Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

for

Reversible encapsulation and release of fullerenes using calix[n]phenoxazines

Lu Wang,^{a,b} Yunxiao Li,^b Xin Qu,^b Da Ma^{*b}, M. Zubair Iqbal,^{*a} Xiangdong Kong,^a and Lijun Mao,^{*b}

^aSchool of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. E-mail: Zubair@zstu.edu.cn

^bSchool of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, Zhejiang, China. E-mail: lucienmlj@163.com, dama@tzc.edu.cn

Table of Contents

1. General information	S2
2. Synthesis of calix[n]phenothiazines	S2
3. Host-guest complexation	S4
3.1 Host-guest interaction	S4
3.2 Job plot	S6
3.3 Competitive fluorescence titration	S6
4. Theoretical calculation	
5. Characterization data and spectra	S21
6. Reference	S25

1. General information

All solvents were dried according to the standard procedures and all of them were degassed under N₂ for 30 minutes before use. All air-sensitive reactions were carried out under inert N₂ atmosphere. ¹H and ¹³C were recorded at 400 MHz with a Mercury plus 400 spectrometer at 298 K and tetramethylsilane (TMS) as an internal reference. The ¹H and ¹³C NMR chemical shifts are reported relative to the residue solvent signals. Coupling constants (*J*) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, t =triplet, q = quartet, and m = multiplet. Mass spectra were recorded with Thermo Scientific LCQ XL spectrometer with methanol or acetonitrile as solvents. UV-vis spectra were measured by SHIMADZU UV-2600 using a 10 mm quartz cuvette. Fluorescent spectra were recorded on a Edinburgh FS5 spectrofluorometer, using a 10 mm quartz cuvette.

CDCl₃ and toluene- d_8 were supplied by Cambridge Isotope Laboratories (CIL). Phenoxazine, bromobutane, KOH, triethylamine hydrochloride, C₆₀, C₇₀, paraformaldehyde, acetonitrile, CF₃COOH, dichloromethane, and 1,2-dichloroethane were purchased from Energy Chemistry (Shanghai).

2. Synthesis of calix[n]phenothiazines

Scheme S1. Synthesis route to calix[*n*]phenothiazines 1–4.

To the solution of 10-butylphenoxazine (500 mg, 2.09 mmol) in dichloromethane (50 mL) was added paraformaldehyde (188 mg, 6.27 mmol). The suspension was stirred at room temperature for 30 min to crush the large paraformaldehyde particles. And then, CF₃COOH (1.0 mL) was added to the solution. After continuing stirring at room temperature for 15 min, the reaction was quenched by addition of water. The organic phase was separated and washed with saturated aqueous NaHCO₃, H₂O and brine. The

crude product was purified by column chromatograph (petroleum ether/CH₂Cl₂) to yield **1** (white solid, petroleum ether/CH₂Cl₂ = 3/1, v/v, $R_f = 0.3$, 78.7 mg, 15%), **2** (white solid, petroleum ether/CH₂Cl₂ = 2.5/1, v/v, $R_f = 0.3$, 26.3 mg, 5%), **3** (white solid, petroleum ether/CH₂Cl₂ = 2/1, v/v, $R_f = 0.3$, 4.2 mg, 0.8%), and **4** (white solid, petroleum ether/CH₂Cl₂ = 1.5/1, v/v, $R_f = 0.3$, 1.6 mg, 0.3%).

1: The ¹H NMR, ¹³C NMR, and HR-MS spectra of **1** were reported in " *Org. Lett.* **2023**, *25*, 5597–5601".^[S1]

2: ¹H NMR (400 MHz, CDCl₃) δ 6.62 (dd, J = 8.1, 1.7 Hz, 6H), 6.41 – 6.31 (m, 12H), 3.58 (s, 6H), 3.52 – 3.39 (m, 6H), 1.62 (m, 6H), 1.43 (m, 6H), 0.99 (t, J = 12.1 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 133.2, 131.7, 122.9, 115.3, 110.3, 43.2, 39.5, 26.3, 20.0, 13.8. HR-MS (ESI) m/z calculated for C₆₈H₆₈N₄O₄Na [M+Na]⁺ 1027.5138, found: 1027.5139.

3: ¹H NMR (400 MHz, CDCl₃) δ 6.59 (dd, J = 8.1, 1.7 Hz, 6H), 6.39 – 6.29 (m, 12H), 3.57 (s, 6H), 3.51 – 3.38 (m, 6H), 1.62 (m, 6H), 1.43 (m, 6H), 0.99 (t, J = 12.1 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 132.8, 131.1, 122.4, 115.0, 110.0, 42.9, 39.2, 26.2, 19.9, 13.8. HR-MS (ESI) m/z calculated for C₈₅H₈₆N₅O₅ [M+H]⁺ 1256.6629, found: 1256.6620.

4: ¹H NMR (400 MHz, CDCl₃) δ 6.57 (dd, J = 8.1, 1.7 Hz, 6H), 6.38 – 6.28 (m, 12H), 3.57 (s, 6H), 3.51 – 3.38 (m, 6H), 1.62 (m, 6H), 1.43 (m, 6H), 0.99 (t, J = 12.1 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 132.5, 129.9, 122.2, 114.9, 109.8, 42.7, 39.0, 26.2, 19.9, 13.8. HR-MS (ESI) m/z calculated for C₁₀₂H₁₀₃N₆O₆ [M+H]⁺ 1507.7939, found: 1507.7928.

3. Host-guest complexation

3.1 Host-guest interaction

 $_{6.56}^{6.54}$ $_{6.52}^{6.52}$ $_{6.52}^{6.50}$ $_{6.48}^{6.44}$ $_{6.44}^{6.44}$ $_{6.42}^{6.40}$ $_{6.38}^{6.36}$ $_{6.34}^{6.32}$ $_{6.30}^{6.28}$ $_{6.24}^{6.22}$ $_{6.22}^{6.20}$ $_{6.18}^{6.16}$ $_{6.14}^{6.12}$ $_{6.10}^{6.08}$ $_{6.06}^{6.06}$ Fig. S1 Partial ¹H NMR spectra (400 MHz, toluene- d_8 , 298 K) recorded for 2.0 mM 2

(b), 2.0 mM $\pmb{2}$ + 2.0 mM C_{60} (a), and 2.0 mM $\pmb{2}$ + 2.0 mM C_{70} (c).

Fig. S2 Partial ¹H NMR spectra (400 MHz, toluene- d_8 , 298 K) recorded for 2.0 mM **3** (b), 2.0 mM **3** + 2.0 mM C₆₀ (a), and 2.0 mM **3** + 2.0 mM C₇₀ (c).

Fig. S3 Partial ¹H NMR spectra (400 MHz, toluene- d_8 , 298 K) recorded for 2.0 mM 4 (b), 2.0 mM 4 + 2.0 mM C₆₀ (a), and 2.0 mM 4 + 2.0 mM C₇₀ (c).

3.2 Job plot

Fig. S4 (a) Fluorescence spectra of 1 and C₆₀ with different molar ratio when the total concentration of 1 and C₆₀ were fixed at 100 μ M in toluene. (b) Job plot for the determination of stoichiometry in the complex formed by 1 and C₆₀ from absorbance mesurement in toluene, [1] + [C₆₀] = 100 μ M.

Fig. S5 (a) Fluorescence spectra of 1 and C₇₀ with different molar ratio when the total concentration of 1 and C₇₀ were fixed at 100 μ M in toluene. (b) Job plot for the determination of stoichiometry in the complex formed by 1 and C₇₀ from absorbance mesurement in toluene, [1] + [C₇₀] = 100 μ M.

3.3 Competitive fluorescence titration

To further demonstrate that the decreased fluorescence intensity was due to the encapsulation of fullerenes within the cavity of calix[3]phenoxazine 1, we conducted competitive fluorescence titration experiments.

Fig. S6 Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of 1 (black line) and $1 \supset C_{60}$ ($2.0 \times 10^{-5} \text{ M}$) in the presence of 5 in toluene/chloroform (2/1, v/v), [5] from bottom to top was 0, 0.2, 0.4, 0.6, 0.8, and 1.0 equiv.

Fig. S7 Emission spectra ($\lambda_{ex} = 350 \text{ nm}$) of 1 (black line) and $1 \supset C_{70} (2.0 \times 10^{-5} \text{ M})$ in the presence of 5 in toluene/chloroform (2/1, v/v), [5] from bottom to top was 0, 0.2, 0.4, 0.6, 0.8, and 1.0 equiv.

4. Theoretical calculation

Geometries of molecules 1, C₆₀, C₇₀, $1 \supset$ C₆₀, and $1 \supset$ C₇₀ were optimized at B3LYP/6-31G(d) level of theory with Grimme's dispersion correction followed by frequency calculations to confirm the stationary points. The energy of molecules 1, C_{60} , C_{70} , $1 \supset C_{60}$, and $1 \supset C_{70}$ were optimized at M06-2X/def2-TZVP level of theory. The intermolecular interaction energy was corrected by basis set superposition error (BSSE).

Fig. S8 Top view (left) and side view (right) of optimized structure of **1** at the B3LYP/6-31G(d) level of theory.

Center	Atomic	Atomic	Coo	ordinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	7	0	-5.118746	-1.294693	0.024933
2	7	0	3.681238	-3.783356	0.024594
3	7	0	1.437557	5.080145	0.028488
4	8	0	-3.636087	-0.919363	-2.303554
5	8	0	2.613228	-2.685469	-2.302370
6	8	0	1.021971	3.610871	-2.301731
7	6	0	-4.859058	0.011272	-0.427739
8	6	0	-4.094234	0.176433	-1.597989
9	6	0	-3.798503	1.429078	-2.102766
10	1	0	-3.196163	1.483903	-3.003996
11	6	0	-4.263340	2.588501	-1.465714
12	6	0	-5.034043	2.435735	-0.316407
13	1	0	-5.405817	3.314548	0.203660
14	6	0	-5.325403	1.169513	0.202170
15	1	0	-5.915660	1.097943	1.107520
16	6	0	-4.270167	-2.320455	-0.428658
17	6	0	-3.518643	-2.101774	-1.598803
18	6	0	-2.662568	-3.062915	-2.103659
19	1	0	-2.105622	-2.824200	-3.004154
20	6	0	-2.520385	-4.304127	-1.466958
21	6	0	-3.271818	-4.536788	-0.318274
22	1	0	-3.181137	-5.486860	0.201459
23	6	0	-4.130265	-3.561614	0.200498
24	1	0	-4.683718	-3.779830	1.105611
25	6	0	-1.503207	-5.312337	-1.967944
26	1	0	-1.786906	-6.316014	-1.632680
27	1	0	-1.507081	-5.327778	-3.064652
28	6	0	-0.109290	-4.985109	-1.465758

Table S1. Atomic coordinates for the optimized structure of 1.

20	6	0	0 661227	4 001 401	2 101922
29	0	0	0.001527	-4.001401	-2.101625
30 21	I C	0	0.311094	-3.300100	-5.002151
31	6	0	1.894094	-3.631133	-1.59/29/
32	6	0	2.42043/	-4.211825	-0.42/905
33	6	0	1.651373	-5.195945	0.201328
34	1	0	2.009390	-5.671961	1.105985
35	6	0	0.409272	-5.577223	-0.317350
36	1	0	-0.165218	-6.339624	0.201979
37	6	0	4.144733	-2.535132	-0.428231
38	6	0	3.578923	-1.993009	-1.597736
39	6	0	3.983532	-0.771215	-2.102637
40	1	0	3.498270	-0.408170	-3.003065
41	6	0	4.988075	-0.028047	-1.466445
42	6	Ő	5.565479	-0.562711	-0.317978
43	1	Õ	6 343353	-0.009447	0 201441
44	6	Ő	5 149962	-1 793712	0.201773
11	1	0	5 615793	-2 16/369	1 105617
т <i>)</i> 46	6	0	5 252470	1 256507	1.105017
40	0	0	5 269656	1.330307	-1.90/99/
4/	1	0	5.508050	1.300770	-5.004/15
48	l	0	0.304/1/	1.612041	-1.032849
49	6	0	4.3/3940	2.400625	-1.465610
50	6	0	3.13/422	2.578221	-2.102435
51	1	0	2.883595	2.029567	-3.003883
52	6	0	2.200316	3.459835	-1.596601
53	6	0	2.439439	4.203578	-0.425472
54	6	0	3.675922	4.027983	0.204006
55	1	0	3.908952	4.573711	1.110097
56	6	0	4.627069	3.143492	-0.315671
57	1	0	5.573978	3.025401	0.204353
58	6	0	0.125053	4.857694	-0.425236
59	6	0	-0.060889	4.098852	-1.596222
60	6	0	-1.321078	3.838322	-2.101652
61	1	0	-1.392384	3.237962	-3.003075
62	6	Õ	-2.467323	4.335090	-1.464913
63	ő	Ő	-2 293613	5 100913	-0.315255
64	1	0	-3 161940	5 496871	0.204592
65	6	0	-1 019998	5 356082	0.201392
66	1	0	0 032207	5.043618	1 100071
67	6	0	2 848758	2 050120	1.107776
69	0	0	-3.0+0730	3.939129	-1.907300
60	1	0	-5.859208	3.970400	-3.004009
09	I C	0	-4.5/0139	4./0083/	-1.032039
/0	0	0	-5.930810	-1.501595	1.208955
/1	1	0	-6.360311	-2.509611	1.150039
12	l	0	-6./8//23	-0.814945	1.150847
73	6	0	-5.191841	-1.314310	2.538307
74	1	0	-4.338303	-2.002421	2.573818
75	1	0	-4.768551	-0.303015	2.575515
76	6	0	-6.099632	-1.545303	3.748924
77	1	0	-6.954051	-0.855206	3.700438
78	1	0	-6.524310	-2.558067	3.697889
79	6	0	-5.368590	-1.362776	5.080974
80	1	0	-4.529554	-2.063322	5.168129
81	1	0	-6.037243	-1.532714	5.931978
82	1	0	-4.962328	-0.348246	5.170594
83	6	0	4.270473	-4.389391	1.207562
84	1	0	5.355083	-4.251309	1.148473
85	1	0	4.101757	-5.469631	1.148041
86	6	0	3.735620	-3.839810	2.537641
		-	•		

87	1	0	2.647990	-3.977587	2.573492
88	1	0	3.906008	-2.756857	2.575391
89	6	0	4.387567	-4.513668	3.747609
90	1	0	4.217953	-5.598646	3.695657
91	1	0	5.476977	-4.374158	3.699200
92	6	0	3.860862	-3.976098	5.080164
93	1	0	4.047280	-2.899365	5.170961
94	1	0	4.340811	-4.472494	5.930711
95	1	0	2.779023	-4.132381	5.166995
96	6	0	1.666275	5.890236	1.213988
97	1	0	1.003476	6.759881	1.156628
98	1	0	2.685773	6.285548	1.156764
99	6	0	1.456925	5.148381	2.541812
100	1	0	0.434572	4.752465	2.576691
101	1	0	2.121484	4.276416	2.576720
102	6	0	1.710355	6.047233	3.754618
103	1	0	2.734842	6.443198	3.706958
104	1	0	1.044778	6.920889	3.705970
105	6	0	1.503813	5.319313	5.084860
106	1	0	0.477758	4.942428	5.171538
107	1	0	1.691188	5.981215	5.937478
108	1	0	2.179599	4.460197	5.171926

Fig. S9 Top view (left) and side view (right) of optimized structure of $1 \supset C_{60}$ at the B3LYP/6-31G(d) level of theory.

Table S2 . The intermolecular interaction energy of $1 \supset C_{60}$.			
	Energy		
1	-2363.990967 Hartree		
C_{60}	-2286.1813 Hartree		
1 ⊃C ₆₀	-4650.233469 Hartree		
BSSE	0.004009056 Hartree		
intermolecular interaction energy	-0.057192944 Hartree (-35.9 kcal/mol)		

The intermediation interaction an energy of $1 \supset C$

Table S3. Atomic coordinates for the optimized structure of $1 \supset C_{60}$.

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	7	Ζ
1	7	0	2.377031	5.048936	-1.820026	
2	7	0	-5.610327	-0.433123	-1.887276	
3	7	0	3.177762	-4.530479	-1.900245	
4	8	0	1.564953	3.408936	-3.906030	
5	8	0	-3.680400	-0.263542	-3.876924	
6	8	0	2.068292	-2.974237	-3.919275	
7	6	0	3.188557	3.967227	-2.198740	
8	6	0	2.744977	3.132994	-3.240877	
9	6	0	3.476038	2.036454	-3.657849	
10	1	0	3.073127	1.443463	-4.471597	
11	6	0	4.698866	1.714480	-3.050120	
12	6	0	5.150118	2.541046	-2.023093	
13	1	0	6.092446	2.319251	-1.529786	
14	6	0	4.410321	3.650116	-1.598429	
15	1	0	4.786938	4.254710	-0.782590	
16	6	0	1.014026	4.980577	-2.147400	
17	6	0	0.622488	4.131054	-3.199222	
18	6	0	-0.699674	4.007229	-3.583168	
19	1	0	-0.921659	3.346940	-4.414422	
20	6	0	-1.710097	4.716896	-2.918574	
21	6	0	-1.331968	5.552131	-1.867404	
22	1	0	-2.090721	6.111516	-1.327210	
23	6	0	0.006712	5.687595	-1.484981	
24	1	0	0.257505	6.334706	-0.653214	
25	6	0	-3.162910	4.580643	-3.340116	
26	1	0	-3.734932	5.410841	-2.912458	
27	l	0	-3.225813	4.690255	-4.431048	
28	6	0	-3.824765	3.2/3337	-2.940195	
29	6	0	-3.473213	2.069617	-3.569005	
30	l	0	-2.723949	2.035849	-4.352052	
31	6	0	-4.0/2/44	0.8/8/30	-3.206326	
32	6	0	-5.05/660	0.81/896	-2.203866	
33	6	0	-5.406465	2.01/218	-1.5/6241	
34 25	l	0	-0.140143	2.020070	-0.785020	
35 26	0	0	-4./9/823	3.223040	-1.944212	
30 27		0	-5.091400	4.133382	-1.432/90	
3/ 29	0	0	-4.800170	-1.3/4140	-2.2101/8	
38 20	0	0	-3.8/03/4	-1.400499	-3.214400	
39 40	0	0	-3.063960	-2.331900	-3.363403	
40	1	0	-2.555049	-2.303/11	-4.309207	
41	0	0	-3.237463	-3.780907	-2.975150	
42	0	0	-4.210/42	-3.908520	-1.980083	
43	6	0	5 000528	-4.803090	1 606128	
44	1	0	-5.741651	-2.822300	-1.000128	
46	6	0	-3.7 + 1031 -2.376825	-4.967752	-3 30/730	
40	1	0	-2.370823	-5.073346	-4 486769	
48	1	0	-2.432240	-5.883112	-7 974280	
40 40	6	0	-0.916431	-4 879002	-2.97+200	
50	6	0	-0.051215	-3 967941	-3 610332	
51	1	0	-0 390973	-3 316343	-4 407521	
52	6	0	1 276186	-3 877269	-3 236824	
53	6	0	1 820228	-4 687543	-2, 223445	
54	6	ŏ	0.958876	-5.597080	-1.603395	
~ .	~	·		2.27,000	1.00000000	

55	1	0	1.326357	-6.232011	-0.806177
56	6	0	-0.385723	-5.689951	-1.985318
57	1	0	-1.026332	-6.404176	-1.475442
58	6	0	3.795275	-3.320593	-2.255711
59	6	0	3.208184	-2.542048	-3.270113
60	6	0	3.748495	-1.334560	-3.668973
61	1	0	3.243237	-0.796065	-4.463191
62	6	0	4.908994	-0.831197	-3.063496
63	6	0	5.495312	-1.592635	-2.053944
64	1	0	6.392090	-1.229878	-1.559279
65	6	0	4.951639	-2.818534	-1.652427
66	1	0	5.428011	-3.370845	-0.851542
67	6	0	5.493880	0.500981	-3.499282
68	1	0	5.573205	0.512595	-4.594467
69	1	0	6.515379	0.583447	-3.113155
70	6	0	2.894474	6.091652	-0.944105
71	1	0	2.348748	7.013879	-1.173502
72	1	0	3.936746	6.268546	-1.234051
73	6	0	2.814974	5.793218	0.558817
74	1	Ō	1.766594	5.704271	0.858996
75	1	Ō	3.265402	4.815446	0.760549
76	6	Ō	3.503304	6.858620	1.413666
77	1	0	4.561158	6.935293	1.124159
78	1	Ő	3.058693	7.842693	1.207676
79	6	Ő	3.398873	6.547309	2.909187
80	1	Ő	2.350877	6.500825	3.228030
81	1	Ő	3.902901	7.307958	3.515278
82	1	Ő	3.850746	5.575350	3.139637
83	6	0	-6.793081	-0.531795	-1.043739
84	1	Ő	-7.318659	-1.452405	-1.321981
85	1	Ő	-7.457024	0.296995	-1.314739
86	6	Ő	-6.524268	-0.516334	0.466174
87	1	Ő	-5.958577	0.384609	0.726311
88	1	Ő	-5 875169	-1 358101	0 728390
89	6	Ő	-7 803723	-0 577525	1 301875
90	1	Ő	-8 448483	0 276804	1 051045
91	1	Ő	-8 374819	-1 478852	1 037382
92	6	Ő	-7 505982	-0 577244	2.803787
93	1	Ő	-6.891833	-1.442023	3 081434
94	1	Ő	-8 426112	-0.611972	3 397108
95	1	Ő	-6 949945	0 322303	3 093340
96	6	Õ	3.871824	-5.507339	-1.071802
97	1	Ő	4 927211	-5 492489	-1 367488
98	1	Ő	3 488601	-6 497775	-1 343260
99	6	Ő	3 751779	-5 297318	0 443151
100	1	0 0	4 095510	-4 289937	0 700825
101	1	ů 0	2 697363	-5 332161	0.735156
102	6	0	4 540486	-6 328427	1 251812
102	1	0	4 190793	-7 340359	1.002455
103	1	0	5 600607	-6 291845	0.962974
105	6	Ő	4 407176	-6 091685	2 758754
105	1	ů 0	4 776201	-5.096037	3 032447
107	1	0	4 972261	-6 831959	3 335466
108	1	0	3 358147	-6 146680	3 072872
109	6	0	3 069180	-1 698372	1 394514
110	6	0	2 280855	-1.070372	0.949101
111	6	0	3 483710	0 683670	1 881564
112	6	0	3 281250	0 409045	3 206020
114	0	0	5.201557	0.7070 7 J	5.270720

113	6	0	2.988960	-0.887303	3.723477
114	6	0	2.883427	-1.965726	2.752102
115	6	0	2.187358	-2.302798	0.409164
116	6	0	1.958391	-1.334541	-0.649035
117	6	0	2.694825	-0.124974	-0.317988
118	6	0	2.133898	1.119154	-0.594504
119	6	0	2.901537	1.985880	1.590319
120	6	Ō	2.577536	1.542247	3.879256
121	6	Ő	1.610039	1.332714	4.862823
122	6	Ő	1 304877	-0.018873	5 306172
123	6	Ő	1 979589	-1 105508	4 748718
123	6	Ő	1.250658	-2 319507	4 412374
125	6	0	1 808434	-2.850816	3 177860
125	6	0	0.966106	-3 432131	2 228781
120	6	0	1 1 5 9 9 5 7	-3.150167	0.815619
127	6	0	0 70/022	-1.251075	-1 252218
120	6	0	0.704722	2 1 2 8 1 2 0	0.827886
129	6	0	-0.308702	2.138139	-0.827880
121	0	0	-0.143344	-3.0/19/8	1 208056
121	0	0	-1.132/10	-3.290013	1.208030
132	0	0	-0.400132	-5.510547	2.4/3033
133	0	0	-0.999002	-3.008831	5.059141
134	0	0	-0.122928	-2.393839	4.040321
133	0	0	-0.825882	-1.262495	5.228445
130	0	0	-0.126999	-0.099121	5.551414
13/	6	0	2.342/45	2.51/1/9	2.824485
138	6	0	-2.200016	2.263858	3.603336
139	6	0	-1.1/03//	3.112150	3.194010
140	6	0	-0.9/2/32	3.38/200	1.//8932
141	6	0	-1.809393	2.801901	0.827755
142	6	0	-2.880815	1.914526	1.256036
143	6	0	-3.3/82/5	0.299835	3.058336
144	6	0	-2.691626	0.075159	4.320979
145	6	0	-1.962517	1.288693	4.65/414
146	6	0	-0.707172	1.202847	5.260169
147	6	0	0.366372	2.08/939	4.834543
148	6	0	0.139752	3.021725	3.823209
149	6	0	0.459841	3.458992	1.535096
150	6	0	0.991679	2.941190	0.356302
151	6	0	0.120564	2.339825	-0.639179
152	6	0	-1.252709	2.271432	-0.409556
153	6	0	-1.977548	1.055377	-0.743292
154	6	0	-2.981746	0.835117	0.284966
155	6	0	-3.266704	-0.459766	0.712284
156	6	0	-3.470496	-0.733126	2.126372
157	6	0	-2.135396	-1.173950	4.600765
158	6	0	-2.242168	-2.253359	3.630731
159	6	0	-2.897896	-2.038186	2.417893
160	6	0	-2.343706	-2.570734	1.180761
161	6	0	-2.575281	-1.594862	0.126779
162	6	0	-1.610414	-1.383941	-0.857913
163	6	0	-1.305753	-0.031473	-1.301602
164	6	0	0.126103	0.048323	-1.551098
165	6	0	0.825878	1.210069	-1.225833
166	6	0	1.148033	3.240015	2.797159
167	6	0	2.236187	2.192155	0.382057
168	6	0	-3.074238	1.653231	2.613493

S13

Fig. S10 Top view (left) and side view (right) of optimized structure of $1 \supset C_{70}$ at the B3LYP/6-31G(d) level of theory.

Table S4. The intermolecular interaction energy of 1 \Box C ₇₀ .			
	Energy		
1	-2363.990967 Hartree		
C_{70}	-2667.307754 Hartree		
1 ⊃C ₇₀	-5031.362582 Hartree		
BSSE	0.003985775 Hartree		
intermolecular interaction energy	-0.059875225 Hartree (-37.6 kcal/mol)		

Table S4. The intermolecular interaction energy of $1 \supset C_{70}$.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	У	7	Ζ
1	7	0	-5.432383	-2.675924	-1.035177	
2	7	0	3.543709	-1.506924	-4.510014	
3	7	0	-1.013129	5.943515	-0.523705	
4	8	0	-4.676341	-1.077853	-3.174378	
5	8	0	1.235073	-0.318237	-5.493329	
6	8	0	-1.787731	4.636997	-2.851479	
7	6	0	-5.609424	-1.285010	-0.949348	
8	6	0	-5.198716	-0.492811	-2.036259	
9	6	0	-5.313878	0.884758	-2.020066	
10	1	0	-4.979796	1.425413	-2.898656	
11	6	0	-5.856768	1.550604	-0.909699	
12	6	0	-6.271030	0.772488	0.168833	
13	1	0	-6.692769	1.252891	1.047375	
14	6	0	-6.148837	-0.622602	0.156441	
15	1	0	-6.465349	-1.186829	1.025269	
16	6	0	-4.464727	-3.148241	-1.936486	
17	6	0	-4.088098	-2.317394	-3.006894	
18	6	0	-3.137022	-2.704181	-3.931461	
19	1	0	-2.903715	-2.010115	-4.731190	

Table S5. Atomic coordinates for the optimized structure of $1 \supset C7_0$.

20	6	0	-2 499118	-3 949579	-3 829929
21	6	Ő	-2.864225	-4 779169	-2 771801
21	1	0	2.804223	5 748840	2 650568
22	1	0	-2.30/192	-3.740040	-2.039308
23	0	0	-5.629/15	-4.309390	-1.650075
24	l	0	-4.072329	-3.0380/4	-1.019023
25	6	0	-1.448170	-4.369420	-4.842773
26	l	0	-1.264573	-5.443778	-4.736309
27	l	0	-1.851967	-4.222741	-5.853543
28	6	0	-0.123784	-3.632939	-4.735278
29	6	0	-0.010216	-2.296510	-5.145224
30	1	0	-0.856966	-1.751884	-5.548159
31	6	0	1.196185	-1.627946	-5.055881
32	6	0	2.358348	-2.255105	-4.567933
33	6	0	2.244763	-3.586631	-4.158321
34	1	0	3.106949	-4.103463	-3.754427
35	6	0	1.020701	-4.258933	-4.241693
36	1	0	0.966595	-5.292439	-3.910926
37	6	0	3.428511	-0.107881	-4.488193
38	6	Õ	2 241539	0 472315	-4 971093
39	6	Ő	2.046901	1 840700	-4 970931
40	1	0	1 108675	2 21/1887	-5 365508
40 41	6	0	2.025806	2.214007	-5.505500
41	0	0	1 216766	2.707369	-4.402339
42	0	0	4.210/00	2.141525	-4.000130
43	l C	0	5.002180	2.783933	-3.01/8/0
44	6	0	4.41498/	0./56155	-4.004/62
45	I	0	5.339/43	0.355234	-3.608299
46	6	0	2.814537	4.209914	-4.4/05/9
47	1	0	2.461875	4.526149	-5.461254
48	1	0	3.775982	4.708831	-4.309150
49	6	0	1.827431	4.689152	-3.420989
50	6	0	0.451571	4.470528	-3.581808
51	1	0	0.054850	3.968860	-4.457604
52	6	0	-0.449024	4.889034	-2.621379
53	6	0	-0.035254	5.559147	-1.455713
54	6	0	1.335925	5.778194	-1.296533
55	1	0	1.706342	6.270740	-0.405785
56	6	0	2.248201	5.346975	-2.266602
57	1	0	3.307639	5.527243	-2.106660
58	6	0	-2.242428	5.265315	-0.555917
59	6	Ō	-2.604602	4.594143	-1.738246
60	6	Ő	-3 793035	3 896490	-1 847218
61	1	Ő	-4 004660	3 414010	-2 795075
62	6	Ő	-4 693936	3 833178	-0 773296
63	6	0	-4.347053	1 A0006A	0.300318
6 <u>7</u>	0	0	5 017200	1 460412	1 253015
65	1	0	-3.01/290	5 202155	0.513400
65	0	0	-3.140307	5.202133	1 450005
00	l	0	-2.899330	3.0880/3	1.430993
0/	0	0	-5.99/988	3.004109	-0.8989/3
68	1	0	-6.505168	3.377088	-1.821613
69	l	0	-6.65/320	3.349653	-0.0/2488
70	6	0	-6.033/19	-3.568988	-0.054226
71	1	0	-6.188907	-4.536102	-0.545843
72	1	0	-7.030457	-3.177145	0.178299
73	6	0	-5.228764	-3.759249	1.237382
74	1	0	-4.221892	-4.111120	0.989525
75	1	0	-5.090288	-2.789301	1.725682
76	6	0	-5.883996	-4.734334	2.216516
77	1	0	-6.896633	-4.385342	2.463965

78	1	0	-6.008142	-5.714058	1.733597
79	6	0	-5.063558	-4.890528	3.500071
80	1	0	-4.053155	-5.254043	3.278444
81	1	0	-5.532144	-5.596092	4.194647
82	1	0	-4.956285	-3.929006	4.015862
83	6	0	4.834512	-2.148009	-4.299068
84	1	0	5.589143	-1.525774	-4.794209
85	1	0	4.818924	-3.102855	-4.836861
86	6	0	5.224785	-2.375368	-2.833671
87	1	0	4.506751	-3.054933	-2.365531
88	1	0	5.141100	-1.432047	-2.283724
89	6	0	6.639219	-2.936875	-2.676656
90	1	0	6.722059	-3.885884	-3.225383
91	1	0	7.360354	-2.251036	-3.144012
92	6	0	7.014585	-3.155445	-1.208250
93	1	0	6.966136	-2.215096	-0.646993
94	1	0	8.028669	-3.557706	-1.108894
95	1	0	6.323644	-3.856290	-0.725413
96	6	0	-0.688025	6.861252	0.560021
97	1	0	-1.606224	7.400599	0.819455
98	1	0	0.005014	7.607927	0.155597
99	6	0	-0.085877	6.216348	1.815194
100	1	0	-0.794709	5.493253	2.230849
101	1	0	0.799783	5.635507	1.537172
102	6	0	0.291293	7.237170	2.889818
103	1	0	1.003008	7.964719	2.474173
104	1	0	-0.598270	7.812964	3.182289
105	6	0	0.901542	6.565018	4.123098
106	1	0	0.199936	5.849419	4.567732
107	1	0	1.169158	7.298332	4.891552
108	1	0	1.807755	6.008011	3.856843
109	6	0	3.728176	-2.308096	0.372451
110	6	0	3.880032	-3.007466	1.633747
111	6	0	2.884664	-3.875927	2.062399
112	6	0	1.703111	-4.081390	1.244474
113	6	0	1.573187	-3.481047	-0.036534
114	6	Ō	2.623048	-2.555423	-0.483856
115	6	Ō	2.269507	-1.505010	-1.369593
116	6	Ō	2.807992	-0.185120	-1.216020
117	6	0	3.715096	0.122252	-0.167687
118	6	0	4.268140	-0.985771	0.528583
119	6	0	4.752029	-0.859579	1.891121
120	6	0	4.526109	-2.116750	2.579306
121	6	0	4.143755	-2.123340	3.922465
122	6	0	3.101592	-3.031917	4.371675
123	6	0	2.489200	-3.892332	3.457652
124	6	Ő	1.051973	-4.086213	3.487250
125	6	Õ	0.574162	-4.211674	2.122410
126	6	Ő	-0.710783	-3.742360	1.739762
127	6	Ő	-0 878694	-3 410115	0 367861
128	6	Ő	0.248878	-3.282718	-0.512091
129	6	Ő	-0.061942	-2.258682	-1.494944
130	6	Ő	-1.394743	-1.754293	-1.228596
131	6	Ő	-1.889797	-2.462526	-0.065084
132	ő	ő	-2.652230	-1.792658	0.879739
133	6	Ő	-2.440914	-2.047514	2 292291
134	6	Ő	-1 525767	-3 035482	2 740731
135	6	0	-0 997004	-2.853132	4 046538
100	0	0	0.777004	2.000102	

136	6	0	0.281142	-3.421437	4.431573
137	6	0	0.911928	-2.531754	5.388016
138	6	0	0.018738	-1.403379	5.569220
139	6	0	-1.159514	-1.610307	4.748297
140	6	0	-1.856890	-0.519387	4.164034
141	6	0	-2.612939	-0.808719	2.996281
142	6	0	-2.930966	0.217943	2.019202
143	6	0	-2.971818	-0.392513	0.704516
144	6	0	-2.494054	0.297603	-0.411439
145	6	0	-1.685889	-0.399859	-1.399406
146	6	0	-0.645181	0.510246	-1.851903
147	6	0	-0.807352	1.765549	-1.137834
148	6	0	-1.952095	1.635581	-0.250130
149	6	0	-1.916095	2.217626	1.017962
150	6	0	-0.736581	2.937041	1.449535
151	6	0	0.353112	3.063909	0.603043
152	6	0	0.319703	2.473220	-0.718369
153	6	0	1.650902	1.966465	-0.988573
154	6	0	1.802352	0.762208	-1.658235
155	6	0	0.638041	0.021960	-2.104829
156	6	0	0.931211	-1.385666	-1.913980
157	6	0	2.498785	2.264715	0.153760
158	6	0	1.698160	2.945843	1.132499
159	6	0	1.934454	2.786133	2.524877
160	6	0	3.152975	2.151718	2.886730
161	6	0	3.950663	1.464097	1.910244
162	6	0	3.552436	1.396893	0.547593
163	6	0	4.594849	0.342391	2.568731
164	6	0	4.205133	0.341432	3.966011
165	6	0	3.299294	1.458599	4.153289
166	6	0	2.207559	1.333097	5.002051
167	6	0	1.971940	0.084709	5.702005
168	6	0	2.836812	-0.996647	5.520676
169	6	0	3.979748	-0.865292	4.632052
170	6	0	2.294215	-2.335544	5.359790
171	6	0	0.536841	-0.124361	5.723119
172	6	0	-0.102917	0.996953	5.060803
173	6	0	-1.308547	0.835321	4.326547
174	6	0	-1.559477	1.794692	3.309069
175	6	0	-0.527247	2.687559	2.862788
176	6	0	0.777409	2.651982	3.424118
177	6	0	0.926468	1.895139	4.616982
178	6	0	-2.414972	1.496936	2.173012

Fig. S11 The molecular surface electrostatic potential of 1 (left), $1 \supset C_{60}$ (middle), and $1 \supset C_{70}$ (right).

According to the structure of calix[4]phenothiazine,^[S2] geometry of molecule **2** was optimized at B3LYP/6-31G(d) level of theory with Grimme's dispersion correction followed by frequency calculations to confirm the stationary points.

Fig. S12 Top view (left) and side view (right) of optimized structure of 2 at the B3LYP/6-31G(d) level of theory.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	7	Ζ
1	6	0	-2.943042	4.688557	-1.339532	
2	6	0	-1.699694	4.678983	-1.984617	
3	6	0	-0.541308	5.015360	-1.304427	
4	6	0	-0.559862	5.355815	0.059664	
5	6	0	-1.802084	5.344176	0.705958	
6	6	0	-2.972449	5.026036	0.013130	
7	7	0	0.649732	5.694696	0.689939	
8	6	0	1.848981	5.338525	0.050555	
9	6	0	1.815918	5.004729	-1.314750	
10	8	0	0.634702	5.027057	-2.029626	
11	6	0	2.967718	4.669813	-2.008381	
12	6	0	4.215276	4.665520	-1.372810	
13	6	0	4.257443	4.985951	-0.016134	
14	6	0	3.096326	5.310155	0.688118	
15	6	0	0.657444	6.082957	2.090972	
16	1	0	-1.615310	4.417593	-3.035264	
17	1	0	-1.868032	5.577972	1.761425	
18	1	0	-3.917647	5.020468	0.547232	
19	1	0	2.874457	4.420855	-3.061200	
20	1	0	5.207292	4.966771	0.510927	
21	1	0	3.171932	5.538458	1.744117	
22	6	0	-4.215243	-4.665385	1.373075	
23	6	0	-2.967684	-4.669634	2.008647	
24	6	0	-1.815902	-5.004724	1.315068	
25	6	0	-1.848965	-5.338625	-0.050210	
26	6	0	-3.096317	-5.310334	-0.687766	
27	6	0	-4.257429	-4.986042	0.016452	
28	7	0	-0.649705	-5.694807	-0.689572	
29	6	0	0.559878	-5.355774	-0.059349	
30	6	0	0.541323	-5.015258	1.304727	

Table S6. Atomic coordinates for the optimized structure of 2.

31	8	0	-0.634680	-5.026962	2.029936
32	6	0	1.699695	-4.678745	1.984878
33	6	0	2.943041	-4.688318	1.339787
34	6	0	2.972456	-5.025901	-0.012849
35	6	0	1.802096	-5.344111	-0.705655
36	6	0	-0.657414	-6.083219	-2.090563
37	1	0	-2.874414	-4.420542	3.061433
38	1	0	-3.171934	-5.538810	-1.743727
39	1	0	-5.207292	-4.966976	-0.510588
40	1	0	1.615314	-4.417303	3.035511
41	1	0	3.917642	-5.020263	-0.546971
42	1	0	1.868046	-5.577946	-1.761114
43	1	0	-1.535924	-6.714417	-2.258945
44	1	0	0.210459	-6.727355	-2.264699
45	6	0	6.099960	2.980722	-1.673163
46	6	0	5.306376	1.897151	-1.268721
47	6	0	5.883921	0.691737	-0.912704
48	6	0	7.279174	0.503087	-0.936412
49	6	0	8.067780	1.595948	-1.309777
50	6	0	7.482130	2.811901	-1.676979
51	7	0	7.797438	-0.759261	-0.603406
52	6	0	6.965074	-1.660767	0.078388
53	6	0	5.576251	-1.420082	0.098257
54	8	0	5.030952	-0.334854	-0.558269
55	6	0	4.700187	-2.275252	0.740399
56	6	0	5.166508	-3.434637	1.380547
57	6	0	6.534663	-3.687084	1.355008
58	6	0	7.426261	-2.809380	0.727897
59	6	0	9.225306	-1.011184	-0.698953
60	1	0	4.225708	1.981403	-1.226384
61	1	0	9.147719	1.512772	-1.312931
62	1	0	8.125536	3.637880	-1.968942
63	1	0	3.641021	-2.041261	0.712498
64	1	0	6.927509	-4.576777	1.840035
65	1	0	8.485187	-3.035900	0.748950
66	1	0	9.366588	-2.082322	-0.876873
67	6	0	-6.099962	-2.980580	1.673151
68	6	0	-5.306390	-1.896983	1.268740
69	6	0	-5.883965	-0.691639	0.912522
70	6	0	-7.279231	-0.503057	0.936099
71	6	0	-8.067817	-1.595935	1.309449
72	6	0	-7.482142	-2.811856	1.676736
73	7	0	-7.797530	0.759263	0.603049
74	6	0	-6.965144	1.660824	-0.078644
75	6	0	-5.576310	1.420200	-0.098407
76	8	0	-5.031014	0.335003	0.558179
77	6	0	-4.700229	2.275418	-0.740474
78	6	0	-5.166531	3.434876	-1.380505
79	6	0	-6.534708	3.687219	-1.355136
80	6	0	-7.426327	2.809431	-0.728172
81	6	0	-9.225426	1.011086	0.698407
82	1	0	-4.225710	-1.981166	1.226577
83	1	0	-9.147761	-1.512820	1.312476
84	1	0	-8.125536	-3.637833	1.968731
85	1	0	-3.641056	2.041470	-0.712483
86	1	0	-6.927548	4.576924	-1.840147
87	1	0	-8.485259	3.035915	-0.749285
88	1	0	-9.595315	0.506579	1.596899

89	6	0	-4.208075	4.356778	-2.105943
90	6	0	5.468538	4.284579	-2.129025
91	6	0	4.208067	-4.356416	2.106157
92	6	0	-5.468498	-4.284333	2.129252
93	1	0	9.595104	-0.506760	-1.597527
94	1	0	-9.366803	2.082205	0.876372
95	1	0	-4.741186	5.283160	-2.360376
96	1	0	-3.923275	3.906034	-3.066657
97	1	0	5.226829	4.215474	-3.198521
98	1	0	6.216150	5.083437	-2.041558
99	1	0	3.923259	-3.905508	3.066791
100	1	0	4.741185	-5.282750	2.360746
101	1	0	-6.216084	-5.083233	2.041951
102	1	0	-5.226765	-4.215022	3.198729
103	6	Ő	0.651710	4 902980	3 072160
104	6	0	-0.651682	-4.903352	-3.071885
105	6	õ	10 028723	-0 565852	0 530475
106	6	Ő	-10.028641	0.565772	-0 531159
107	6	Ő	0.652636	4 191040	5 519642
108	1	Ő	-0 236172	3 564143	5 381167
109	1	Ő	1 532635	3 552613	5 377318
110	6	Ő	-0.652694	-4 191698	-5 519452
111	1	Ő	-1 532709	-3 553287	-5 377163
112	1	Ő	0 236098	-3 564756	-5 381085
112	6	0	-12 336411	0 414073	-1 604340
114	1	0	-12 231206	-0.663326	-1 779025
115	1	Ő	-11 996100	0.930443	-2 509824
116	6	Ő	12 336662	-0.414197	1 603302
117	1	õ	12.330002	0.663224	1 777906
118	1	0	11 996450	-0.930466	2 508880
119	6	Ő	0.658072	5 360736	4 532785
120	1	Ő	0.657189	4 542273	6 557328
120	1	Ő	1 540830	5 990764	4 713169
121	1	Ő	-0 215674	6 002027	4 717081
122	1	Ő	-0 229917	4 279118	2 879243
123	1	Ő	1 523884	4 267058	2.875330
125	1	Ő	1.525054	6 714139	2 259421
125	1	Ő	-0 210434	6 727072	2 265178
120	6	Ő	11 524778	-0.854174	0 382942
127	1	Ő	9 868459	0.507020	0.695521
129	1	Ő	9 635425	-1 073341	1 420199
130	1	Ő	11.906243	-0.347655	-0.515116
131	1	Ő	11.672763	-1.929827	0.210740
132	1	Ő	13.402854	-0.630495	1.474591
133	6	0 0	-0.658050	-5.361279	-4.532456
134	1	Ő	-1 523856	-4 267406	-2.875129
135	1	Ő	0 229943	-4 279463	-2 879047
136	1	Ő	0.225573	-6.002543	-4 716694
137	1	Ő	-1 540777	-5 991376	-4 712751
138	6	õ	-11.524733	0.853995	-0.383824
139	1	Ő	-13 402634	0.630292	-1 475766
140	1	0	-11 672805	1 929625	-0.211555
141	1	Ő	-11 906302	0 347381	0 514137
142	1	0	-9 635748	1 073332	-1 420800
143	1	0	-9 868789	-0 507081	-0 696747
144	1	Ô	-0 657278	-4 543050	-6 557097
	1	~	0.007270		0.007097

5. Characterization data and spectra

Fig. S14 The ¹³C NMR (100 MHz, 298 K) spectrum of compound 2 in CDCl₃.

Fig. S17 The ¹³C NMR (100 MHz, 298 K) spectrum of compound 3 in CDCl₃.

Fig. S18 HRMS spectrum of 3.

Fig. S20 The ¹³C NMR (100 MHz, 298 K) spectrum of compound 4 in CDCl₃.

Fig. S21 HRMS spectrum of 4.

6. Reference

[S1] L. Mao, F. Li, L. Huang, X. Qu, K. Wang, Y. Zhang and D. Ma, Org. Lett., 2023, 25, 5597–5601.

[S2] L. Mao, M. Zhou, T. Wu, D. Ma, G. Dai and X. Shi, Org. Lett., 2024, 26, 7244–7248.