0.4 mmol, 2.0 equiv), $[Ir(ppy)_2(dtbbpy)]PF_6$ (9.15 mg, 0.01 mol, 5.0 mmol%), Et₃N (82.0 µL, 0.6 mmol, 3.0 equiv), anhydrous MeCN (3.0 mL) and **3** (0.2 mmol, 1.0 equiv.) under nitrogen atmosphere and the mixture was reacted under the irradiation of blue LEDs (12 W) at room temperature for 24 hours. After **3** was completely consumed (monitored by TLC), the pure product **4** was obtained by flash column chromatography on silica gel.

Light Source, Material of the Irradiation Vessel: The light source used for photochemical experiments was a household Blue LEDs (12V, 12W, 1.0 Meter, 120 dots,) purchased from Alibaba.com; Manufacturer: Philips, China; Broadband source: $\lambda = 450-465$ nm; Material of the irradiation vessel: borosilicate reaction tube. Distance from the light source to the irradiation vessel: 5.0 cm (Not use any filters)

3. Product derivation

To a 10.0 mL reaction vial equipped with a stir bar was added **4aa** (49.6 mg, 0.20 mmol, 1.0 equiv), *m*-CPBA (140 mg, 0.8 mmol, 4.0 equiv), TFA (30.8 μ L, 0.4 mmol, 2.0 equiv), and dry CH₂Cl₂ (2.0 mL). The reaction mixture was allowed to stir at rt for 48 h. After this time, the reaction was quenched with sat aq. NaHCO₃ (5.0 mL), and extracted with Et₂O (10.0 mL, 3 times). The combined organic layers were dried (Na₂SO₄), and the solvent was removed in vacuo by rotary evaporation. Further purification was accomplished by silica gel flash column chromatography (gradient hexane/EtOAc) to give the desired product **12aa** as a colorless oil (43.3 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.7 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 2.05 (s, 6H), 1.94–1.85 (m, 1H), 0.89 (d, *J* = 6.8 Hz, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ 165.2, 139.3, 131.0, 129.0, 128.6, 64.2, 51.1, 39.1, 26.7, 19.5. HRMS (ESI) Exact mass calculated for [C₁₅H₁₇ClO₂Na]⁺: 287.0809; found: 287.0812.

4. X-ray Structure of products 4b

Single crystal of **4b** was obtained by recrystallization from dichloromethane/n-hexane solution. The crystal structure was determined by standard crystallographic methods. A colorless light-blocked crystal ($0.12 \times 0.11 \times 0.1 \text{ mm}^3$) was used for single-crystal X-ray diffraction. The data were collected at 273.15 K using a Bruker D8 QUEST X-ray diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by Direct Methods and refined by full-matrix least-squares techniques on F₂ with anisotropic displacement parameters for all atoms using SHELX-2014. All the processes were performed within Olex2. The final refinements included anisotropic displacements parameters for all atoms and a secondary extinction correction. The crystallographic parameter data is listed in **Table S1**. Crystal Structure of **4b** with thermal ellipsoids drawn at the 30% probability level. Hydrogens are omitted for clearity and Crystallographic data for **4b** have been deposited with the Cambridge Crystallographic Data Center as CCDC: 2314777, and the crystal data and details of the data collection are given in **Table S1**.

Table S1. Crystal data of 4b

		0 0	
Empirical formula	C17H22OS		
CCDC	2314777		
Formula weight	274.40		
Temperature(K)	273.15		
Wavelength(Å)	0.71073		
Crystal system	monoclinic		
space group	$P2_1/n$		
Unit cell dimensions	a = 6.4888(10) Å b = 17.779(3) Å c = 13.5432(19) Å	$\alpha = 90^{\circ}$ $\beta = 101.669(4)^{\circ}$ $\gamma = 90^{\circ}$	
Volume(Å ³)	1530.1(4)	1530.1(4)	
Z	4	4	
Calculated density(g·cm ⁻³)	1.191	1.191	
μ/mm^{-1}	0.202	0.202	
F(000)	592.0	592.0	
Crystal size(mm)	$0.13 \times 0.12 \times 0.1$	0.13 imes 0.12 imes 0.1	
Radiation	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	
2θ range for data collection/°	4.582 to 55.024	4.582 to 55.024	
h, k, l ranges	$-8 \le h \le 8, -23 \le k \le 23, -1$	$-8 \le h \le 8, -23 \le k \le 23, -17 \le l \le 17$	
Reflections collected	23519	23519	
Independent reflections	$3512 [R_{int} = 0.0480, R_s]$	$3512 [R_{int} = 0.0480, R_{sigma} = 0.0384]$	
Completeness	99.9%	99.9%	
Absorption correction	multi-scan		
Data / restraints / parameters	3512/0/173	3512/0/173	
Goodness-of-fit on F ²	1.030	1.030	
Final R indices [I> 2σ (I)]	$R_1 = 0.0587, wR_2 = 0.1$	$R_1 = 0.0587, wR_2 = 0.1443$	
R indices (all data)	$R_1 = 0.1067, wR_2 = 0.1$	$R_1 = 0.1067, wR_2 = 0.1666$	
Largest diff. peak and hole	0.26/-0.25 e·Å ⁻³	0.26/-0.25 e·Å ⁻³	

5. Characterization data of products

(3-(tert-butyl)bicyclo[1.1.1]pentan-1-yl)(thiophen-3-yl)methanone (4a)

White Solid (35.1 mg, 75% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 72–73 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.12 (m, 1H), 7.58-7.55 (m, 1H), 7.28–7.25 (m, 1H), 2.02 (s, 6H), 0.88 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃)

δ 192.6, 141.0, 132.6, 127.6, 125.6, 49.3, 48.1, 41.5, 29.3, 25.7. HRMS (ESI) Exact mass calculated for [C₁₄H₁₈OSNa]⁺: 257.0971; found: 257.0976

(3-(1-methylcyclohexyl)bicyclo[1.1.1]pentan-1-yl)(thiophen-3-yl)methanone (4b)

White Solid (40.1 mg, 73% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 74–75 °C ¹H NMR (400 MHz, CDCl₃) δ 8.15 (dd, *J* = 2.9, 1.3 Hz, 1H), 7.58 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.28 (dd, *J* = 5.1, 2.9 Hz, 1H), 2.04 (s,

6H), 1.63–1.59 (m, 1H), 1.55–1.50 (m, 2H), 1.39 (d, J = 12.9 Hz, 2H), 1.23 (d, J = 4.2 Hz, 4H), 1.11 (d, J = 12.1 Hz, 1H), 0.86 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.8, 141.1, 132.7, 127.6, 125.7, 49.1, 48.8, 41.9, 33.3, 31.4, 26.3, 21.9, 19.4. HRMS (ESI) Exact mass calculated for [C₁₇H₂₂OSNa]⁺: 297.1284; found: 297.1285

(3-isopropylbicyclo[1.1.1]pentan-1-yl)(thiophen-3-yl)methanone (4c)

White Solid (22.5 mg, 51% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 70–71 °C ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, *J* = 2.9, 1.2 Hz, 1H), 7.58 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.28 (dd, *J* = 5.1, 2.8 Hz, 1H), 2.03 (s, 6H), 1.79–1.70 (m,

1H), 0.87 (d, J = 6.8 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.5, 141.1, 132.7, 127.6, 125.7, 50.5, 44.9, 42.9, 28.2, 18.6. HRMS (ESI) Exact mass calculated for [C₁₃H₁₆OSNa]⁺: 243.0814; found: 243.0816

(3-(cyclopent-3-en-1-yl)bicyclo[1.1.1]pentan-1-yl)(thiophen-3-yl)methanone (4d)

White Solid (30.3 mg, 62% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 65–68 °C ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, *J* = 2.9, 1.3 Hz, 1H), 7.58 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.28 (dd, *J* = 5.1, 2.9 Hz, 1H), 5.64 (s, 2H), 2.44–

2.37 (m, 3H), 2.22–2.13 (m, 2H), 2.04 (s, 6H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 192.3, 141.0, 134.0, 130.0, 128.2, 125.8, 50.9, 43.7, 43.0, 37.4, 35.1. HRMS (ESI) Exact mass calculated for [C₁₅H₁₆OSNa]⁺: 267.0814; found: 267.0817

(3-cyclohexylbicyclo[1.1.1]pentan-1-yl)(thiophen-3-yl)methanone (4e)

White Solid (35.4 mg, 68% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 70–73 °C ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, *J* = 2.8, 1.3 Hz, 1H), 7.58 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.28 (dd, *J* = 5.1, 2.9 Hz, 1H), 2.03 (s,

6H), 1.76–1.71 (m, 2H), 1.68–1.63 (m, 3H), 1.38–1.33 (m, 1H), 1.26–1.14 (m, 3H), 0.88 (dd, J = 12.3, 3.4 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.5, 141.0, 132.7, 127.6, 125.7, 50.7, 44.0, 43.2, 37.7, 29.0, 26.1, 25.9. HRMS (ESI) Exact mass calculated for [C₁₆H₂₀OSNa]⁺: 283.1127; found: 283.1130

(3-(tert-butyl)bicyclo[1.1.1]pentan-1-yl)(thiophen-2-yl)methanone (4f)

White Solid (36.6 mg, 78% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 70–71 °C ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.61 (dd,

J = 4.9, 1.2 Hz, 1H), 7.11 (dd, J = 5.0, 3.8 Hz, 1H), 2.04 (s, 6H), 0.89 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.0, 142.9, 133.3, 132.8, 127.9, 49.4, 48.0, 41.1, 29.4, 25.7. HRMS (ESI) Exact mass calculated for [C₁₄H₁₈OSNa]⁺: 257.0971; found: 257.0973

(3-isopropylbicyclo[1.1.1]pentan-1-yl)(thiophen-2-yl)methanone (4g)

White Solid (25.6 mg, 58% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 78–80 °C ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.61 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.12 (dd, *J* = 4.9, 3.8 Hz, 1H), 2.05 (s, 6H), 1.75 (p, *J* =

6.8 Hz, 1H), 0.88 (d, J = 6.8 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.8, 142.9, 133.3, 132.8, 127.9, 50.6, 44.8, 42.5, 28.2, 18.6. HRMS (ESI) Exact mass calculated for [C₁₃H₁₆OSNa]⁺: 243.0814; found: 243.0815

(3-(sec-butyl)bicyclo[1.1.1]pentan-1-yl)(thiophen-2-yl)methanone (4h)

White Solid (29.9 mg, 58% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 71–72 °C ¹H NMR (400 MHz, CDCl₃) 1H NMR (400 MHz, Chloroform-d) δ 7.82 (dd, J = 3.8, 1.1 Hz, 1H), 7.61 (dd, J = 4.9, 1.1 Hz, 1Hz, 1Hz), 7.61 (dd, J = 4.9, 1.1 Hz)

1H), 7.11 (dd, J = 4.9, 3.8 Hz, 1H), 2.06 (s, 6H), 1.50–1.42 (m, 2H), 1.07–0.98 (m, 1H), 0.90 (t, J = 7.1 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 190.8, 142.9, 133.3, 132.8, 127.9, 51.0, 44.5, 42.8, 34.9, 25.9, 15.3, 12.1. HRMS (ESI) Exact mass calculated for [C₁₄H₁₈OSNa]⁺: 257.0971; found: 257.0968

(3-isobutylbicyclo[1.1.1]pentan-1-yl)(thiophen-2-yl)methanone (4i)

White Solid (25.8 mg, 55% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 82–83 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.61 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.12 (dd, *J* = 4.9, 3.8 Hz, 1H), 2.15 (s,

6H), 1.68–1.64 (m, 1H), 1.42 (d, J = 6.5 Hz, 2H), 0.93 (s, 3H), 0.92 (d, J = 6.6 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.4, 142.9, 133.3, 132.8, 128.0, 53.9, 44.0, 40.5, 39.8, 26.5, 23.4. HRMS (ESI) Exact mass calculated for [C₁₄H₁₈OSNa]⁺: 257.0971; found: 257.0970

methyl 2-(3-benzoylbicyclo[1.1.1]pentan-1-yl)propanoate (4j)

Yellow oily (31.0 mg, 60% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:20); ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.93 (m, 2H), 7.57–7.51 (m, 1H), 7.48–7.41 (m, 2H), 3.70 (s, 3H), 2.68 (q, *J* = 7.1 Hz, 1H), 2.20 (s, 6H),

1.16 (d, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.6, 174.4, 136.5, 132.2, 128.9, 128.4, 53.0, 51.5, 43.4, 41.3, 40.5, 12.1. HRMS (ESI) Exact mass calculated for $[C_{16}H_{18}O_3Na]^+$: 281.1148; found: 281.1146

tert-butyl 2-(3-benzoylbicyclo[1.1.1]pentan-1-yl)piperidine-1-carboxylate (4k)

Yellow oily (56.8 mg, 80% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8) ; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.1 Hz, 2H), 7.56–7.50 (m, 1H), 7.46–7.38 (m, 2H), 4.37–3.95 (m, 2H), 2.93–2.76 (m, 1H), 2.26 (s,

6H), 1.81–1.71 (m, 1H), 1.67–1.59 (m, 2H), 1.59–1.49 (m, 2H), 1.45 (s, 9H), 1.41–1.29 (m, 1H). $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 197.3, 155.4, 136.5, 132.9, 128.9, 128.4, 79.3, 54.2, 44.0, 42.7, 28.4, 25.7, 25.2, 19.9. HRMS (ESI) Exact mass calculated for [C₂₂H₂₉NO₃Na]⁺: 378.2040 found: 378.2042

tert-butyl 4-(3-benzoylbicyclo[1.1.1]pentan-1-yl)piperidine-1-carboxylate (4l)

White Solid (51.2 mg, 72% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 78–80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.2, 2H), 7.53–7.47 (m, 1H), 7.42–7.37 (m, 2H), 4.13 (s, 2H), 2.72–

2.53 (m, 2H), 2.07 (s, 6H), 1.57 (d, J = 12.6 Hz, 2H), 1.53-1.48 (m, 1H),, 1.43 (s, 9H), 1.15–0.99 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.9, 154.8, 136.6, 132.8, 128.8, 128.4, 79.3, 51.2, 43.5, 43.4, 36.2, 28.4, 28.2. HRMS (ESI) Exact mass calculated for [C₂₂H₂₉NO₃Na]⁺: 378.2040 found: 378.2045

(3-(sec-butyl)bicyclo[1.1.1]pentan-1-yl)(naphthalen-2-yl)methanone (4m)

White Solid (37.8 mg, 68% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 75–76 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 1.8 Hz, 1H), 8.05 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.96 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.89–7.82 (m, 2H), 7.61–7.50 (m, 2H), 2.18 (s, 6H), 1.55–1.47

(m, 2H), 1.12–1.03 (m, 1H), 0.94 (t, J = 7.2 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.2, 135.3, 134.1, 132.4, 130.7, 129.6, 128.4, 128.2, 127.8, 126.7, 124.6, 51.7, 45.1, 43.6, 35.1, 26.1, 15.4, 12.2. HRMS (ESI) Exact mass calculated for [C₂₀H₂₂ONa]⁺: 301.1563 found: 301.1568

tert-butyl 2-(3-(2-methylbenzoyl)bicyclo[1.1.1]pentan-1-yl)piperidine-1-carboxylate (4n)

White Solid (49.5 mg, 67% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 90–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 1H), 7.34–7.28 (m, 1H), 7.23–7.16 (m, 2H), 4.30–3.92 (m, 2H),

2.88–2.74 (m, 1H), 2.37 (s, 3H), 2.13 (s, 6H), 1.75–1.67 (m, 1H), 1.64–1.52 (m, 3H), 1.50–1.46 (m, 1H), 1.43 (s, 9H), 1.38–1.28 (m, 1H). $^{13}C{^1H}$ NMR (101 MHz, CDCl₃) δ 201.9, 155.3, 137.3, 137.2, 131.5, 130.6, 127.8, 125.0, 79.2, 53.2, 44.7, 42.3, 28.3, 25.6, 25.1, 20.4, 19.8. HRMS (ESI) Exact mass calculated for [C₂₃H₃₁NO₃Na]⁺: 392.2196 found: 392.2201

tert-butyl 4-methyl-4-(3-(3-methylbenzoyl)bicyclo[1.1.1]pentan-1-yl)piperidine-1carboxylate (40)

White Solid (53.7 mg, 70% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 101–102 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.73 (m, 2H), 7.35–7.27 (m, 2H), 3.86 (s, 2H), 2.91 (t, *J* = 12.6 Hz,

2H), 2.38 (s, 3H), 2.06 (s, 6H), 1.44 (s, 9H), 1.41–1.38 (m, 1H), 1.36–1.22 (m, 1H), 1.23–1.15 (m, 2H), 0.92 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 198.3, 154.9, 138.2, 136.7, 133.5, 129.2, 128.2, 126.1, 79.3, 49.6, 48.4, 42.2, 39.9, 32.6, 30.4, 28.4, 21.4, 18.4. HRMS (ESI) Exact mass calculated for [C₂₄H₃₃NO₃Na]⁺: 406.2353 found: 406.2359

$(3-(4,4-difluorocyclohexyl) bicyclo [1.1.1] pentan-1-yl) (p-tolyl) methanone \ (4p)$

White Solid (40.8 mg, 67% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:20); m. p. 87–89 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H), 2.18–2.12 (m, 1H), 2.11 (s, 6H), 2.09–2.01(m, 1H), 1.79–1.70 (m, 3H), 1.67–1.60

(m, 1H), 1.55–1.45 (m, 1H), 1.36–1.23 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) & 197.3, 143.6,

134.0, 129.1, 129.0, 51.4, 43.2, 43.1, 36.0 (d, J = 2.2 Hz), 33.2 (dd, J = 23.2, 26.3 Hz), 25.4(d, J = 10.1 Hz), 21.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -91.39 (d, J = 233.1 Hz), -102.4 (d, J = 267.0 Hz). HRMS (ESI) Exact mass calculated for [C₁₉H₂₂F₂ONa]⁺: 327.1531 found: 327.1535

tert-butyl (2-(3-(4-propylbenzoyl)bicyclo[1.1.1]pentan-1-yl)propan-2-yl)carbamate (4q)

White Solid (46.8 mg, 63% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:6); m. p. 75–78 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 4.46 (s, 1H), 2.65–2.59 (m, 2H), 2.17 (s, 6H), 1.64 (q, *J* = 7.5 Hz, 2H), 1.42 (d, *J* = 4.8 Hz, 9H), 1.29 (s, 6H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz,

CDCl₃) δ 197.4, 148.3, 134.2, 129.0, 128.5, 115.0, 51.0, 50.7, 47.0, 41.6, 38.0, 28.3, 28.3, 24.1, 23.5, 13.7. HRMS (ESI) Exact mass calculated for [C₂₃H₃₃NO₃Na]⁺: 394.2353 found: 394.2359 tert-butyl **3-(3-(4-isopropylbenzoyl)bicyclo[1.1.1]pentan-1-yl)piperidine-1-carboxylate (4r)**

White Solid (57.2 mg, 72% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 80–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 3.95 (d, *J* = 28.3 Hz, 2H), 2.93 (p, *J* = 6.9 Hz, 1H), 2.67 (t, *J* = 12.5 Hz, 1H), 2.46 (d, *J* = 28.6 Hz, 1H), 2.11 (s, 6H),

1.76 (d, J = 12.9 Hz, 1H), 1.69–1.53 (m, 2H), 1.44 (s, 9H), 1.41–1.28 (m, 1H), 1.24 (d, J = 6.9 Hz, 6H), 1.17–1.04 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.2, 154.9, 154.3, 134.4, 129.2, 126.5, 79.4, 51.7, 43.6, 42.1, 35.8, 34.2, 28.4, 27.2, 24.5, 23.7. HRMS (ESI) Exact mass calculated for [C₂₅H₃₅NO₃Na]⁺: 420.2509 found: 420.2506

(4-(tert-butyl)phenyl)(3-(1-chloro-2-methylpropan-2-yl)bicyclo[1.1.1]pentan-1-yl)methanone (4s)

White Solid (47.7 mg, 75% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 102–103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 3.41 (s, 2H), 2.17 (s, 6H), 1.34 (s, 9H), 1.00 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.3, 156.6, 133.9, 128.9, 125.4, 53.5, 50.7, 46.5, 42.4, 35.1, 34.4, 31.1, 21.7.

HRMS (ESI) Exact mass calculated for [C₂₀H₂₇ClONa]⁺: 341.1643 found: 341.1648

(3-(4,4-difluorocyclohexyl)bicyclo[1.1.1]pentan-1-yl)(3-methoxyphenyl)methanone (4t)

White Solid (42.9 mg, 67% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:15); m. p. 78–80 °C; ¹H NMR (400

MHz, CDCl₃) δ 7.58 (d, *J* = 7.6, 1H), 7.48–7.47 (m, 1H), 7.34 (t, *J* = 7.9 Hz, 1H), 7.08 (dd, *J* = 8.3, 2.7 Hz, 1H), 3.84 (s, 3H), 2.18–2.12 (m, 1H), 2.11 (s, 6H), 2.10–2.04 (m, 1H), 1.78–1.69 (m, 3H), 1.67–1.60 (m, 1H), 1.55–1.45 (m, 1H), 1.35–1.22 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.6, 159.6, 137.8, 129.4, 121.6, 119.2, 113.2, 55.4, 51.5, 43.2, 43.1 (d, *J* = 3.0 Hz)), 43.17, 36.0 (d, *J* = 2.0 Hz), 33.2 (dd, *J* = 22.2, 25.3 Hz), 25.4 (d, *J* = 10.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -91.2 (d, *J* = 236.9 Hz), -102.3 (d, *J* = 327.1 Hz). HRMS (ESI) Exact mass calculated for [C₁₉H₂₂F₂O₂Na]⁺: 343.1480 found: 343.1485

tert-butyl (1-(3-(4-(benzyloxy)benzoyl)bicyclo[1.1.1]pentan-1-yl)ethyl)(methyl)carbamate (4u)

White Solid (37.9 mg, 63% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 102–104 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 2.7 Hz,

1H), 7.45–7.41 (m, 2H), 7.40–7.24 (m, 4H), 7.20–7.11 (m, 1H), 5.10 (s, 2H), 4.45–4.08 (m, 1H), 2.75 (d, J = 17.9 Hz, 3H), 2.24–1.99 (m, 6H), 1.46 (d, J = 2.1 Hz, 9H), 1.17–1.07 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.1, 158.8, 155.8, 137.7, 136.5, 129.5, 128.7, 128.1, 127.5, 121.8, 120.2, 114.2, 79.5, 70.2, 52.0, 50.3, 43.6, 43.0, 28.5, 28.3, 14.7. HRMS (ESI) Exact mass calculated for [C₂₇H₃₃NO₄Na]⁺: 458.2302 found: 458.2309

tert-butyl (1-(3-(4-phenoxybenzoyl)bicyclo[1.1.1]pentan-1-yl)propyl)carbamate (4v)

White Solid (37.9 mg, 45% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.8 Hz, 2H), 7.38 (t, *J* = 7.0 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 9.9 Hz, 2H), 6.97 (d, *J* = 6.8 Hz, 2H), 4.33 (s, 1H), 3.60 (d, *J* = 23.4

Hz, 1H), 2.14 (s, 6H), 1.60–1.53 (m, 1H), 1.44 (s, 9H), 1.25–1.18 (m, 1H), 0.96 (d, J = 7.3 Hz, 3H). $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃) δ 196.0, 161.8, 155.9, 155.3, 131.1, 130.0, 124.6, 123.4, 120.1, 117.1, 79.0, 51.7, 51.5, 43.4, 42.9, 28.3, 24.8, 10.6. HRMS (ESI) Exact mass calculated for [C₂₆H₃₁NO₄Na]⁺: 444.2145 found: 444.2149

(3-fluorophenyl)(3-(3-methyloxetan-3-yl)bicyclo[1.1.1]pentan-1-yl)methanone (4w)

White Solid (42.7 mg, 82% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 79–81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.67–7.61 (m, 1H), 7.46–7.38 (m, 1H), 7.28–7.20 (m, 1H), 4.54 (d, J =

5.8 Hz, 2H), 4.34 (d, J = 5.8 Hz, 2H), 2.22 (s, 6H), 1.27 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.3, 162.5 (d, J = 249.5 Hz), 138.4 (d, J = 6.1 Hz), 130.1 (d, J = 8.1 Hz), 124.6 (d, J = 3.0 Hz), 119.1 (d, J = 21.2 Hz), 115.4 (d, J = 22.2 Hz), 78.9, 50.0, 44.3, 42.1, 38.5, 20.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -111.5. HRMS (ESI) Exact mass calculated for $[C_{17}H_{17}FO_2Na]^+$: 283.1105 found: 283.1110

(4-fluorophenyl)(3-(tert-pentyl)bicyclo[1.1.1]pentan-1-yl)methanone (4x)

White Solid (44.8 mg, 86% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 82-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06–7.99 (m, 2H), 7.09 (t, J = 8.7 Hz, 2H), 2.07 (s, 6H), 1.26 (q, J = 7.6 Hz, 2H), 0.85 (t, J = 7.5 Hz, 3H), 0.81 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.8, 165.4 (d, J

= 255.5 Hz, 1C),133.1 (d, J = 3.0 Hz, 1C), 131.5 (d, J = 10.1 Hz, 1C), 115.4 (d, J = 22.2 Hz, 1C), 50.1, 48.9, 41.9, 31.8, 30.8, 22.1, 8.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -105.5. HRMS (ESI) Exact mass calculated for [C₁₇H₂₁FONa]⁺: 283.1469; found: 283.1472

(3-(tert-butyl)bicyclo[1.1.1]pentan-1-yl)(4-(4-fluorophenoxy)phenyl)methanone (4y)

White Solid (37.2 mg, 55% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 105–106 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.9 Hz, 2H), 7.11–7.01 (m, 4H), 6.94 (d, *J* = 8.5 Hz, 2H), 2.06 (s, 6H), 0.89 (s, 9H). ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 197.0, 161.8, 159.5 (d, J = 244.4 Hz), 151.2 (d, J = 2.0 Hz), 131.4, 131.2, 121.8(d, J = 5.1 Hz), 116.8 (d, J = 23.2 Hz), 116.7, 49.8, 48.6, 41.5, 29.4, 25.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -118.1. HRMS (ESI) Exact mass calculated for [C₂₂H₂₃FO₂Na]⁺: 361.1574; found: 361.1575

tert-butyl 4-(3-(3-chlorobenzoyl)bicyclo[1.1.1]pentan-1-yl)piperidine-1-carboxylate (4z)

White Solid (52.9 mg, 68% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 98–99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (t, *J* = 1.9 Hz, 1H), 7.82 (d, *J* = 7.8 Hz,

1H), 7.47 (d, J = 9.1 Hz, 1H), 7.35 (t, J = 7.9 Hz, 1H), 4.12 (s, 2H), 2.62 (t, J = 12.9 Hz, 2H), 2.06 (s, 6H), 1.58 (s, 1H), 1.55 (s, 2H), 1.42 (s, 9H), 1.15–1.02 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.5, 154.8, 138.1, 134.6, 132.7, 129.8, 128.8, 126.9, 79.3, 51.2, 43.6, 43.3, 36.2, 28.4, 28.1. HRMS (ESI) Exact mass calculated for [C₂₂H₂₈ClNO₃Na]⁺: 412.1650 found: 412.1655

(4-chlorophenyl)(3-isopropylbicyclo[1.1.1]pentan-1-yl)methanone (4aa)

White Solid (37.2 mg, 75% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:40); m. p. 84–86 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.6 Hz, 2H), 2.04 (s, 6H), 1.80–1.63 (m, 1H), 0.85 (d, *J* = 6.9 Hz, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.0, 139.1, 135.0, 130.3, 128.7, 50.9, 45.4, 42.9, 28.2, 18.6. HRMS (ESI) Exact mass calculated for $[C_{15}H_{17}ClONa]^+$: 271.0860 found: 271.0856

(3-(4,4-difluorocyclohexyl)bicyclo[1.1.1]pentan-1-yl)(4-iodophenyl)methanone (4ab)

White Solid (35.6 mg, 43% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:20); m. p. 88–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.78 (m, 2H), 7.71–7.65 (m, 2H), 2.63 (s, 1H), 2.12 (s, 1H), 2.10 (s, 6H), 1.76–1.68 (m, 3H), 1.66–1.61 (m, 1H), 1.54–1.46 (m, 1H), 1.32–1.24 (m, 2H). ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 198.6, 137.8, 135.8, 130.2, 100.8, 61.8, 51.5, 43.4 (d, *J* = 3.0 Hz), 43.1, 36.0 (d, J = 2.0 Hz), 33.2 (dd, J = 22.2, 26.3 Hz), 25.3 (d, J = 10.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -91.2 (d, J=240.6), -102.0 (d, J=236.9). HRMS (ESI) Exact mass calculated for [C₁₈H₁₉F₂IONa]⁺: 439.0341 found: 439.0342

tert-butyl 3-(3-(4-cyanobenzoyl)bicyclo[1.1.1]pentan-1-yl)piperidine-1-carboxylate (4ac)

White Solid (44.1 mg, 58% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:8); m. p. 107-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.96 (m, 2H), 7.70-7.66 (m, 2H), 4.08-3.57 (m, 2H), 2.70-2.61 (m, 1H), 2.6-2.3 (s, 1H), 2.09 (s, 6H), 1.74-1.67 (m, 1H), 1.61-1.50 (m, 2H), 1.39 (s,

9H),1.36–1.34(m, 1H) 1.13–0.95 (m, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 196.2, 154.6, 139.3, 133.9, 132.1, 129.0, 123.1, 117.7, 115.8, 79.2, 51.5, 43.3, 42.3, 35.5, 28.2, 26.9, 24.3. HRMS (ESI) Exact mass calculated for $[C_{23}H_{28}N_2O_3Na]^+$: 403.1992 found: 403.1996

tert-butyl

(2-methoxy-1-(3-(4-(methylsulfonyl)benzoyl)bicyclo[1.1.1]pentan-1yl)ethyl)carbamate (4ad)

White Solid (44.0 mg, 52% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:3); m. p. 110–111 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 8.3 Hz, 2H), 4.89 (d, J = 8.9 Hz, 1H), 3.83–3.75 (m, 1H), 3.42–3.37 (m, 2H), 3.28 (s, 3H), 3.03 (s, 3H), 2.17 (s, 6H), 1.39 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃)

8 196.5, 155.6, 143.7, 140.5, 129.5, 127.6, 79.4, 72.3, 59.0, 52.4, 44.2, 43.4, 41.6, 29.5, 23.4. HRMS (ESI) Exact mass calculated for [C₂₁H₂₉NO₆SNa]⁺: 446.1068 found: 446.1074

(3-(5-(2,4-dimethylphenoxy)-2-methylpentan-2-yl)bicyclo[1.1.1]pentan-1-yl)(3phenoxyphenyl)methanone (4ae)

White Solid (65.6 mg, 70% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:15); m. p. 114-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.75 (m, 1H), 7.65 (dd, *J* = 2.6, 1.5 Hz, 1H), 7.48–7.37 (m, 3H), 7.25–7.16 (m, 2H), 7.12–7.03 (m, 3H),

6.74–6.67 (m, 2H), 3.98 (t, J = 6.3 Hz, 2H), 2.37 (s, 3H), 2.25 (s, 3H), 2.12 (s, 6H), 1.85–1.79 (m, 2H), 1.47–1.41 (m, 2H), 0.93 (s, 6H).¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.7, 157.8, 157.1, 156.4, 138.3, 136.5, 130.4, 130.0, 129.9, 124.0, 123.6, 123.4, 122.8, 120.7, 119.5, 118.4, 112.0, 68.5, 50.2, 48.8, 42.1, 35.0, 31.7, 24.7, 22.9, 21.5, 15.9. HRMS (ESI) Exact mass calculated for [C₃₂H₃₆O₃Na⁺]⁺: 491.2557 found: 491.2560

(5S,8R,9S,10S,13R,14S,17R)-17-((R)-4-(3-(4-(tert-butyl)benzoyl)bicyclo[1.1.1]pentan-1yl)butan-2-yl)-10,13-dimethyldodecahydro-3H-cyclopenta[a]phenanthrene-3,7,12(2H,4H)trione compound with methane (4af)

White Solid (58.8 mg, 49% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:1); m. p. 120–123 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* =

8.6 Hz, 2H), δ 2.94–2.77 (m, 4H), 2.38–2.25 (m, 5H), 2.24–2.12 (m, 5H), 2.08 (s, 6H), 2.03–1.90 (m, 5H), 1.65–1.52 (m, 3H), δ 1.41–1.34 (m, 5H), 1.31 (s, 9H), 1.28 (s, 2H), 1.05 (s, 4H), 0.84–0.78 (m, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 212.0, 209.0, 208.7, 197.4, 156.3, 134.0, 128.8, 125.2, 56.8, 53.1, 51.7, 50.0, 48.9, 47.6, 46.7, 45.6, 45.4, 44.9, 44.1, 42.7, 40.7, 38.5, 36.4, 35.9, 35.7, 35.1, 35.0, 31.7, 31.0, 28.0, 27.7, 25.0, 21.8, 18.8, 11.7. HRMS (ESI) Exact mass calculated for [C₄₀H₅₆O₄Na]⁺: 623.4071 found: 623.4078

(4aR,6aS,6bR,10S,12aS,12bR,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-2-(3-(3,4,5-trimethoxybenzoyl)bicyclo[1.1.1]pentan-1-yl)-

1,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,14b-octadecahydropicen-13(2H)-one (4ag)

White Solid (76.9 mg, 45% yield) was obtained by the purification with flash column chromatography on silica gel (EtOAc/petroleum ether 1:2); m. p. 115– 116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 3.3 Hz, 2H). 5.55 (s, 1H), 4.06 (q, J = 7.2

Hz, 1H), 3.89–3.82 (m, 9H), 3.17 (dd, *J* = 11.0, 5.2 Hz, 1H), 2.78–2.67 (m, 1H), 2.30 (s, 1H), 2.16 (s, 4H), 2.01 (s, 2H), 1.99 (s, 2H), 1.70–1.51 (m, 6H), 1.48–1.34 (m, 5H), 1.31 (s, 4H), 1.20 (t, *J* =

7.2 Hz, 3H), 1.08 (d, J = 4.0 Hz, 6H), 0.95 (s, 4H), 0.84 (d, J = 5.8 Hz, 2H), 0.80 (d, J = 4.9 Hz, 4H), 0.75 (s, 3H), 0.67–0.61 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.0, 196.3, 169.7, 152.7, 142.3, 131.6, 128.1, 106.3, 61.6, 60.8, 60.2, 56.1, 54.8, 52.2, 49.3, 48.7, 47.5, 46.6, 45.1, 43.3, 42.4, 41.5, 41.0, 39.0, 36.9, 36.6, 32.3, 31.9, 28.0, 27.1, 26.1, 23.2, 23.0, 20.9, 18.5, 17.7, 17.3, 16.2, 15.5, 14.0. HRMS (ESI) Exact mass calculated for [C₄₄H₆₂O₆ Na]⁺: 709.4439 found: 709.4445.

6. ¹H NMR, ¹³C{1H} NMR, ¹⁹F NMR spectra of products

4a ¹H NMR (400 MHz, CDCl₃)

210 200 190

-1 $\frac{1}{70}$

8.15 8.14 8.14 8.14 8.14 7.59 7.59 7.58 7.58 7.58 7.29 7.29 7.29

SI-17

8.13 7.59 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.55 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.57</t

-10 $\frac{1}{70}$

-10 120 110 $\frac{1}{70}$

$\begin{array}{c} 2.05\\ 1.78\\ 1.75\\ 1.73\\ 1.71\\ 1.71\\ 0.88\\ 0.87\\ 0.87\\ \end{array}$

$\begin{array}{c} 7.83\\ 7.83\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.82\\ 7.16\\ 7.16\\ 7.12\\ 7.11\\ 7.12\\ 7.11\\ 7.11\end{array}$

2.06 2.147 1.475 1

7.12 7.82 7.82 7.81 7.61 7.61 7.60 7.60 7.10 7.11 7.11 7.11 7.11

-10 210 200 170 140 100 70 50 40 30 20 10 0 190 180 160 150 130 120 110 90 80 60

-2.15 1.68 1.64 1.64 1.43 1.41 1.41 0.93

$\begin{array}{c} 7.83\\ 7.82\\ 7.82\\ 7.81\\ 7.81\\ 7.62\\ 7.62\\ 7.66\\ 7.12\\ 7.12\\ 7.11$

$$\int_{-1.15}^{7.99} \int_{-1.56}^{7.99} \int_{-1.56}^{7.99} \int_{-1.56}^{7.56} \int_{-1.15}^{7.53} \int_{-2.26}^{7.53} \int_{-2.22}^{2.66} \int_{-2.26}^{2.66} \int_{-2.22}^{2.66} \int_{-2.22}^{2.66} \int_{-1.15}^{-2.22} \int_{-1.15}^{2.66} \int_{-1.15}^{-2.22} \int_{-1.15}^{-2.22} \int_{-2.22}^{-2.22} \int_{$$

-10 $\frac{1}{70}$

-10

⁻¹⁰ $\dot{70}$

⁻¹⁰

 $\begin{matrix} 7.90 \\ 7.88 \\ \hline 7.25 \\ \hline 7.23 \\ \hline 7.23 \end{matrix}$

⁻¹⁰ $\frac{1}{70}$

^{10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210}

Me -N Boc OCH₂Ph

4-ս ¹HNMR(400 MHz,CDCեց)

Me Me Boc -OCH₂Ph

⁴u ¹³C{¹H} NMR(101 MHz, CDCI₃)

-10

-10 $\frac{1}{20}$

^{10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210}

^{50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2:}

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

8.07 8.05 8.05 8.05 8.05 8.05 7.98 7.98 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7.98 7.99 7.98 7.198 7.118 7.1188 7.

-10 210 70 40 0 200 190 180 170 160 150 140 130 120 110 100 90 80 60 50 30 20 10

$\begin{array}{c} 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.6\\ 7.7.2\\ 7.$

-10 $\dot{70}$

7.91 7.91 7.91 7.91 7.91 7.91 7.91 7.91 2.92 2.92 2.92 2.92 2.92 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.94 2.95

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10