Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Transformation of CO₂ and Isocyanate Mediated by N-Borane-Substituted Cyclic Phosphine Imides (BCPIs) via λ^5 -Oxazaphosphetanes

Shun Nagai,¹ Sensuke Ogoshi¹ and Yoichi Hoshimoto*^{1,2}

¹Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

²Center for Future Innovation (CFi), Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

E-mail to the corresponding author: <u>hoshimoto@chem.eng.osaka-u.ac.jp</u>

[1] General considerations	p. S2
[2] Materials	p. S2
[3] Synthesis of 2	p. S3
[4] Conversion of 2 to 3 and (4) ₂	pp. S4-5
[5] Synthesis of 5	pp. S5-6
[6] Synthesis of 6a	pp. S6-7
[7] Synthesis of 6b	pp. S7-8
[8] Conversion of 6a to 7a and (4) ₂	p. S9
[9] Synthesis of 8b from 6b	pp. S9-10
[10] Synthesis of 8b from 1	p. S10
[11] References	p. S11
[12] NMR spectra	pp. S12-41

Table of Contents

[1] General considerations

Unless otherwise noted, all manipulations were conducted under a nitrogen atmosphere using standard Schlenk line or grove box (GB) techniques. ¹H, ¹¹B, ¹³C, ¹⁹F, and ³¹P NMR spectra were recorded on a Bruker AVANCE III 400 or JEOL JNM-ECS400 spectrometers at 25 °C. The chemical shifts in the ¹H NMR spectra were recorded relative to Me₄Si or residual protonated solvent (CDHCl₂ (δ 5.32), C₆D₅H (δ 7.16)). The chemical shifts in the ¹¹B NMR spectra were recorded relative to BF₃•OEt₂. The chemical shifts in the ¹³C spectra were recorded relative to Me₄Si or deuterated solvent (CD₂Cl₂ (δ 53.84), C₆D₆ (δ 128.06)). The chemical shifts in the ¹⁹F NMR spectra were recorded relative to α,α,α -trifluorotoluene (δ –65.64). The chemical shifts in the ³¹P NMR spectra were recorded relative to 85% H₃PO₄ as an external standard. Assignment of the resonances in ¹H and ¹³C NMR spectra was based on ¹H–¹H COSY, HMQC, HSQC, and HMBC experiments. High resolution mass spectrometry (HRMS) and elementary analyses were performed at the Instrumental Analysis Center, Faculty of Engineering, Osaka University; however, for some compounds, these analyses were precluded due to their instability under the measurement conditions. A single-crystal X-ray diffraction analysis was carried out using the Rigaku XtaLAB Synergy equipping with the HyPix-6000HE detector.

For identification of NMR resonances, Dipp-H/C, B^f-H/C, Im-H/C and Ts-H/C are used for the identification of H and C atoms in 2,6-diisopropylphenyl (Dipp), 9-borafluonyl (B^f), imidazole (Im) and *p*-toluenesulfonyl (Ts) moieties.

[2] Materials

All commercially available reagents including super-dehydrated solvents (*n*-hexane, THF and CH₂Cl₂), were purchased from Sigma Aldrich, TCI, and Wako Pure Chemical Industries, and used as received. α, α, α -Trifluorotoluene was distilled over CaH₂ prior to use. CD₂Cl₂ was degassed by several freeze-pump-thaw cycles and stored inside GB over molecular sieves (4 Å). Molecular sieves (4 Å) were activated by heating *in vacuo* (ca. 0.2 mmHg) for 3 days. *N*-Borane-substituted cyclic phosphine imide $\mathbf{1}^{S1}$ and HB(C₆F₅)₂^{S2} were prepared *via* the previously reported procedures. Metrical data for the solid-state structures are available from Cambridge Crystallographic Data Centre: CCDC 2240798 (**2**), 2240797 ((**4**)₂), 2240796 (**5**), 2378677 (**6a**), 2378678 (**6b**), 2378679 (**8b**).

[3] Synthesis of 2

A solution of 1 (220.2 mg, 0.40 mmol) in α, α, α -trifluorotoluene (25 mL) was transferred into the autoclave reactor, and then, CO₂ (5 atm) was pressurized followed by stirring at room temperature for 20 min. After all volatiles were removed *in vacuo*, to afford **2** as a white solid (235.0 mg, 0.40 mmol, >99%). A single crystal suitable for X-ray diffraction analysis was prepared by recrystallization from CH₂Cl₂/n-hexane at -30 °C (Figure S1). ¹H NMR (400 MHz, CD_2Cl_2 , -50 °C): δ 7.45 (s, 1H, Im-*H*), 7.29 (d, 2H, $J_{H,H}$ = 6.9 Hz, B^f-*H*), 7.26 (d, 2H, $J_{H,H}$ = 6.0 Hz, B^{f} -H), 7.10 (t, 1H, $J_{H,H} = 6.9$ Hz, p-Dipp-H), 7.02-6.97 (m, 5H, B^{f} -H and Im-H), 6.78 (d, 2H, $J_{\rm H,H} = 6.9$ Hz, *m*-Dipp-*H*), 2.11 (brs, 2H, CH(CH₃)₂), 1.62 (d, 18H, ${}^{3}J_{\rm H,P} = 19.2$ Hz, C(CH₃)₃), 0.83 (d, 6H, $J_{H,H} = 5.0$ Hz, CH(CH₃)₂), 0.56 (d, 6H, $J_{H,H} = 4.1$ Hz, CH(CH₃)₂). ¹³C {¹H} NMR (100 MHz, CD₂Cl₂, -50 °C): δ 172.5 (brs, Im-C), 154.6 (s, C=O), 151.2 (brs, B^f-C), 149.4 (s, B^f-C), 145.0 (s, o-Dipp-C), 131.8 (s, ipso-Dipp-C), 130.7 (s, B^f-C), 129.9 (s, p-Dipp-C), 126.2 (s, B^f-C), 126.0 (s, Im-*C*), 124.0 (s, Im-*C*), 122.8 (s, *m*-Dipp-*C*), 118.4 (s, B^f-*C*), 41.9 (d, ${}^{1}J_{C,P} = 86.0$ Hz, *C*(CH₃)₂), 29.1 (s, C(*C*H₃)₃), 28.2 (s, *C*H(CH₃)₂), 26.2 (s, CH(*C*H₃)₂), 21.5 (s, CH(*C*H₃)₂). ³¹P {¹H} NMR (162 MHz, CD₂Cl₂, -50 °C): δ-18.5 (s). ¹¹B NMR (128 MHz, CD₂Cl₂, -50 °C): δ-10.3 (s). Crystal Data for $C_{36}H_{45}BN_3O_2P \cdot CH_2Cl_2$ (M = 678.45 g/mol): monoclinic, space group $P2_1/c$ (#14), a = 12.6693(3) Å, b = 19.5252(3) Å, c = 16.0002(4) Å, $a = 90^{\circ}$, $\beta = 107.512(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 3774.54(15) Å³, Z = 4, T = 173.15 K, μ (Cu K α) = 2.213 mm⁻¹, *Dcalc* = 1.194 g/cm³, 28175 reflections measured (7.352° $\leq 2\theta \leq 136.492^{\circ}$), 6898 unique ($R_{int} = 0.0558$, $R_{sigma} = 0.0441$) which were used in all calculations. The final R_1 was 0.0716 (I $\ge 2\sigma(I)$) and wR_2 was 0.1998 (all data).

Figure S1. Molecular structure of **2** with ellipsoids set at 30% probability; H atoms and solvated CH_2Cl_2 are omitted for clarity.

[4] Conversion of 2 to 3 and (4)₂

Compound 2 (190.2 mg, 0.32 mmol) was dissolved in THF (10 mL), and the reaction mixture was allowed to stand at room temperature for 3 days. The precipitation of crystals of $(4)_2$ was confirmed from this solution (a single crystal of $(4)_2$ was independently prepared by following this method; Figure S2). The supernatant was then removed and all volatiles were removed *in vacuo*. The resultant solid was washed with *n*-hexane followed by removal of all volatiles *in vacuo* to afford $(4)_2$ as a white solid (114.2 mg, 0.15 mmol, 47% based on the loading amount of 2). On the other hand, removal of all volatiles from the supernatant *in vacuo*. Subsequently, the residue was extracted with *n*-hexane to afford 3 as a colorless oil (44.5 mg, 0.22 mmol, 69%).

Identification of **3**: ¹**H NMR** (400 MHz, CD₂Cl₂): δ 1.29 (d, 18H, ³*J*_{H,P} = 15.8 Hz, C(CH₃)₃). ¹³C {¹H} **NMR** (100 MHz, CD₂Cl₂): δ 127.1 (s, N=*C*=O), 37.5 (d, ¹*J*_{C,P} = 77.9 Hz, *C*(CH₃)₃), 26.3 (d, ²*J*_{C,P} = 4.8 Hz, C(CH₃)₃). ³¹P {¹H} **NMR** (162 MHz, CD₂Cl₂): δ 60.0 (s). **HRMS** (CI⁺): m/z Calcd for C₉H₁₉NO₂P: ([M+H]⁺) 204.1148, found 204.1156.

Identification of (4)₂: ¹H NMR (400 MHz, CD₂Cl₂): δ 7.40 (d, 2H, $J_{H,H} = 6.2$ Hz, B^f-H), 7.37 (d, 2H, $J_{H,H} = 6.2$ Hz, B^f-H), 7.11 (t, 4H, $J_{H,H} = 3.2$ Hz, B^f-H), 7.05 (t, 1H, $J_{H,H} = 7.9$ Hz, p-Dipp-H), 6.77 (d, 2H, $J_{H,H} = 7.7$ Hz, m-Dipp-H), 6.63 (s, 1H, Im-H), 6.13 (s, 1H, Im-H), 2.24 (sept, 2H, $J_{H,H} = 6.6$ Hz, $CH(CH_3)_2$), 0.74 (d, 12H, $J_{H,H} = 6.7$ Hz, $CH(CH_3)_2$). ¹³C {¹H} NMR (100 MHz, CD₂Cl₂): δ 149.9 (s, B^f-C), 146.4 (s, o-Dipp-C), 133.9 (s, ipso-Dipp-C), 130.8 (s, B^f-C), 129.8 (s, p-Dipp-C), 127.2 (s, B^f-C), 125.5 (s, Im-C), 122.9 (s, m-Dipp-C), 121.9 (s, Im-C), 119.3 (s, B^f-C), 28.9 (s, $CH(CH_3)_2$), 27.0 (s, $CH(CH_3)_2$), 21.7 (s, $CH(CH_3)_2$). Resonances for the carbon atoms connected to the boron atom were not observed. ¹¹B NMR (128 MHz, CD₂Cl₂): δ -5.5 (brs). Crystal Data for C₅₄H₅₄B₂N₄•(THF)₂ (M = 924.84 g/mol): monoclinic, space group $P_{2_1/c}$ (#14), a = 12.7952(3) Å, b = 19.5207(4) Å, c = 20.9941(4) Å, $a = 90^{\circ}$, $\beta = 95.160(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 5222.47(19) Å³, Z = 4, T = 123.15 K, μ (Cu K α) = 0.536 mm⁻¹, Dcalc = 1.176 g/cm³, 9444 reflections measured (8.286° $\leq 2\theta \leq 136.494^{\circ}$), 9444 unique ($R_{int} = ?$, $R_{sigma} = 0.0360$) which were used in all calculations. The final R_1 was 0.0793 (I $\geq 2\sigma$ (I)) and wR_2 was 0.2258 (all data).

Figure S2. Molecular structure of $(4)_2$ with ellipsoids set at 30% probability; H atoms and solvated THF are omitted for clarity.

[5] Synthesis of 5

To a suspension of 2 (224.6 mg, 0.38 mmol) in α, α, α -trifluorotoluene (25 mL) was added HB(C_6F_5)₂ (130.9 mg, 0.38 mmol, 1.0 equiv.), followed by stirring at room temperature for 1 h. After all volatiles were removed in vacuo, the resultant solid was washed with n-hexane to afford 5 as a white solid (347.3 mg, 0.37 mmol, 97%). A single crystal suitable for X-ray diffraction analysis was prepared by recrystallization from CH_2Cl_2/n -hexane at -30 °C (Figure S3). ¹**H** NMR (400 MHz, CD₂Cl₂): δ 7.62 (s, 1H, Im-*H*), 7.24 (s, 1H, Im-*H*), 7.19 (d, 2H, J_{H,H} = 6.4 Hz, B^f-H), 7.16 (t, 1H, p-Dipp-H), 7.09 (d, 2H, J_{H,H} = 7.3 Hz, B^f-H), 6.97-6.91 (m, 4H, B^f-H), 6.86 (d, 2H, $J_{H,H}$ = 7.8 Hz, *m*-Dipp-*H*), 3.68 (brs, 1H, B-*H*), 2.14 (sept, 2H, $J_{H,H}$ = 6.5 Hz, $CH(CH_3)_2$), 1.77 (d, 18H, ${}^{3}J_{H,P} = 19.2$ Hz, $C(CH_3)_3$), 0.89 (d, 6H, $J_{H,H} = 6.9$ Hz, $CH(CH_3)_2$), 0.65 (d, 6H, $J_{H,H} = 6.4$ Hz, CH(CH₃)₂). ¹³C {¹H} NMR (100 MHz, CD₂Cl₂): δ 161.8 (s, C=O), 150.6 (s, B^f-*C*), 147.6 (brd, ${}^{1}J_{C,F} = 231.0$ Hz, $o-C_{6}F_{5}$), 145.1 (s, o-Dipp-*C*), 138.8 (brd, ${}^{1}J_{C,F} = 251.2$ Hz, $p-C_6F_5$), 136.6 (brd, ${}^{1}J_{C,F} = 244.5$ Hz, $m-C_6F_5$), 131.4 (s, p-Dipp-C), 131.1 (s, ipso-Dipp-C), 130.5 (s, Bf-C), 129.8 (s, Im-C), 127.2 (s, Bf-C), 126.4 (s, Bf-C), 123.9 (s, m-Dipp-C), 121.8 (s, Im-C), 118.8 (s, B^f-C), 43.8 (d, ${}^{2}J_{C,P} = 51.0$ Hz, C(CH₃)₃), 29.1 (s, C(CH₃)₃), 28.9 (s, CH(CH₃)₂), 26.4 (s, $CH(CH_3)_2$), 21.9 (s, $CH(CH_3)_2$). Resonances for the carbon atoms connected to the boron atom were not observed. ¹⁹F NMR (376 MHz, CD₂Cl₂): δ-135.6 (s, 2F, o-C₆F₅), -163.2 (s, 1F, p-C₆F₅), -167.1 (s, 2F, *m*-C₆*F*₅). ³¹**P** {¹**H**} **NMR** (162 MHz, CD₂Cl₂): δ 59.9 (s). ¹¹**B NMR** (128 MHz, CD₂Cl₂): δ-6.4 (brs). **Crystal Data** for C₄₈H₄₆B₂F₁₀N₃O₂**P**•CH₂Cl₂ (*M* = 1024.39 g/mol): triclinic, space group *P*-1 (#2), *a* = 10.5399(5) Å, *b* = 11.4428(6) Å, *c* = 21.6413(9) Å, *a* = 85.586(4)°, β = 85.395(4)°, γ = 69.910(4)°, *V* = 2439.9(2) Å³, *Z* = 2, *T* = 123.15 K, μ(Cu Kα) = 2.212 mm⁻¹, *Dcalc* = 1.394 g/cm³, 29927 reflections measured (8.208° ≤ 2*θ* ≤ 136.494°), 8887 unique (*R*_{int} = 0.0948, *R*_{sigma} = 0.0752) which were used in all calculations. The final *R*₁ was 0.0721 (I ≥ 2σ(I)) and *wR*₂ was 0.1892 (all data).

Figure S3. Molecular structure of **5** with ellipsoids set at 30% probability; H atoms connected to the carbon atoms and solvated CH_2Cl_2 are omitted for clarity.

[6] Synthesis of 6a

To a suspension of **1** (164.9 mg, 0.30 mmol) in α , α , α -trifluorotoluene (20 mL) was added *p*-toluenesulfonyl isocyanate (59.2 mg, 0.30 mmol, 1.0 equiv.), followed by stirring at room temperature for 15 min. After all volatiles were removed *in vacuo*, the resultant solid was washed with *n*-hexane to afford **6a** as a white solid (223.7 mg, 0.30 mmol, >99%). A single crystal suitable for X-ray diffraction analysis was prepared by recrystallization from CH₂Cl₂/*n*-hexane at room temperature (Figure S4). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.462 (d, 2H, *J*_{H,H} = 7.8 Hz, Ts-C₆*H*₄), 7.456 (s, 1H, Im-*H*), 7.35 (d, 2H, *J*_{H,H} = 7.8 Hz, B^f-*H*), 7.21 (d, 2H, *J*_{H,H} = 6.9 Hz, B^f-*H*), 7.15-7.07 (m, 5H, *p*-Dipp-*H*, Ts-C₆*H*₄, B^f-*H*), 7.03-7.00 (m, 3H, B^f-*H*, Im-*H*), 6.81 (d, 2H, *J*_{H,H} = 7.8 Hz, *m*-Dipp-*H*), 2.36 (s, 3H, Ts-CH₃), 2.09 (sept, 2H, *J*_{H,H} = 6.7 Hz, CH(CH₃)₂), 1.51 (d, 18H,

³*J*_{H,P} = 19.7 Hz, C(C*H*₃)₃), 0.84 (d, 6H, *J*_{H,H} = 6.4 Hz, CH(C*H*₃)₂), 0.62 (d, 6H, *J*_{H,H} = 6.9 Hz, CH(C*H*₃)₂). ¹³C {¹H} NMR (100 MHz, CD₂Cl₂): δ 175.2 (brs, Im-*C*), 160.5 (s, *C*=N), 150.4 (s, B^f-C), 150.1 (brs, B^f-C), 145.4 (s, *o*-Dipp-C), 142.0 (s, Ts-C₆H₄), 141.1 (s, Ts-C₆H₄), 132.0 (s, *ipso*-Dipp-C), 130.9 (s, B^f-C), 130.7 (s, *p*-Dipp-C), 128.9 (s, Ts-C₆H₄), 127.5 (s, Ts-C₆H₄), 127.2 (s, Im-*C*), 127.1 (s, B^f-*C*), 126.6 (s, B^f-*C*), 123.5 (s, Im-*C*), 123.4 (s, *m*-Dipp-*C*), 119.2 (s, B^f-*C*), 43.0 (d, ¹*J*_{C,P} = 77.9 Hz, *C*(CH₃)₃), 29.5 (s, CH(CH₃)₂), 28.8 (s, C(CH₃)₃), 26.5 (s, CH(CH₃)₃), 21.9 (s, CH(CH₃)₃), 21.5 (s, Ts-CH₃). ³¹P {¹H} NMR (162 MHz, CD₂Cl₂): δ -2.8 (s). ¹¹B NMR (128 MHz, CD₂Cl₂): δ -10.5 (brs). **Crystal Data** for C₄₃H₅₂BN₄O₃PS•CH₂Cl₂ (M=831.65 g/mol): monoclinic, space group *P*2₁/c (#14), *a* = 9.24486(14) Å, *b* = 19.6073(3) Å, *c* = 24.3636(4) Å, *a* = 90°, β = 93.1494(14)°, γ = 90°, *V* = 4409.64(11) Å³, *Z* = 4, *T* = 123.15 K, μ (Cu Kα) = 2.446 mm⁻¹, *Dcalc* = 1.253 g/cm³, 28396 reflections measured (7.268° ≤ 2 θ ≤ 136.502°), 8046 unique (*R*_{int} = 0.0488, *R*_{sigma} = 0.0401) which were used in all calculations. The final *R*₁ was 0.0409 (I ≥ 2 σ (I)) and *wR*₂ was 0.1318 (all data).

Figure S4. Molecular structure of **6a** with ellipsoids set at 30% probability; H atoms and solvated CH₂Cl₂ are omitted for clarity.

To a suspension of 1 (165.2 mg, 0.30 mmol) in α , α , α -trifluorotoluene (15 mL) was added phenyl isocyanate (35.8 mg, 0.30 mmol, 1.0 equiv.), followed by stirring at room temperature for 30 min. After all volatiles were removed *in vacuo*, the resultant solid was washed with *n*-hexane to afford **6b** as a white solid (181.6 mg, 0.27 mmol, 90%). A single crystal suitable for X-ray diffraction analysis was prepared by recrystallization from CH₂Cl₂/n-hexane at -30 °C (Figure S5). ¹**H** NMR (400 MHz, CD₂Cl₂, -50 °C): δ 7.46 (s, 1H, Im-*H*), 7.34 (d, 2H, $J_{\rm HH}$ = 6.0 Hz, B^f-*H*), 7.27 (d, 2H, *J*_{H,H} = 6.4 Hz, B^f-*H*), 7.10 (t, 1H, *J*_{H,H} = 7.8 Hz, *p*-Dipp-*H*), 7.09-7.05 (m, 2H, *m*- C_6H_5), 7.02-6.99 (m, 4H, B^f-H), 6.97 (s, 1H, Im-H), 6.82 (t, 1H, $J_{H,H} = 7.3$ Hz, $p-C_6H_5$), 6.79 (d, 2H, $J_{H,H} = 6.9$ Hz, $o-C_6H_5$), 6.77 (d, 2H, $J_{H,H} = 7.8$ Hz, m-Dipp-H), 2.07 (sept, 2H, $J_{H,H} = 6.5$ Hz, $CH(CH_3)_2$, 1.62 (d, 18H, ${}^{3}J_{H,P} = 19.2$ Hz, $CH(CH_3)_2$), 0.82 (d, 6H, $J_{H,H} = 6.4$ Hz, $CH(CH_3)_2$), 0.56 (d, 6H, $J_{\text{H,H}} = 6.9$ Hz, CH(CH₃)₂). ¹³C {¹H} NMR (100 MHz, CD₂Cl₂, -50 °C): δ 173.1 (brs, Im-*C*), 152.0 (brs, B^f-*C*), 149.9 (d, ²*J*_{C,P} = 5.4 Hz, *C*=N), 149.4 (s, B^f-*C*), 148.4 (s, *ipso*-*C*₆H₅), 145.0 (s, o-Dipp-C), 131.9 (s, ipso-Dipp-C), 130.7 (s, Bf-C), 129.8 (s, p-Dipp-C), 128.1 (s, m-C6H5), 126.1 (s, Bf-C), 126.0 (s, Bf-C), 125.9 (s, Im-C), 123.6 (s, Im-C), 123.3 (s, m-C₆H₅), 122.6 (s, m-Dipp-*C*), 121.3 (s, *p*-*C*₆H₅), 118.3 (s, B^f-*C*), 42.3 (d, ${}^{2}J_{C,P} = 86.0$ Hz, *C*(CH₃)₃), 29.3 (s, C(CH₃)₃), 28.2 (s, CH(CH₃)₂), 26.2 (s, CH(CH₃)₂), 21.5 (s, CH(CH₃)₂). ³¹P {¹H} NMR (162 MHz, CD₂Cl₂, -50 °C): δ-10.8 (s). ¹¹B NMR (128 MHz, CD₂Cl₂, -50 °C): δ-10.0 (brs). Crystal Data for $C_{42}H_{50}BN_4OP \cdot 2CH_2Cl_2$ (*M* = 838.49 g/mol): monoclinic, space group $P2_1/c$ (#14), *a* = 9.90590(10) Å, b = 19.1588(2) Å, c = 23.6340(2) Å, $\alpha = 90^{\circ}$, $\beta = 93.5180(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 10004476.93(8) Å³, Z = 4, T = 193.15 K, μ (Cu K α) = 3.026 mm⁻¹, Dcalc = 1.244 g/cm³, 34450 reflections measured (7.496° $\leq 2\theta \leq 136.5^{\circ}$), 8160 unique ($R_{int} = 0.0377$, $R_{sigma} = 0.0287$) which were used in all calculations. The final R_1 was 0.0548 (I \ge 2u(I)) and wR_2 was 0.1545 (all data).

Figure S5. Molecular structure of **6b** with ellipsoids set at 30% probability; H atoms and solvated CH₂Cl₂ are omitted for clarity.

[8] Conversion of 6a to 7a and (4)₂

Compound **6a** (288.0 mg, 0.39 mmol) was dissolved in α, α, α -trifluorotoluene (30 mL), and the reaction mixture was stirred at 135 °C for 17 h. Then, all volatiles were removed *in vacuo*, and the resultant mixture was separated into supernatant and residue with *n*-hexane. The supernatant liquid was concentrated *in vacuo* to afford **7a** as a white solid (136.4 mg, 0.38 mmol, 97%). Also, the resultant solid was concentrated *in vacuo* to afford **(4)**₂ as a white solid (144.0 mg, 0.18 mmol, 46% based on the loading amount of **6a**).

Identification of **7a**: ¹**H NMR** (400 MHz, CD₂Cl₂): δ 7.74 (d, 2H, $J_{H,H}$ = 8.2 Hz, Ts-C₆H₄), 7.24 (d, 2H, $J_{H,H}$ = 8.2 Hz, Ts-C₆H₄), 2.39 (s, 3H, Ts-CH₃), 1.30 (d, 18H, ³ $J_{H,P}$ = 17.7 Hz, C(CH₃)₃). ¹³C {¹**H**} **NMR** (100 MHz, CD₂Cl₂): δ 143.5 (s, Ts-C₆H₄), 141.7 (s, Ts-C₆H₄), 129.4 (s, Ts-C₆H₄), 125.8 (s, Ts-C₆H₄), 38.9 (d, ¹ $J_{C,P}$ = 77.4 Hz, C(CH₃)₃), 26.1 (s, C(CH₃)₃), 21.5 (s, Ts-CH₃). The resonance for the carbon atom of carbodiimide was not observed. ³¹**P** {¹**H**} **NMR** (162 MHz, CD₂Cl₂): δ 45.3 (s). **HRMS** (EI⁺): m/z Calcd for C₁₆H₂₅N₂O₃PS: 356.1323, found 356.1334.

[9] Synthesis of 8b from 6b

Compound **6b** (134.0 mg, 0.20 mmol) was dissolved in α,α,α -trifluorotoluene (12 mL), and the reaction mixture was then stirred at 40 °C for 1 h. After all volatiles were removed *in vacuo*, **8b** was afforded as a white solid (111.5 mg, 0.17 mmol, 85%). A single crystal suitable for X-ray diffraction analysis was prepared by recrystallization from CH₂Cl₂/*n*-hexane at -30 °C (Figure S6). ¹**H NMR** (400 MHz, CD₂Cl₂, -50 °C): δ 9.66 (s, 1H, Im-*H*), 7.29 (d, 2H, $J_{H,H} = 6.9$ Hz, B^f-*H*), 7.22 (d, 2H, $J_{H,H} = 6.4$ Hz, B^f-*H*), 7.19 (t, 1H, $J_{H,H} = 7.8$ Hz, *p*-Dipp-*H*), 7.06-7.02 (m, 4H, B^f-*H*, *m*-C₆*H*₅), 7.00-6.97 (m, 6H, B^f-*H*, *o*,*p*-C₆*H*₅, Im-*H*), 6.89 (d, 2H, $J_{H,H} = 7.8$ Hz, *m*-Dipp-*H*), 2.17 (sept, 2H, $J_{H,H} = 6.3$ Hz, CH(CH₃)₂), 1.15 (d, 18H, ³ $J_{H,P} = 14.2$ Hz, C(CH₃)₃), 0.90 (d, 6H, $J_{H,H} = 6.9$ Hz, CH(CH₃)₂), 0.54 (d, 6H, $J_{H,H} = 6.9$ Hz, CH(CH₃)₂). ¹³C {¹H} NMR (100 MHz,

CD₂Cl₂, -50 °C): δ 170.0 (brs, Im-*C*), 149.5 (s, B^f-*C*), 148.9 (brs, B^f-*C*), 145.7 (d, ²*J*_{C,P} = 6.7 Hz, N=*C*), 144.9 (s, *o*-Dipp-*C*), 141.2 (s, *o*-*C*₆H₅), 131.0 (s, *ipso*-Dipp-*C*), 130.5 (s, B^f-*C*), 130.3 (s, *p*-Dipp-*C*), 127.8 (s, *m*-*C*₆H₅), 126.9 (s, B^f-*C*), 126.7 (s, *o*-*C*₆H₅), 126.5 (s, B^f-*C*), 126.4 (s, Im-*C*), 125.1 (s, *p*-*C*₆H₅), 123.2 (s, *m*-Dipp-*C*), 119.4 (s, Im-*C*), 119.0 (s, B^f-*C*), 36.1 (d, ¹*J*_{C,P} = 88.7 Hz, *C*(CH₃)₃), 28.0 (s, CH(CH₃)₂), 26.5 (s, C(CH₃)₃), 26.0 (s, CH(CH₃)₂), 21.5 (s, CH(CH₃)₂). ³¹**P** {¹**H**} **NMR** (162 MHz, CD₂Cl₂, -50 °C): δ 45.4 (s). ¹¹**B NMR** (128 MHz, CD₂Cl₂, -50 °C): δ -4.2 (brs). **Crystal Data** for C₄₂H₅₀BN₄OP (*M* = 668.64 g/mol): triclinic, space group *P*-1 (#2), *a* = 9.9881(3) Å, *b* = 13.2977(5) Å, *c* = 15.5488(6) Å, *a* = 102.478(3)°, *β* = 94.349(3)°, *γ* = 100.379(3)°, *V* = 1969.19(13) Å³, *Z* = 2, *T* = 193.15 K, μ (Cu K α) = 0.886 mm⁻¹, *Dcalc* = 1.128 g/cm³, 22010 reflections measured (6.952° ≤ 2 θ ≤ 136.496°), 7179 unique (*R*_{int} = 0.0496, *R*_{sigma} = 0.0499) which were used in all calculations. The final *R*₁ was 0.0500 (I ≥ 2u(I)) and *wR*₂ was 0.1236 (all data).

Figure S6. Molecular structure of **8b** with ellipsoids set at 30% probability; H atoms are omitted for clarity.

[10] Synthesis of 8b from 1

To a suspension of **1** (165.2 mg, 0.30 mmol) in α , α , α -trifluorotoluene (15 mL) was added phenyl isocyanate (35.9 mg, 0.30 mmol, 1.0 equiv.), followed by stirring at 40 °C for 1 h. After all volatiles were removed *in vacuo*, the resultant solid was washed with *n*-hexane to afford **8b** as a white solid (170.5 mg, 0.25 mmol, 83%).

[11] References

- S1) Nagai, S.; Hinogami, T.; Ogoshi, S.; Hoshimoto, Y. Bull. Chem. Soc. Jpn. 2023, 96, 1346.
- S2) a) Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345; b) Patrick, E. A.; Piers, W. E.
 Chem. Commun. 2020, 56, 841.

¹¹B NMR (128 MHz, CD₂Cl₂, -50 °C)

-200

-150

-250

ppm

250 200 150 100

S15

-50

-100

50

¹H NMR (400 MHz, CD₂Cl₂)

3

59.95

3

³¹P {¹H} NMR (162 MHz, CD₂Cl₂)

0.75 0.73

-)

4

S21

¹H NMR (400 MHz, CD_2CI_2)

 $^{13}C \{^{1}H\} NMR (100 MHz, CD_{2}CI_{2})$

S26

¹H NMR (400 MHz, CD₂Cl₂)

¹H NMR (400 MHz, CD₂Cl₂, -50 °C)

¹³C {¹H} NMR (100 MHz, CD₂Cl₂, -50 °C)

³¹P {¹H} NMR (162 MHz, CD₂Cl₂, -50 °C)

-10.00 ^tBu l ^tBu ₽.^{™™t}Bu / ```` N <u>↓</u> N . **`O** ,)"", B-N Ν 6b 50 250 200 150 100 -50 -100 -150 -200 -250 0 ppm

¹¹B NMR (128 MHz, CD₂Cl₂, -50 °C)

¹³C {¹H} NMR (100 MHz, CD₂Cl₂)

³¹P {¹H} NMR (162 MHz, CD₂Cl₂)

¹H NMR (400 MHz, CD₂Cl₂, −50 °C)

¹³C {¹H} NMR (100 MHz, CD₂Cl₂, -50 °C)

³¹P {¹H} NMR (162 MHz, CD₂Cl₂, - 50 °C)

¹¹B NMR (128 MHz, CD₂Cl₂, -50 °C)

