Supplementary information

The study of photochemical behavior of 5-aryl-2,3-dihydropyrazine 1,4-dioxides

Nadezhda A. Bakuleva, Boris V. Lichitsky, Andrey N. Komogortsev* and Evgeny V. Tretyakov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation

Corresponding author: e-mail: <u>dna5@mail.ru</u> (A.N. Komogortsev)

Table of contents

1. General information.	3
2. Starting compounds	4
3. Experimental procedure for the synthesis of 1-(4-methoxyphenyl)-5,5,6,6-tetramethyl-3,8-dioxa 4,7-diazatricyclo[5.1.0.02,4]octane 9a.	ι- 5
4. Experimental procedure for the synthesis of 1-(4-nitrophenyl)-5,5,6,6-tetramethyl-3,8-dioxa-4,7 diazatricyclo[5.1.0.02,4]octane 9b.	'- 10
5. Experimental procedure for the synthesis of 6-(4-methoxyphenyl)-2,2,3,3-tetramethyl-7-oxa-1,4 diazabicyclo[4.1.0]heptan-5-one 5a	- 11
6. General experimental procedure for the synthesis of 5-aryl-2,2,3,3-tetramethyl-7-oxa-1,4- diazabicyclo[4.1.0]hept-4-ene 4-oxides 6	12
7. General experimental procedure for the synthesis of target 6-aryl-2,2,3,3-tetramethyl-5-oxo- 2,3,4,5-tetrahydropyrazine 1-oxides 7	.14
8. Synthesis of 6-(4-bromophenyl)-2,2,3,3-tetramethyl-5-oxo-2,3,4,5-tetrahydropyrazine 1-oxide 7 from 6b.	b 16
9. General experimental procedure for the synthesis of 6-aryl-2,2,3,3-tetramethyl-2,3- dihydropyrazine 1-oxides 8	.17
10. Experimental procedure for the synthesis of 6-(4-methoxyphenyl)-2,2,3,3-tetramethyl-7-oxa-1, diazabicyclo[4.1.0]heptan-5-one 5a	, 4- 21
11. Copies of ¹ H, ¹³ C NMR and HRMS for compound 9a.	22
12. Copies of ¹ H, ¹³ C NMR and HRMS for amides 5.	24
13. Copies of ¹ H, ¹³ C NMR and HRMS for 1-(4-nitrophenyl)-5,5,6,6-tetramethyl-3,8-dioxa-4,7- diazatricyclo[5.1.0.02,4]octane 9b	.48
14. Copies of ¹ H, ¹³ C NMR and HRMS for monooxaziridines 6	50
15. Copies of ¹ H, ¹³ C NMR and HRMS for monoamides 7	60
16. Copies of ¹ H, ¹³ C NMR and HRMS for imines 8.	68
17. X-ray crystallographic data, refinement details and computational methods	94

1. General information.

Unless otherwise stated, all starting chemicals were commercially available and were used as received. NMR spectra were recorded with Bruker AM 300 (300 MHz) spectrometers in DMSO-d6. Chemical shifts (ppm) are given relative to solvent signals (DMSO-d6: 2.50 ppm [¹H NMR] and 39.52 ppm [¹³C NMR]). High-resolution mass spectra (HRMS) were obtained on a Bruker micrOTOF II instrument using electrospray ionization (ESI). The melting points were determined on a Kofler hot stage. Photochemical reactions were performed in common glassware. Irradiation was carried out with a Vilber Lourmat VL-6.LM lamp (365 nm, 6 W) and with a strip of 24 W 450 nm LED at room temperature in air atmosphere.

2. Starting compounds.

All starting compounds were prepared by the known literature method¹

¹ N. A. Bakuleva, B. V. Lichitsky, D. V. Tsyganov, A. N. Komogortsev, V. G. Melekhina and E. V. Tretyakov, Synthesis of substituted 5-aryl-2,3-dihydropyrazine1,4-dioxides based on condensation of N,N'-(2,3-dimethylbutane-2,3-diyl)bis(hydroxylamine) with various arylglyoxals, *J. Heterocyclic Chem.*, 2024, **61**, 1057–1065.

3. Experimental procedure for the synthesis of 1-(4-methoxyphenyl)-5,5,6,6-tetramethyl-3,8-dioxa-4,7-diazatricyclo[5.1.0.02,4]octane 9a.

A solution of compound **4a** (1 mmol, 0.28 g) in acetonitrile (5 ml) was irradiated with a Vilber Lourmat VL-6.LM lamp (365 nm, 6 W) for 24 hours at room temperature in common laboratory glassware. The resulting mixture was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

1-(4-methoxyphenyl)-5,5,6,6-tetramethyl-3,8-dioxa-4,7-diazatricyclo[5.1.0.02,4]octane **9a**, mixture of diastereomers (1:5)

Yellow oil; yield 89% (0.25 g);

¹H NMR (300 MHz, DMSO-*d*₆) δ 7.53 (d, *J* = 8.6 Hz, 1.66H), 7.45 (d, *J* = 8.6 Hz, 0.34H), 7.02 (d, *J* = 8.6 Hz, 2H), 5.32 (s, 0.17H), 5.24 (s, 0.83H), 3.78 (s, 3H), 1.35 – 1.12 (m, 12H). ¹³C NMR (76 MHz, DMSO-*d*₆) δ 160.51, 160.31, 128.34, 128.09, 127.67, 114.20, 75.28, 72.65, 72.07, 60.19, 59.15, 58.88, 57.93, 55.34, 26.33, 26.24, 26.13, 24.82, 24.61, 24.50, 23.31, 23.29. 4. General experimental procedure for the synthesis of 6-aryl-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-ones 5.

A solution of compound **4** (1 mmol) in DMSO (5 ml) was irradiated with a Vilber Lourmat VL-6.LM lamp (365 nm, 6 W) for 48 hours at room temperature in common laboratory glassware. The reaction mixture was diluted with water (50 ml) and extracted with diethyl ether (3x20 ml). The ether solution was separated and washed with water (3x30 ml). Then, the solvent was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

6-(4-methoxyphenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5a

Yellow powder; yield 71% (0.20 g); mp 168-170 °C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.34 (s, 1H), 7.32 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H), 1.33 (s, 3H), 1.27 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.41, 159.66, 128.81, 126.05, 113.19, 75.08, 61.37, 55.67, 55.17, 27.55, 27.31, 21.98, 21.95.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₅H₂₁N₂O₃: 277.1547; Found: 277.1548.

6-(4-bromophenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one **5b**

Yellow powder; yield 67% (0.22 g); mp 236-238 °C.

¹H NMR (300 MHz, DMSO- d_6) δ 8.46 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 1.35 (s, 3H), 1.29 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 163.84, 133.55, 130.80, 129.52, 122.31, 75.15, 61.55, 55.70, 27.88, 27.33, 22.06, 21.64.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₄H₁₈BrN₂O₂: 325.0546; Found: 325.0546

6-(4-chlorophenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5c

Yellow powder; yield 73% (0.21 g); mp 206-208°C.

¹H NMR (300 MHz, DMSO- d_6) δ 8.46 (s, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 1.35 (s, 3H), 1.30 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 163.88, 133.66, 133.13, 129.25, 127.89, 75.07, 61.55, 55.71, 27.88, 27.33, 22.06, 21.65.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₈ClN₂O₂: 281.1051; Found: 281.1057

2,2,3,3-tetramethyl-6-(p-tolyl)-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5d

Yellow powder; yield 54% (0.14 g); mp 187-189°C.

¹H NMR (300 MHz, DMSO- d_6) δ 8.35 (s, 1H), 7.26 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 2.31 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H), 1.22 (s, 3H), 1.14 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.39, 138.28, 131.28, 128.30, 127.21, 75.45, 61.40, 55.68, 27.69, 27.34, 22.04, 21.87, 20.87.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₅H₂₁N₂O₂: 261.1598; Found: 261.1608

2,2,3,3-tetramethyl-6-phenyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5e

Yellow powder; yield 51% (0.13 g); mp 184-186°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.39 (s, 1H), 7.40 – 7.33 (m, 5H), 1.35 (s, 3H), 1.29 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.30, 134.23, 128.85, 127.77, 127.21, 75.60, 61.45, 55.69, 27.81, 27.36, 22.07, 21.78.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₉N₂O₂: 247.1441; Found: 247.1445

6-(4-fluorophenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5f

Yellow powder; yield 58% (0.15 g); mp 176-178°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.43 (s, 1H), 7.48 – 7.39 (m, 2H), 7.26 – 7.16 (m, 2H), 1.35 (s, 3H), 1.29 (s, 3H), 1.23 (s, 3H), 1.14 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.07, 162.33 (d, J = 245.4 Hz), 130.42 (d, J = 3.0 Hz), 129.65 (d, J = 8.7 Hz), 114.75 (d, J = 21.8 Hz), 75.03, 61.51, 55.71, 27.84, 27.34, 22.07, 21.72. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₄H₁₉FN₂O₂: 265.1347; Found: 265.1358

6-([1,1'-biphenyl]-4-yl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5g

Yellow powder; yield 65% (0.21 g); mp 179-181°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.44 (s, 1H), 7.72 – 7.62 (m, 4H), 7.51 – 7.37 (m, 5H), 1.37 (s, 3H), 1.31 (s, 3H), 1.26 (s, 3H), 1.16 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.22, 140.76, 139.70, 133.28, 128.99, 127.88, 127.70, 126.79, 126.13, 75.38, 61.48, 55.69, 27.78, 27.35, 22.05, 21.79.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₂₀H₂₃N₂O₂: 323.1754; Found: 323.1749

6-(3-methoxyphenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one **5h**

Yellow powder; yield 47% (0.13 g); mp 137-139°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.38 (s, 1H), 7.34 – 7.24 (m, 1H), 6.98 – 6.89 (m, 2H), 6.88 – 6.83 (m, 1H), 3.75 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H), 1.23 (s, 3H), 1.14 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.16, 158.76, 135.72, 129.02, 119.50, 114.35, 112.70, 75.51, 61.46, 55.67, 55.16, 27.77, 27.34, 22.06, 21.76.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₅H₂₁N₂O₃: 277.1547; Found: 277.1552

6-(3,4-dimethoxyphenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5i

Yellow powder; yield 52% (0.16 g); mp 162-164°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.33 (s, 1H), 6.99 – 6.91 (m, 2H), 6.89 (s, 1H), 3.75 (s, 3H), 3.73 (s, 3H), 1.32 (s, 3H), 1.27 (s, 3H), 1.23 (s, 3H), 1.14 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.41, 149.39, 148.18, 126.40, 120.25, 111.14, 110.76, 75.28, 61.49, 55.75, 55.64, 55.57, 27.55, 27.34, 22.03. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₆H₂₃N₂O₄: 307.1652; Found: 307.1656

6-(2,5-dimethylphenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5j

Yellow powder; yield 44% (0.12 g); mp 119-121°C. ¹H NMR (300 MHz, DMSO- d_6) δ 8.31 (s, 1H), 7.11 – 7.00 (m, 2H), 6.96 (s, 1H), 2.25 (s, 3H), 2.19 (s, 3H), 1.41 (s, 3H), 1.33 (s, 3H), 1.28 (s, 3H), 1.13 (s, 3H). ¹³C NMR (76 MHz, DMSO- d_6) δ 164.26, 133.99, 133.30, 133.18, 129.58, 128.99, 127.38, 76.79, 61.20, 55.36, 28.93, 27.41, 22.61, 21.88, 20.46, 18.58. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₆H₂₃N₂O₂: 275.1754; Found: 275.1760

6-(4-fluoro-3-methoxyphenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5k

Yellow powder; yield 69% (0.20 g); mp 146-148°C. ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.40 (s, 1H), 7.27 – 7.10 (m, 3H), 3.85 (s, 3H), 1.33 (s, 3H), 1.28 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H).

¹³C NMR (76 MHz, DMSO- d_6) δ 163.92, 150.71 (d, J = 243.6 Hz), 147.66 (d, J = 10.4 Hz), 126.68 (d, J = 6.5 Hz), 124.03 (d, J = 3.5 Hz), 115.10 (d, J = 19.7 Hz), 113.16 (d, J = 2.0 Hz), 74.50, 61.49, 56.07, 55.67, 27.68, 27.29, 22.01, 21.76.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₅H₂₀FN₂O₃: 295.1452; Found: 295.1453

6-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one **5**l

White powder; yield 59% (0.18 g); mp 159-161°C

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.34 (s, 1H), 6.83 (s, 3H), 4.23 (s, 4H), 1.31 (s, 3H), 1.25 (s, 3H), 1.20 (s, 3H), 1.12 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 164.27, 144.00, 142.72, 127.00, 120.35, 116.49, 116.36, 74.91, 64.20, 64.09, 61.45, 55.72, 27.56, 27.34, 22.00, 21.96.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₆H₂₁N₂O₄: 305.1496; Found: 305.1500

4. Experimental procedure for the synthesis of 1-(4-nitrophenyl)-5,5,6,6-tetramethyl-3,8-dioxa-4,7-diazatricyclo[5.1.0.02,4]octane 9b.

A solution of compound **4m** (1 mmol, 0.29 g) in DMSO (5 ml) was irradiated with a Vilber Lourmat VL-6.LM lamp (365 nm, 6 W) for 48 hours at room temperature in common laboratory glassware. The reaction mixture was diluted with water (50 ml) and extracted with diethyl ether (3x20 ml). The ether solution was separated and washed with water (3x30 ml). Then, the solvent was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

1-(4-nitrophenyl)-5,5,6,6-tetramethyl-3,8-dioxa-4,7-diazatricyclo[5.1.0.02,4]octane **9b**, mixture of diastereomers (1:4)

Yellow oil; yield 38% (0.11 g); ¹H NMR (300 MHz, DMSO- d_6) δ 8.34 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 1.6H), 7.81 (d, J = 8.5 Hz, 0.4H), 5.45 (s, 0.2H), 5.35 (s, 0.8H), 1.41 – 1.20 (m, 12H). ¹³C NMR (76 MHz, DMSO- d_6) δ 148.73, 142.91, 128.78, 128.54, 124.43, 124.34, 75.70, 72.47, 72.01, 60.99, 60.16, 59.44, 26.62, 26.54, 26.38, 25.49, 24.93, 24.85, 23.72, 23.69. 5. Experimental procedure for the synthesis of 6-(4-methoxyphenyl)-2,2,3,3-tetramethyl-7oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5a

A solution of compound **9a** (1 mmol, 0.28 g) in DMSO (5 ml) was irradiated with a Vilber Lourmat VL-6.LM lamp (365 nm, 6 W) for 48 hours at room temperature in common laboratory glassware. The reaction mixture was diluted with water (50 ml) and extracted with diethyl ether (3x20 ml). The ether solution was separated and washed with water (3x30 ml). Then, the solvent was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

6. General experimental procedure for the synthesis of 5-aryl-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]hept-4-ene 4-oxides 6

A solution of compound **4** (1 mmol) in EtOAc (5 ml) was irradiated with a a strip of 24 W 450 nm LED for 24 hours at room temperature in common laboratory glassware. The reaction mixture was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

2,2,3,3-tetramethyl-5-phenyl-7-oxa-1,4-diazabicyclo[4.1.0]hept-4-ene 4-oxide 6a

Yellow powder; yield 46% (0.11 g); mp 110-112 °C.

¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.96 (m, 2H), 7.53 – 7.37 (m, 3H), 5.00 (s, 1H), 1.64 (s, 3H), 1.50 (s, 6H), 1.29 (s, 3H).

¹³C NMR (76 MHz, CDCl₃) δ 133.00, 131.77, 130.06, 128.57, 128.45, 75.23, 71.24, 63.16, 26.99, 24.71, 23.63, 22.96.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₄H₁₉N₂O₂: 247.1441; Found: 247.1449.

5-(4-bromophenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]hept-4-ene 4-oxide 6b

Yellow powder; yield 58% (0.19 g); mp 143-145 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 2H), 4.95 (s, 1H), 1.61 (s, 3H), 1.48 (s, 6H), 1.28 (s, 3H).

¹³C NMR (76 MHz, CDCl₃) δ 132.18, 131.74, 130.51, 129.90, 124.08, 75.54, 70.85, 63.16, 26.80, 24.63, 23.50, 23.01.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₈BrN₂O₂: 325.0546; Found: 325.0541.

5-(4-chlorophenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]hept-4-ene 4-oxide 6c

Yellow powder; yield 61% (0.17 g); mp 128-130 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.8 Hz, 2H), 4.96 (s, 1H), 1.62 (s, 3H), 1.49 (s, 6H), 1.29 (s, 3H).

¹³C NMR (76 MHz, CDCl₃) δ 135.78, 132.15, 130.10, 129.77, 128.81, 75.52, 70.96, 63.21, 26.84, 24.68, 23.54, 23.06.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₄H₁₈ClN₂O₂: 281.1051; Found: 281.1050.

5-(4-fluorophenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]hept-4-ene 4-oxide 6d

Yellow powder; yield 52% (0.14 g); mp 115-117 °C.

¹H NMR (300 MHz, CDCl₃) δ 8.07 – 8.00 (m, 2H), 7.20 – 7.11 (m, 2H), 4.97 (s, 1H), 1.62 (s, 3H), 1.50 (s, 6H), 1.29 (s, 3H).

¹³C NMR (76 MHz, CDCl₃) δ 163.13 (d, J = 252.1 Hz), 132.20, 130.73 (d, J = 8.3 Hz), 127.88, 115.70 (d, J = 21.7 Hz), 75.29, 71.08, 63.22, 26.83, 24.69, 23.55, 23.06.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₄H₁₈FN₂O₂: 265.1347; Found: 265.1348.

2,2,3,3-tetramethyl-5-(4-nitrophenyl)-7-oxa-1,4-diazabicyclo[4.1.0]hept-4-ene 4-oxide 6e

Yellow powder; yield 62% (0.18 g); mp 135-137 °C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.32 (s, 4H), 5.36 (s, 1H), 1.52 (s, 3H), 1.42 (s, 3H), 1.40 (s, 3H), 1.25 (s, 3H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 147.50, 137.99, 131.64, 130.01, 123.74, 75.97, 70.33, 63.13, 26.64, 24.69, 23.49, 23.17.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for : C₁₄H₁₈N₃O₄: 292.1292; Found: 292.1285.

7. General experimental procedure for the synthesis of target 6-aryl-2,2,3,3-tetramethyl-5oxo-2,3,4,5-tetrahydropyrazine 1-oxides 7

A solution of compound **4** (1 mmol) and pyrrolidine (3 mmol, 0.22 g) in EtOAc (5 ml) was irradiated with a a strip of 24 W 450 nm LED for 24 hours at room temperature in common laboratory glassware. The resulting mixture was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

2,2,3,3-tetramethyl-5-oxo-6-phenyl-2,3,4,5-tetrahydropyrazine 1-oxide 7a

Yellow powder; yield 42% (0.10 g); mp 208-210 °C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.48 (s, 1H), 7.51 – 7.45 (m, 2H), 7.39 – 7.34 (m, 3H), 1.40 (s, 6H), 1.30 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 159.07, 135.09, 130.21, 129.81, 128.65, 127.26, 75.78, 54.25, 24.09, 20.90.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₄H₁₉N₂O₂: 247.1441; Found: 247.1449.

6-(4-bromophenyl)-2,2,3,3-tetramethyl-5-oxo-2,3,4,5-tetrahydropyrazine 1-oxide 7b

Yellow powder; yield 43% (0.14 g); mp 237-239 °C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.52 (s, 1H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 1.40 (s, 6H), 1.29 (s, 6H). ¹³C NMR (76 MHz, DMSO-*d*₆) δ 158.80, 134.33, 132.46, 130.36, 128.90, 121.97, 76.14, 54.31, 24.11, 20.91.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₈BrN₂O₂: 325.0546; Found: 325.0542.

6-(3-methoxyphenyl)-2,2,3,3-tetramethyl-5-oxo-2,3,4,5-tetrahydropyrazine 1-oxide 7c

Yellow powder; yield 37% (0.10 g); mp 224-226 °C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.47 (s, 1H), 7.35 – 7.24 (m, 1H), 7.08 – 6.98 (m, 2H), 6.99 – 6.90 (m, 1H), 3.75 (s, 3H), 1.40 (s, 6H), 1.29 (s, 6H). ¹³C NMR (76 MHz, DMSO-*d*₆) δ 158.98, 158.30, 134.98, 131.02, 128.34, 122.55, 115.85, 114.20, 75.87, 55.14, 54.23, 24.08, 20.87.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₅H₂₁N₂O₃: 277.1547; Found: 277.1555.

6-(4-chlorophenyl)-2,2,3,3-tetramethyl-5-oxo-2,3,4,5-tetrahydropyrazine 1-oxide 7d

Yellow powder; yield 49% (0.14 g); mp 233-235 °C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.54 (s, 1H), 7.57 (d, *J* = 8.7 Hz, 2H), 7.45 (d, *J* = 8.7 Hz, 2H), 1.40 (s, 6H), 1.29 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 158.78, 134.15, 133.15, 132.19, 128.46, 127.34, 76.04, 54.24, 24.07, 20.87.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₈ClN₂O₂: 281.1051; Found: 281.1052.

8. Synthesis of 6-(4-bromophenyl)-2,2,3,3-tetramethyl-5-oxo-2,3,4,5-tetrahydropyrazine 1-oxide 7b from 6b.

A solution of compound **6b** (1 mmol, 0.33 g) and pyrrolidine (3 mmol, 0.22 g) in EtOAc (5 ml) was irradiated with a a strip of 24 W 450 nm LED for 24 hours at room temperature in common laboratory glassware. The resulting mixture was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

9. General experimental procedure for the synthesis of 6-aryl-2,2,3,3-tetramethyl-2,3dihydropyrazine 1-oxides 8

A solution of compound **4** (1 mmol) in EtOAc (5 ml) was irradiated with a strip of 24 W 450 nm LED lamp (450 nm, 6 W) for 24 hours at room temperature in common laboratory glassware. Then, the solvent was evaporated and the residue was dissolved in MeCN (5 ml). Next, hydrazine hydrate (4 mmol, 0.2 g) was added and the resulting mixture was stirred for 24 h at room temperature. Then, the solvent was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 3:1).

2,2,3,3-tetramethyl-6-phenyl-2,3-dihydropyrazine 1-oxide 8a

Yellow powder; yield 58% (0.14 g); mp 55-57°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.16 (s, 1H), 7.96 – 7.89 (m, 2H), 7.50 – 7.42 (m, 3H), 1.33 (s, 6H), 1.24 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 150.24, 130.65, 130.08, 129.57, 128.25, 127.99, 71.87, 61.05, 23.26, 20.09.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₄H₁₉N₂O: 231.1492; Found: 231.1486

6-(4-bromophenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8b

Yellow powder; yield 79% (0.25 g); mp 115-117°C.

¹H NMR (300 MHz, DMSO- d_6) δ 8.16 (s, 1H), 7.92 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 1.32 (s, 6H), 1.23 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 149.76, 131.23, 130.01, 129.15, 122.61, 72.13, 61.06, 23.23, 20.05.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₈BrN₂O: 309.0597; Found: 309.0610.

6-(4-chlorophenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8c

Yellow powder; yield 76% (0.20 g); mp 105-107°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.17 (s, 1H), 8.00 (d, *J* = 8.7 Hz, 2H), 7.53 (d, *J* = 8.7 Hz, 2H), 1.33 (s, 6H), 1.23 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 149.82, 133.85, 129.94, 129.83, 128.81, 128.30, 72.10, 61.07, 23.24, 20.07.

HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₈ClN₂O: 265.1102; Found: 265.1105.

Me′

2,2,3,3-tetramethyl-6-(p-tolyl)-2,3-dihydropyrazine 1-oxide 8d

Yellow powder; yield 61% (0.15 g); mp 63-65°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.16 (s, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H), 1.32 (s, 6H), 1.22 (s, 6H). ¹³C NMR (76 MHz, DMSO-*d*₆) δ 150.30, 139.37, 130.56, 128.79, 127.86, 127.27, 71.73, 61.02, 23.27, 21.04, 20.11.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₅H₂₁N₂O: 245.1648; Found: 245.1647

6-(4-methoxyphenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8e

Yellow powder; yield 53% (0.14 g); mp 83-85°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.18 (s, 1H), 7.99 (d, *J* = 9.0 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 3.80 (s, 3H), 1.31 (s, 6H), 1.22 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 159.92, 150.33, 130.19, 129.64, 122.46, 113.63, 71.51, 61.02, 55.31, 23.30, 20.14.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₅H₂₁N₂O₂: 261.1598; Found: 261.1595

6-(4-fluorophenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8f

Yellow powder; yield 72% (0.18 g); mp 78-80°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.18 (s, 1H), 8.11 – 8.00 (m, 2H), 7.38 – 7.26 (m, 2H), 1.34 (s, 6H), 1.25 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 162.09 (d, J = 248.5 Hz), 150.02, 130.54 (d, J = 8.3 Hz), 129.93, 126.52 (d, J = 3.4 Hz), 115.22 (d, J = 21.5 Hz), 71.86, 61.06, 23.24, 20.07. HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcld for C₁₄H₁₇FN₂O: 249.1398; Found: 249.1405

6-(3-methoxyphenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8g

Yellow powder; yield 67% (0.17 g); mp 70-72°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.17 (s, 1H), 7.58 (s, 1H), 7.49 – 7.33 (m, 2H), 7.06 – 6.98 (m, 1H), 3.78 (s, 3H), 1.33 (s, 6H), 1.23 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 158.89, 150.24, 131.27, 130.57, 129.34, 120.27, 115.47, 113.28, 72.01, 60.95, 55.21, 23.26, 20.08.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₅H₂₁N₂O₂: 261.1598; Found: 261.1601

6-(4-cyclohexylphenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8h

Yellow powder; yield 74% (0.23 g); mp 87-89°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.18 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 2.54-2.49 (m, 1H in DMSO-*d*₆), 1.85 – 1.67 (m, 5H), 1.55 – 1.27 (m, 11H), 1.24 (s, 6H). ¹³C NMR (76 MHz, DMSO-*d*₆) δ 150.31, 149.27, 130.52, 127.99, 127.67, 126.51, 71.68, 61.00, 43.71, 33.69, 26.25, 25.52, 23.24, 20.08.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₂₀H₂₈N₂O: 313.2274; Found: 313.2276

6-(4-ethoxy-3-methoxyphenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8i

Yellow powder; yield 57% (0.17 g); mp 116-118°C.

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.24 (s, 1H), 7.78 (s, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.02 (d, *J* = 8.5 Hz, 1H), 4.07 (q, *J* = 7.0 Hz, 2H), 3.78 (s, 3H), 1.39 – 1.27 (m, 9H), 1.22 (s, 6H). ¹³C NMR (76 MHz, DMSO-*d*₆) δ 150.41, 149.04, 148.03, 130.26, 122.50, 121.34, 112.03, 111.48, 71.63, 63.72, 60.93, 55.52, 23.33, 20.16, 14.64.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₇H₂₅N₂O₃: 305.1860; Found: 305.1857

6-(2,5-dimethylphenyl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8j

Brown oil; yield 45% (0.12 g);

¹H NMR (300 MHz, DMSO-*d*₆) δ 7.79 (s, 1H), 7.17 (s, 2H), 7.04 (s, 1H), 2.30 (s, 3H), 2.11 (s, 3H), 1.35 (s, 6H), 1.29 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 150.76, 134.87, 134.65, 133.32, 130.36, 129.93, 129.85, 128.66, 71.47, 61.43, 23.25, 20.37, 20.05, 18.69.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₆H₂₃N₂O: 259.1805; Found: 259.1815

2,2,3,3-tetramethyl-6-(thiophen-2-yl)-2,3-dihydropyrazine 1-oxide 8k

Yellow powder; yield 64% (0.15 g); mp 90-92°C.

¹H NMR (300 MHz, DMSO- d_6) δ 8.69 (s, 1H), 8.05 (d, J = 4.0 Hz, 1H), 7.68 (d, J = 5.1 Hz, 1H), 7.29 – 7.23 (m, 1H), 1.33 (s, 6H), 1.21 (s, 6H).

¹³C NMR (76 MHz, DMSO-*d*₆) δ 148.11, 130.87, 128.53, 127.52, 127.48, 126.96, 70.10, 61.33, 23.25, 20.20.

HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcld for C₁₂H₁₇N₂OS: 237.1056; Found: 237.1063

6-(5-bromothiophen-2-yl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 81

Brown powder; yield 51% (0.16 g); mp 87-89°C.

¹H NMR (300 MHz, CDCl₃) δ 8.40 (s, 1H), 7.42 (d, *J* = 4.3 Hz, 1H), 7.16 (d, *J* = 4.3 Hz, 1H), 1.42 (s, 6H), 1.30 (s, 6H).

¹³C NMR (76 MHz, CDCl₃) δ 147.13, 132.80, 129.54, 127.97, 126.01, 117.66, 71.05, 62.19, 23.57, 20.51.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcld for C₁₂H₁₆BrN₂OS: 315.0161; Found: 315.0159

6-(5-chlorothiophen-2-yl)-2,2,3,3-tetramethyl-2,3-dihydropyrazine 1-oxide 8m

Brown powder; yield 50% (0.14 g); mp 82-84°C ¹H NMR (300 MHz, DMSO- d_6) δ 8.68 (s, 1H), 7.97 (d, J = 4.4 Hz, 1H), 7.32 (d, J = 4.4 Hz, 1H), 3.33 (s, 3H), 1.34 (s, 6H), 1.22 (s, 6H). ¹³C NMR (76 MHz, DMSO- d_6) δ 147.03, 130.74, 129.48, 127.28, 127.21, 126.68, 70.12, 61.47, 23.19, 20.14. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcld for C₁₂H₁₅ClN₂OS: 271.0666; Found: 271.0673

10. Experimental procedure for the synthesis of 6-(4-methoxyphenyl)-2,2,3,3-tetramethyl-7-oxa-1,4-diazabicyclo[4.1.0]heptan-5-one 5a

A solution of compound 7 (1 mmol, 0.33 g) in DMSO (5 ml) was irradiated with a Vilber Lourmat VL-6.LM lamp (365 nm, 6 W) for 24 hours at room temperature in common laboratory glassware. The reaction mixture was diluted with water (50 ml) and extracted with diethyl ether (3x20 ml). The ether solution was separated and washed with water (3x30 ml). Then, the solvent was evaporated in vacuum and obtained residue was purified using column chromatography (eluent EtOAc-hexane 2:1).

11. Copies of ¹H, ¹³C NMR and HRMS for compound 9a.

¹H NMR spectrum (300 MHz) of **9a** in DMSO- d_6

100 90 f1 (мд) -:

HRMS for compound 9a

12. Copies of ¹H, ¹³C NMR and HRMS for amides 5.

¹H NMR spectrum (300 MHz) of **5a** in DMSO- d_6

100 90 f1 (мд) -:

HRMS for compound 5a

¹H NMR spectrum (300 MHz) of **5b** in DMSO- d_6

HRMS for compound 5b

-: 100 90 f1 (мд)

HRMS for compound 5c

HRMS for compound 5d

¹H NMR spectrum (300 MHz) of **5e** in DMSO- d_6

HRMS for compound 5e

¹H NMR spectrum (300 MHz) of **5f** in DMSO- d_6

HRMS for compound 5f

HRMS for compound 5g

¹H NMR spectrum (300 MHz) of **5h** in DMSO- d_6

HRMS for compound 5h

HRMS for compound 5j

HRMS for compound 5k

HRMS for compound 51

13. Copies of ¹H, ¹³C NMR and HRMS for 1-(4-nitrophenyl)-5,5,6,6-tetramethyl-3,8-dioxa-4,7-diazatricyclo[5.1.0.02,4]octane 9b

¹H NMR spectrum (300 MHz) of **9b** in DMSO- d_6

HRMS for compound 9b

14. Copies of ¹H, ¹³C NMR and HRMS for monooxaziridines 6.

¹H NMR spectrum (300 MHz) of **6a** in DMSO- d_6

HRMS for compound 6a

100 90 f1 (мд) -:

HRMS for compound 6b

¹H NMR spectrum (300 MHz) of **6c** in CDCl₃

HRMS for compound 6c

¹H NMR spectrum (300 MHz) of **6d** in CDCl₃

¹³C {¹H} NMR spectrum (76 MHz) of **6d** in CDCl₃

HRMS for compound 6d

15. Copies of ¹H, ¹³C NMR and HRMS for monoamides 7.

¹H NMR spectrum (300 MHz) of **7a** in DMSO- d_6

100 90 f1 (мд) -:

HRMS for compound 7a

¹H NMR spectrum (300 MHz) of **7b** in DMSO- d_6

HRMS for compound 7b

HRMS for compound 7c

¹H NMR spectrum (300 MHz) of **7d** in DMSO- d_6

HRMS for compound 7d

16. Copies of ¹H, ¹³C NMR and HRMS for imines 8.

¹H NMR spectrum (300 MHz) of **8a** in DMSO- d_6

100 90 f1 (мд) -:

HRMS for compound 8a

HRMS for compound 8b

HRMS for compound 8d

HRMS for compound 8e

HRMS for compound 8f

¹H NMR spectrum (300 MHz) of **8g** in DMSO- d_6

HRMS for compound 8h

HRMS for compound 8i

¹H NMR spectrum (300 MHz) of **8j** in DMSO- d_6

HRMS for compound 8j

HRMS for compound 8k

¹H NMR spectrum (300 MHz) of 8l in CDCl₃

HRMS for compound 81

HRMS for compound 8m

17. X-ray crystallographic data, refinement details and computational methods.

DFT calculations were carried out at the B3LYP level of density functional theory with the 6-311G(d,p) basis set. For calculations, the ORCA 5.0.5 software package was used².

X-ray diffraction data were collected at 100K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized Cu K_a-radiation. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program¹. The structure was solved by direct methods using SHELXT² and refined on *F*² using SHELXL-2018³ in the OLEX2 program.⁴ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. Location of amino hydrogen atom (H2) for compound **5i** and location of hydrogen atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The Mercury program suite⁵ was used for molecular graphics.

Acknowledgment

Crystal structure determination was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow.

- 1. CrysAlisPro. Version 1.171.41.106a. Rigaku Oxford Diffraction, 2021.
- Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. *Acta Cryst.* 2015, A71(1), 3-8. http://doi.org/10.1107/S2053273314026370
- 3. Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Cryst.* **2015**, C71(1), 3-8. http://doi.org/10.1107/S2053229614024218
- Dolomanov O.V.; Bourhis L.J.; Gildea R.J.; Howard J.A.K.; Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, 42(2), 339-341. <u>http://doi.org/10.1107/S0021889808042726</u>
- Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. *J. Appl. Cryst.* **2020**, 53, 226-235. https://doi.org/10.1107/S1600576719014092

² Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606.

Table S1. Crystal data and structure refinement for 5i.				
Identification code	2366252			
Empirical formula	$C_{16}H_{22}N_2O_4$			
Formula weight	306.35			
Temperature	100.00(10) K			
Wavelength	1.54184 Å			
Crystal system	Orthorhombic			
Space group	Pbca			
Unit cell dimensions	a = 10.76900(10) Å	α=90°.		
	b = 12.7670(2) Å	β=90°.		
	c = 22.6802(3) Å	γ= 90°.		
Volume	3118.25(7) Å ³			
Z	8			
Density (calculated)	1.305 g/cm ³			
Absorption coefficient	0.773 mm ⁻¹			
F(000)	1312			
Crystal size	0.1 x 0.04 x 0.03 mm ³			
Theta range for data collection	3.898 to 80.784°.			
Index ranges	-12<=h<=13, -16<=k<=16	5, -29<=l<=29		
Reflections collected	20617			
Independent reflections	3415 [R(int) = 0.0283]			
Observed reflections	3126			
Completeness to theta = 67.684°	100.0 %			
Absorption correction	Semi-empirical from equi	valents		
Max. and min. transmission	1.00000 and 0.81207			
Refinement method	Full-matrix least-squares	on F^2		
Data / restraints / parameters	3415 / 0 / 210			
Goodness-of-fit on F ²	1.081			
Final R indices [I>2sigma(I)]	R1 = 0.0347, wR2 = 0.092	20		
R indices (all data)	R1 = 0.0375, wR2 = 0.093	39		
Extinction coefficient	0.00062(10)			
Largest diff. peak and hole	0.328 and -0.188 e.Å ⁻³			

	Х	У	Z	U(eq)	
O(1)	3858(1)	5808(1)	5078(1)	18(1)	
O(2)	1103(1)	5150(1)	4413(1)	19(1)	
O(3)	2862(1)	7458(1)	2622(1)	32(1)	
O(4)	4491(1)	6091(1)	2272(1)	26(1)	
N(1)	3460(1)	6935(1)	4989(1)	17(1)	
N(2)	1206(1)	5902(1)	5318(1)	16(1)	
C(1)	2956(1)	6083(1)	4651(1)	15(1)	
C(2)	1663(1)	5674(1)	4788(1)	15(1)	
C(3)	1814(1)	6527(1)	5781(1)	16(1)	
C(4)	2680(1)	7349(1)	5479(1)	18(1)	
C(5)	766(1)	7073(1)	6119(1)	21(1)	
C(6)	2489(1)	5796(1)	6214(1)	20(1)	
C(7)	1932(1)	8207(1)	5162(1)	24(1)	
C(8)	3599(1)	7839(1)	5915(1)	26(1)	
C(9)	3356(1)	6032(1)	4020(1)	16(1)	
C(10)	2871(1)	6760(1)	3622(1)	19(1)	
C(11)	3269(1)	6770(1)	3042(1)	21(1)	
C(12)	4160(1)	6032(1)	2853(1)	19(1)	
C(13)	4632(1)	5316(1)	3251(1)	19(1)	
C(14)	4231(1)	5314(1)	3839(1)	18(1)	
C(15)	1987(1)	8226(1)	2816(1)	39(1)	
C(16)	5445(1)	5392(1)	2081(1)	27(1)	

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **5i**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-N(1)	1.5146(11)
O(1)-C(1)	1.4168(12)
O(2)-C(2)	1.2390(13)
O(3)-C(11)	1.3666(13)
O(3)-C(15)	1.4301(15)
O(4)-C(12)	1.3660(13)
O(4)-C(16)	1.4280(14)
N(1)-C(1)	1.4380(13)
N(1)-C(4)	1.4909(13)
N(2)-H(2)	0.890(16)
N(2)-C(2)	1.3305(13)
N(2)-C(3)	1.4734(13)
C(1)-C(2)	1.5196(13)
C(1)-C(9)	1.4952(14)
C(3)-C(4)	1.5621(14)
C(3)-C(5)	1.5325(14)
C(3)-C(6)	1.5370(14)
C(4)-C(7)	1.5378(15)
C(4)-C(8)	1.5317(15)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-C(10)	1.3967(14)
C(9)-C(14)	1.3776(14)
C(10)-H(10)	0.9500
C(10)-C(11)	1.3860(15)
C(11)-C(12)	1.4118(15)
C(12)-C(13)	1.3824(15)
C(13)-H(13)	0.9500

 Table S3.
 Bond lengths [Å] and angles [°] for 5i.

C(13)-C(14)	1.4011(15)
C(14)-H(14)	0.9500
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(1) O(1) N(1)	59 64(6)
C(1)-O(1)-N(1)	38.04(0)
C(11)-O(3)-C(13)	115.94(9)
C(12)-O(4)-C(10)	110.47(9) 57.28(6)
C(1)-N(1)-O(1)	57.28(0)
C(1)-N(1)-C(4)	110.99(8)
C(4)-N(1)-O(1)	115.39(7)
C(2)-N(2)-H(2)	115.4(10)
C(2)-N(2)-C(3)	126.74(9)
C(3)-N(2)-H(2)	(1.08(6))
O(1)-C(1)-N(1)	64.08(6)
O(1)-C(1)-C(2)	113.75(8)
U(1) - U(1) - U(9)	110.53(8)
N(1)-C(1)-C(2)	119.75(8)
N(1)-C(1)-C(9)	115.76(8)
C(9)-C(1)-C(2)	116.4/(8)
O(2)-C(2)-N(2)	123.97(9)
O(2)-C(2)-C(1)	119.32(9)
N(2)-C(2)-C(1)	116.70(9)
N(2)-C(3)-C(4)	108.48(8)
N(2)-C(3)-C(5)	106.02(8)
N(2)-C(3)-C(6)	109.63(8)
C(5)-C(3)-C(4)	110.71(8)
C(5)-C(3)-C(6)	107.76(8)
C(6)-C(3)-C(4)	113.95(8)
N(1)-C(4)-C(3)	115.14(8)
N(1)-C(4)-C(7)	101.51(8)
N(1)-C(4)-C(8)	105.18(8)
C(7)-C(4)-C(3)	111.77(8)
C(8)-C(4)-C(3)	112.13(9)
C(8)-C(4)-C(7)	110.46(9)
C(3)-C(5)-H(5A)	109.5

C(3)-C(5)-H(5B)	109.5
C(3)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(3)-C(6)-H(6A)	109.5
C(3)-C(6)-H(6B)	109.5
C(3)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(4)-C(8)-H(8A)	109.5
C(4)-C(8)-H(8B)	109.5
C(4)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(10)-C(9)-C(1)	118.74(9)
C(14)-C(9)-C(1)	120.76(9)
C(14)-C(9)-C(10)	120.43(10)
C(9)-C(10)-H(10)	119.9
C(11)-C(10)-C(9)	120.26(10)
C(11)-C(10)-H(10)	119.9
O(3)-C(11)-C(10)	124.66(10)
O(3)-C(11)-C(12)	115.82(9)
C(10)-C(11)-C(12)	119.53(10)
O(4)-C(12)-C(11)	115.63(10)
O(4)-C(12)-C(13)	124.82(10)
C(13)-C(12)-C(11)	119.56(10)
C(12)-C(13)-H(13)	119.7
C(12)-C(13)-C(14)	120.63(10)
C(14)-C(13)-H(13)	119.7
C(9)-C(14)-C(13)	119.59(10)
C(9)-C(14)-H(14)	120.2

C(13)-C(14)-H(14)	120.2
O(3)-C(15)-H(15A)	109.5
O(3)-C(15)-H(15B)	109.5
O(3)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
O(4)-C(16)-H(16A)	109.5
O(4)-C(16)-H(16B)	109.5
O(4)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

_	U ¹¹	U ²²	U33	U ²³	U13	U ¹²	
_					• / / /		
O(1)	17(1)	20(1)	18(1)	-1(1)	-2(1)	3(1)	
O(2)	18(1)	23(1)	17(1)	-1(1)	-1(1)	-6(1)	
O(3)	39(1)	39(1)	18(1)	9(1)	6(1)	18(1)	
O(4)	27(1)	36(1)	15(1)	-1(1)	4(1)	4(1)	
N(1)	17(1)	16(1)	18(1)	0(1)	0(1)	-2(1)	
N(2)	14(1)	18(1)	16(1)	0(1)	1(1)	-2(1)	
C(1)	15(1)	15(1)	16(1)	1(1)	0(1)	0(1)	
C(2)	15(1)	14(1)	16(1)	2(1)	-1(1)	0(1)	
C(3)	16(1)	16(1)	16(1)	-2(1)	1(1)	0(1)	
C(4)	19(1)	16(1)	18(1)	-3(1)	2(1)	-2(1)	
C(5)	21(1)	21(1)	21(1)	-1(1)	5(1)	4(1)	
C(6)	21(1)	22(1)	16(1)	1(1)	0(1)	3(1)	
C(7)	30(1)	17(1)	26(1)	2(1)	5(1)	1(1)	
C(8)	26(1)	28(1)	23(1)	-8(1)	2(1)	-9(1)	
C(9)	14(1)	18(1)	15(1)	-1(1)	0(1)	-4(1)	
C(10)	17(1)	21(1)	18(1)	0(1)	1(1)	2(1)	
C(11)	20(1)	25(1)	17(1)	3(1)	-1(1)	2(1)	
C(12)	18(1)	25(1)	15(1)	-2(1)	2(1)	-2(1)	
C(13)	17(1)	21(1)	19(1)	-3(1)	1(1)	1(1)	
C(14)	18(1)	19(1)	18(1)	0(1)	-1(1)	0(1)	
C(15)	47(1)	44(1)	26(1)	13(1)	9(1)	25(1)	
C(16)	25(1)	35(1)	21(1)	-6(1)	7(1)	-1(1)	

Table S4. Anisotropic displacement parameters (Å²x 10³) for **5i**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

_

	Х	У	Z	U(eq)	
H(2)	467(15)	5625(12)	5398(7)	29(4)	
H(5A)	253	7475	5843	32	
H(5B)	1123	7547	6414	32	
H(5C)	251	6547	6317	32	
H(6A)	1903	5275	6367	29	
H(6B)	2825	6208	6542	29	
H(6C)	3169	5439	6009	29	
H(7A)	2477	8589	4891	36	
H(7B)	1590	8694	5454	36	
H(7C)	1252	7885	4940	36	
H(8A)	4202	7309	6040	39	
H(8B)	3147	8101	6260	39	
H(8C)	4036	8420	5724	39	
H(10)	2265	7251	3751	23	
H(13)	5234	4820	3125	23	
H(14)	4560	4820	4110	22	
H(15A)	1796	8704	2490	58	
H(15B)	2342	8624	3145	58	
H(15C)	1224	7877	2946	58	
H(16A)	5605	5502	1660	40	
H(16B)	5178	4668	2146	40	
H(16C)	6206	5528	2305	40	

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **5i**.

O(1)-N(1)-C(1)-C(2)	103.77(10)
O(1)-N(1)-C(1)-C(9)	-108.47(9)
O(1)-N(1)-C(4)-C(3)	-33.02(11)
O(1)-N(1)-C(4)-C(7)	-153.92(8)
O(1)-N(1)-C(4)-C(8)	90.94(9)
O(1)-C(1)-C(2)-O(2)	-126.37(10)
O(1)-C(1)-C(2)-N(2)	53.04(12)
O(1)-C(1)-C(9)-C(10)	-145.73(9)
O(1)-C(1)-C(9)-C(14)	31.16(13)
O(3)-C(11)-C(12)-O(4)	-0.74(15)
O(3)-C(11)-C(12)-C(13)	179.22(10)
O(4)-C(12)-C(13)-C(14)	-179.76(10)
N(1)-O(1)-C(1)-C(2)	-112.89(9)
N(1)-O(1)-C(1)-C(9)	107.30(9)
N(1)-C(1)-C(2)-O(2)	161.00(9)
N(1)-C(1)-C(2)-N(2)	-19.59(13)
N(1)-C(1)-C(9)-C(10)	-73.28(12)
N(1)-C(1)-C(9)-C(14)	103.61(11)
N(2)-C(3)-C(4)-N(1)	-44.88(11)
N(2)-C(3)-C(4)-C(7)	70.26(10)
N(2)-C(3)-C(4)-C(8)	-165.08(9)
C(1)-O(1)-N(1)-C(4)	108.05(9)
C(1)-N(1)-C(4)-C(3)	30.84(12)
C(1)-N(1)-C(4)-C(7)	-90.07(10)
C(1)-N(1)-C(4)-C(8)	154.80(9)
C(1)-C(9)-C(10)-C(11)	176.66(10)
C(1)-C(9)-C(14)-C(13)	-176.99(9)
C(2)-N(2)-C(3)-C(4)	29.83(13)
C(2)-N(2)-C(3)-C(5)	148.76(10)
C(2)-N(2)-C(3)-C(6)	-95.17(12)
C(2)-C(1)-C(9)-C(10)	75.56(12)
C(2)-C(1)-C(9)-C(14)	-107.55(11)
C(3)-N(2)-C(2)-O(2)	-179.30(9)
C(3)-N(2)-C(2)-C(1)	1.31(15)
C(4)-N(1)-C(1)-O(1)	-101.67(9)
C(4)-N(1)-C(1)-C(2)	2.09(13)
C(4)-N(1)-C(1)-C(9)	149.85(9)
C(5)-C(3)-C(4)-N(1)	-160.81(9)

_

Table S6. Torsion angles [°] for 5i.

C(5)-C(3)-C(4)-C(7)	-45.67(11)
C(5)-C(3)-C(4)-C(8)	78.99(11)
C(6)-C(3)-C(4)-N(1)	77.54(11)
C(6)-C(3)-C(4)-C(7)	-167.32(9)
C(6)-C(3)-C(4)-C(8)	-42.67(12)
C(9)-C(1)-C(2)-O(2)	13.46(13)
C(9)-C(1)-C(2)-N(2)	-167.12(9)
C(9)-C(10)-C(11)-O(3)	-179.23(10)
C(9)-C(10)-C(11)-C(12)	0.65(17)
C(10)-C(9)-C(14)-C(13)	-0.15(15)
C(10)-C(11)-C(12)-O(4)	179.36(10)
C(10)-C(11)-C(12)-C(13)	-0.67(17)
C(11)-C(12)-C(13)-C(14)	0.28(16)
C(12)-C(13)-C(14)-C(9)	0.13(16)
C(14)-C(9)-C(10)-C(11)	-0.24(16)
C(15)-O(3)-C(11)-C(10)	1.64(18)
C(15)-O(3)-C(11)-C(12)	-178.24(11)
C(16)-O(4)-C(12)-C(11)	176.36(10)
C(16)-O(4)-C(12)-C(13)	-3.60(16)

Table S7. Hydrogen bonds for 5i [Å and °].					
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(2)-H(2)O(2)#1	0.890(16)	2.005(16)	2.8910(11)	173.7(14)	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

Table S8. Crystal data and structure refin	ement for 6c .	
Identification code	2366250	
Empirical formula	$C_{14}H_{17}ClN_2O_2$	
Formula weight	280.74	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 2 ₁ /c	
Unit cell dimensions	a = 9.58470(10) Å	<i>α</i> = 90°.
	b = 11.18550(10) Å	β=102.1830(10)°.
	c = 13.06700(10) Å	$\gamma = 90^{\circ}$.
Volume	1369.36(2) Å ³	
Z	4	
Density (calculated)	1.362 g/cm ³	
Absorption coefficient	2.472 mm ⁻¹	
F(000)	592	
Crystal size	0.82 x 0.44 x 0.22 mm ³	
Theta range for data collection	4.720 to 79.911°.	
Index ranges	-11<=h<=12, -13<=k<=14	4, -16<=l<=16
Reflections collected	22397	
Independent reflections	2983 [R(int) = 0.0315]	
Observed reflections	2964	
Completeness to theta = 67.684°	100.0 %	
Absorption correction	Gaussian	
Max. and min. transmission	1.000 and 0.296	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	2983 / 0 / 177	
Goodness-of-fit on F ²	1.055	
Final R indices [I>2sigma(I)]	R1 = 0.0311, wR2 = 0.08	10
R indices (all data)	R1 = 0.0313, wR2 = 0.08	12
Extinction coefficient	0.0013(2)	
Largest diff. peak and hole	0.371 and -0.204 e.Å ⁻³	

Х	У	Z	U(eq)	
8033(1)	914(1)	5795(1)	20(1)	
8987(1)	6316(1)	2140(1)	19(1)	
5258(1)	5757(1)	3393(1)	20(1)	
9095(1)	7290(1)	2963(1)	16(1)	
6440(1)	6143(1)	3191(1)	15(1)	
7963(1)	2274(1)	5137(1)	16(1)	
7171(1)	3202(1)	5433(1)	16(1)	
7044(1)	4265(1)	4876(1)	15(1)	
7750(1)	4424(1)	4051(1)	14(1)	
8577(1)	3486(1)	3789(1)	16(1)	
8673(1)	2401(1)	4318(1)	17(1)	
7653(1)	5558(1)	3465(1)	14(1)	
8970(1)	6053(1)	3203(1)	16(1)	
7757(1)	7994(1)	2863(1)	16(1)	
6326(1)	7286(1)	2552(1)	16(1)	
7942(1)	8537(1)	3962(1)	22(1)	
7842(1)	8983(1)	2071(1)	24(1)	
5092(1)	8018(1)	2810(1)	21(1)	
5911(1)	6907(1)	1395(1)	24(1)	
	x 8033(1) 8987(1) 5258(1) 9095(1) 6440(1) 7963(1) 7171(1) 7044(1) 7750(1) 8577(1) 8673(1) 7653(1) 8970(1) 7757(1) 6326(1) 7942(1) 7842(1) 5092(1) 5911(1)	xy $8033(1)$ $914(1)$ $8987(1)$ $6316(1)$ $5258(1)$ $5757(1)$ $9095(1)$ $7290(1)$ $6440(1)$ $6143(1)$ $7963(1)$ $2274(1)$ $7171(1)$ $3202(1)$ $7044(1)$ $4265(1)$ $7750(1)$ $4424(1)$ $8577(1)$ $3486(1)$ $8673(1)$ $2401(1)$ $7653(1)$ $5558(1)$ $8970(1)$ $6053(1)$ $7757(1)$ $7994(1)$ $6326(1)$ $7286(1)$ $7942(1)$ $8537(1)$ $7842(1)$ $8983(1)$ $5092(1)$ $8018(1)$ $5911(1)$ $6907(1)$	xyz $8033(1)$ $914(1)$ $5795(1)$ $8987(1)$ $6316(1)$ $2140(1)$ $5258(1)$ $5757(1)$ $3393(1)$ $9095(1)$ $7290(1)$ $2963(1)$ $6440(1)$ $6143(1)$ $3191(1)$ $7963(1)$ $2274(1)$ $5137(1)$ $7171(1)$ $3202(1)$ $5433(1)$ $7044(1)$ $4265(1)$ $4876(1)$ $7750(1)$ $4424(1)$ $4051(1)$ $8577(1)$ $3486(1)$ $3789(1)$ $8673(1)$ $2401(1)$ $4318(1)$ $7653(1)$ $5558(1)$ $3465(1)$ $8970(1)$ $6053(1)$ $3203(1)$ $7757(1)$ $7994(1)$ $2863(1)$ $6326(1)$ $7286(1)$ $2552(1)$ $7942(1)$ $8933(1)$ $2071(1)$ $5092(1)$ $8018(1)$ $2810(1)$ $5911(1)$ $6907(1)$ $1395(1)$	xyzU(eq) $8033(1)$ 914(1)5795(1)20(1) $8987(1)$ 6316(1)2140(1)19(1)5258(1)5757(1)3393(1)20(1)9095(1)7290(1)2963(1)16(1)6440(1)6143(1)3191(1)15(1)7963(1)2274(1)5137(1)16(1)7171(1)3202(1)5433(1)16(1)7044(1)4265(1)4876(1)15(1)7050(1)4424(1)4051(1)14(1)8577(1)3486(1)3789(1)16(1)8673(1)2401(1)4318(1)17(1)7653(1)5558(1)3465(1)14(1)8970(1)6053(1)3203(1)16(1)7757(1)7994(1)2863(1)16(1)7942(1)8537(1)3962(1)22(1)7842(1)8983(1)2071(1)24(1)5092(1)8018(1)2810(1)21(1)5091(1)6907(1)1395(1)24(1)

Table S9. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **6c**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(1)	1.7422(11)	
O(1)-N(1)	1.5184(12)	
O(1)-C(8)	1.4235(14)	
O(2)-N(2)	1.2904(12)	
N(1)-C(8)	1.4292(15)	
N(1)-C(9)	1.4870(14)	
N(2)-C(7)	1.3153(15)	
N(2)-C(10)	1.5188(14)	
C(1)-C(2)	1.3883(16)	
C(1)-C(6)	1.3901(16)	
C(2)-H(2)	0.9500	
C(2)-C(3)	1.3856(16)	
C(3)-H(3)	0.9500	
C(3)-C(4)	1.4006(15)	
C(4)-C(5)	1.3999(16)	
C(4)-C(7)	1.4747(15)	
C(5)-H(5)	0.9500	
C(5)-C(6)	1.3910(16)	
C(6)-H(6)	0.9500	
C(7)-C(8)	1.4827(15)	
C(8)-H(8)	1.0000	
C(9)-C(10)	1.5623(15)	
C(9)-C(11)	1.5348(16)	
C(9)-C(12)	1.5277(16)	
C(10)-C(13)	1.5337(15)	
C(10)-C(14)	1.5380(16)	
C(11)-H(11A)	0.9800	
C(11)-H(11B)	0.9800	
C(11)-H(11C)	0.9800	
C(12)-H(12A)	0.9800	
C(12)-H(12B)	0.9800	
C(12)-H(12C)	0.9800	
C(13)-H(13A)	0.9800	
C(13)-H(13B)	0.9800	
C(13)-H(13C)	0.9800	
C(14)-H(14A)	0.9800	
C(14)-H(14B)	14B) 0.9800	
C(14)-H(14C)	0.9800	

Table S10. Bond lengths [Å] and angles $[\circ]$ for **6c**.
C(8)-O(1)-N(1)	58.03(7)
C(8)-N(1)-O(1)	57.66(7)
C(8)-N(1)-C(9)	114.91(9)
C(9)-N(1)-O(1)	112.88(8)
O(2)-N(2)-C(7)	122.82(10)
O(2)-N(2)-C(10)	115.39(9)
C(7)-N(2)-C(10)	121.69(9)
C(2)-C(1)-Cl(1)	118.75(9)
C(2)-C(1)-C(6)	121.58(11)
C(6)-C(1)-Cl(1)	119.66(9)
C(1)-C(2)-H(2)	120.4
C(3)-C(2)-C(1)	119.21(10)
C(3)-C(2)-H(2)	120.4
C(2)-C(3)-H(3)	119.7
C(2)-C(3)-C(4)	120.62(10)
C(4)-C(3)-H(3)	119.7
C(3)-C(4)-C(7)	121.39(10)
C(5)-C(4)-C(3)	118.96(10)
C(5)-C(4)-C(7)	119.64(10)
C(4)-C(5)-H(5)	119.5
C(6)-C(5)-C(4)	120.90(10)
C(6)-C(5)-H(5)	119.5
C(1)-C(6)-C(5)	118.66(10)
C(1)-C(6)-H(6)	120.7
C(5)-C(6)-H(6)	120.7
N(2)-C(7)-C(4)	121.62(10)
N(2)-C(7)-C(8)	119.85(10)
C(4)-C(7)-C(8)	118.52(10)
O(1)-C(8)-N(1)	64.32(7)
O(1)-C(8)-C(7)	119.19(10)
O(1)-C(8)-H(8)	114.2
N(1)-C(8)-C(7)	121.83(10)
N(1)-C(8)-H(8)	114.2
C(7)-C(8)-H(8)	114.2
N(1)-C(9)-C(10)	116.60(9)
N(1)-C(9)-C(11)	101.54(9)
N(1)-C(9)-C(12)	105.95(9)
C(11)-C(9)-C(10)	111.46(9)
C(12)-C(9)-C(10)	111.14(10)

C(12) C(0) C(11)	100.57(10)
C(12)-C(9)-C(11)	109.37(10)
N(2)-C(10)-C(9)	109.04(9)
N(2)-C(10)-C(13)	107.35(9)
N(2)-C(10)-C(14)	106.44(9)
C(13)-C(10)-C(9)	110.28(9)
C(13)-C(10)-C(14)	108.17(10)
C(14)-C(10)-C(9)	115.22(9)
C(9)-C(11)-H(11A)	109.5
C(9)-C(11)-H(11B)	109.5
C(9)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(9)-C(12)-H(12A)	109.5
C(9)-C(12)-H(12B)	109.5
C(9)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(10)-C(13)-H(13A)	109.5
C(10)-C(13)-H(13B)	109.5
C(10)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(10)-C(14)-H(14A)	109.5
C(10)-C(14)-H(14B)	109.5
C(10)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5

Table S11. Crystal data and structure refi	nement for 7b .	
Identification code	2366249	
Empirical formula	C ₁₄ H ₁₇ Br N ₂ O ₂	
Formula weight	325.20	
Temperature	99.98(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 2 ₁ /n	
Unit cell dimensions	a = 10.54497(6) Å	α=90°.
	b = 7.19449(4) Å	β=100.3895(6)°.
	c = 18.56940(11) Å	<i>γ</i> = 90°.
Volume	1385.683(13) Å ³	
Z	4	
Density (calculated)	1.559 g/cm ³	
Absorption coefficient	4.048 mm ⁻¹	
F(000)	664	
Crystal size	0.79 x 0.18 x 0.12 mm ³	
Theta range for data collection	4.507 to 80.048°.	
Index ranges	-13<=h<=13, -9<=k<=8, -	-23<=l<=23
Reflections collected	22811	
Independent reflections	3026 [R(int) = 0.0301]	
Observed reflections	3017	
Completeness to theta = 67.684°	100.0 %	
Absorption correction	Gaussian	
Max. and min. transmission	1.000 and 0.426	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3026 / 0 / 181	
Goodness-of-fit on F ²	1.099	
Final R indices [I>2sigma(I)]	R1 = 0.0270, wR2 = 0.069	95
R indices (all data)	R1 = 0.0272, wR2 = 0.069	96
Extinction coefficient	0.00080(12)	
Largest diff. peak and hole	0.474 and -0.469 e.Å ⁻³	

	Х	У	Z	U(eq)	
Br(1)	9646(1)	1142(1)	6906(1)	21(1)	
O (1)	3517(1)	4097(2)	6647(1)	22(1)	
O(2)	5892(1)	7946(2)	5382(1)	18(1)	
N(1)	3894(2)	8835(2)	5537(1)	15(1)	
N(2)	3672(1)	5509(2)	6256(1)	14(1)	
C(1)	8146(2)	2653(3)	6693(1)	16(1)	
C(2)	6976(2)	1810(3)	6416(1)	17(1)	
C(3)	5883(2)	2911(3)	6247(1)	15(1)	
C(4)	5960(2)	4839(2)	6337(1)	14(1)	
C(5)	7150(2)	5646(3)	6620(1)	16(1)	
C(6)	8250(2)	4557(3)	6808(1)	17(1)	
C(7)	4801(2)	6003(2)	6104(1)	14(1)	
C(8)	4898(2)	7682(2)	5648(1)	14(1)	
C(9)	2769(2)	8636(2)	5898(1)	15(1)	
C(10)	2439(2)	6541(3)	5919(1)	15(1)	
C(11)	3085(2)	9486(3)	6670(1)	19(1)	
C(12)	1678(2)	9737(3)	5431(1)	21(1)	
C(13)	1428(2)	6148(3)	6391(1)	21(1)	
C(14)	2023(2)	5678(3)	5157(1)	19(1)	

Table S12. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **7b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(1)	1.9014(17)
O(1)-N(2)	1.276(2)
O(2)-C(8)	1.251(2)
N(1)-C(8)	1.332(2)
N(1)-C(9)	1.472(2)
N(1)-H(1)	0.95(2)
N(2)-C(7)	1.322(2)
N(2)-C(10)	1.529(2)
C(1)-C(2)	1.387(3)
C(1)-C(6)	1.388(3)
C(2)-H(2)	0.9500
C(2)-C(3)	1.387(3)
C(3)-H(3)	0.9500
C(3)-C(4)	1.398(3)
C(4)-C(5)	1.396(2)
C(4)-C(7)	1.480(2)
C(5)-H(5)	0.9500
C(5)-C(6)	1.391(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.488(2)
C(9)-C(10)	1.549(2)
C(9)-C(11)	1.537(2)
C(9)-C(12)	1.531(2)
C(10)-C(13)	1.525(2)
C(10)-C(14)	1.535(2)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800

Table S13. Bond lengths [Å] and angles [°] for 7b.

C(8)-N(1)-C(9)	123.51(15)
C(8)-N(1)-H(1)	122.3(14)
C(9)-N(1)-H(1)	114.0(14)
O(1)-N(2)-C(7)	123.27(15)
O(1)-N(2)-C(10)	115.65(14)
C(7)-N(2)-C(10)	120.93(15)
C(2)-C(1)-Br(1)	118.55(14)
C(2)-C(1)-C(6)	121.93(16)
C(6)-C(1)-Br(1)	119.51(14)
C(1)-C(2)-H(2)	120.6
C(3)-C(2)-C(1)	118.75(17)
C(3)-C(2)-H(2)	120.6
C(2)-C(3)-H(3)	119.6
C(2)-C(3)-C(4)	120.83(16)
C(4)-C(3)-H(3)	119.6
C(3)-C(4)-C(7)	119.98(15)
C(5)-C(4)-C(3)	119.06(16)
C(5)-C(4)-C(7)	120.92(16)
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-C(4)	120.85(17)
C(6)-C(5)-H(5)	119.6
C(1)-C(6)-C(5)	118.54(17)
C(1)-C(6)-H(6)	120.7
C(5)-C(6)-H(6)	120.7
N(2)-C(7)-C(4)	120.92(15)
N(2)-C(7)-C(8)	119.79(15)
C(4)-C(7)-C(8)	119.16(15)
O(2)-C(8)-N(1)	122.87(16)
O(2)-C(8)-C(7)	119.74(16)
N(1)-C(8)-C(7)	117.38(15)
N(1)-C(9)-C(10)	107.98(14)
N(1)-C(9)-C(11)	109.17(15)
N(1)-C(9)-C(12)	106.05(14)
C(11)-C(9)-C(10)	112.09(15)
C(12)-C(9)-C(10)	111.63(15)
C(12)-C(9)-C(11)	109.69(15)
N(2)-C(10)-C(9)	107.75(14)
N(2)-C(10)-C(14)	105.20(14)
C(13)-C(10)-N(2)	107.78(14)
C(13)-C(10)-C(9)	112.19(15)

C(13)-C(10)-C(14)	109.99(15)
C(14)-C(10)-C(9)	113.50(15)
C(9)-C(11)-H(11A)	109.5
C(9)-C(11)-H(11B)	109.5
C(9)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(9)-C(12)-H(12A)	109.5
C(9)-C(12)-H(12B)	109.5
C(9)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(10)-C(13)-H(13A)	109.5
C(10)-C(13)-H(13B)	109.5
C(10)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(10)-C(14)-H(14A)	109.5
C(10)-C(14)-H(14B)	109.5
C(10)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5

_						
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
_						
Br(1)	17(1)	28(1)	17(1)	0(1)	2(1)	9(1)
O(1)	22(1)	19(1)	25(1)	7(1)	7(1)	0(1)
O(2)	16(1)	21(1)	19(1)	4(1)	5(1)	0(1)
N(1)	15(1)	15(1)	15(1)	4(1)	4(1)	1(1)
N(2)	14(1)	14(1)	15(1)	2(1)	2(1)	1(1)
C(1)	16(1)	21(1)	11(1)	2(1)	3(1)	6(1)
C(2)	20(1)	16(1)	14(1)	0(1)	3(1)	1(1)
C(3)	16(1)	17(1)	14(1)	0(1)	3(1)	-2(1)
C(4)	16(1)	16(1)	11(1)	1(1)	4(1)	1(1)
C(5)	19(1)	15(1)	13(1)	-1(1)	5(1)	-2(1)
C(6)	16(1)	23(1)	12(1)	-2(1)	3(1)	-1(1)
C(7)	15(1)	13(1)	12(1)	0(1)	3(1)	-1(1)
C(8)	15(1)	13(1) 14(1)	12(1) 12(1)	0(1)	1(1)	-2(1)
C(0)	13(1) 14(1)	1+(1)	12(1) 12(1)	1(1)	2(1)	-2(1)
C(9)	14(1)	10(1)	13(1)	1(1)	5(1)	4(1)
C(10)	12(1)	19(1)	14(1)	2(1)	2(1)	2(1)
C(11)	23(1)	19(1)	16(1)	-2(1)	6(1)	2(1)
C(12)	17(1)	24(1)	21(1)	6(1)	4(1)	6(1)
C(13)	16(1)	26(1)	22(1)	5(1)	7(1)	1(1)
C(14)	18(1)	22(1)	16(1)	-2(1)	0(1)	-2(1)

Table S14. Anisotropic displacement parameters (Å²x 10³) for **7b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(2)	6924	503	6344	20
H(3)	5073	2348	6068	18
H(5)	7209	6954	6685	19
H(6)	9055	5105	7010	20
H(11A)	3774	8765	6970	29
H(11B)	2314	9459	6896	29
H(11C)	3370	10774	6635	29
H(12A)	1910	11056	5438	31
H(12B)	884	9583	5630	31
H(12C)	1540	9275	4927	31
H(13A)	1205	4824	6362	31
H(13B)	654	6889	6215	31
H(13C)	1774	6477	6901	31
H(14A)	2628	6053	4840	29
H(14B)	1155	6111	4945	29
H(14C)	2021	4321	5199	29
H(1)	3880(20)	9920(30)	5244(13)	15(5)

Table S15. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **7b**.

Br(1)-C(1)-C(2)-C(3)	-178.78(13)
Br(1)-C(1)-C(6)-C(5)	177.37(13)
O(1)-N(2)-C(7)-C(4)	4.7(3)
O(1)-N(2)-C(7)-C(8)	-179.42(15)
O(1)-N(2)-C(10)-C(9)	145.67(15)
O(1)-N(2)-C(10)-C(13)	24.4(2)
O(1)-N(2)-C(10)-C(14)	-92.94(17)
N(1)-C(9)-C(10)-N(2)	52.18(17)
N(1)-C(9)-C(10)-C(13)	170.66(14)
N(1)-C(9)-C(10)-C(14)	-63.89(18)
N(2)-C(7)-C(8)-O(2)	-165.74(16)
N(2)-C(7)-C(8)-N(1)	13.4(2)
C(1)-C(2)-C(3)-C(4)	1.5(3)
C(2)-C(1)-C(6)-C(5)	-1.7(3)
C(2)-C(3)-C(4)-C(5)	-1.8(3)
C(2)-C(3)-C(4)-C(7)	175.63(16)
C(3)-C(4)-C(5)-C(6)	0.4(3)
C(3)-C(4)-C(7)-N(2)	44.2(2)
C(3)-C(4)-C(7)-C(8)	-131.70(17)
C(4)-C(5)-C(6)-C(1)	1.3(3)
C(4)-C(7)-C(8)-O(2)	10.2(2)
C(4)-C(7)-C(8)-N(1)	-170.67(15)
C(5)-C(4)-C(7)-N(2)	-138.38(18)
C(5)-C(4)-C(7)-C(8)	45.7(2)
C(6)-C(1)-C(2)-C(3)	0.3(3)
C(7)-N(2)-C(10)-C(9)	-38.7(2)
C(7)-N(2)-C(10)-C(13)	-159.94(16)
C(7)-N(2)-C(10)-C(14)	82.73(19)
C(7)-C(4)-C(5)-C(6)	-177.05(16)
C(8)-N(1)-C(9)-C(10)	-40.2(2)
C(8)-N(1)-C(9)-C(11)	81.9(2)
C(8)-N(1)-C(9)-C(12)	-160.03(17)
C(9)-N(1)-C(8)-O(2)	-174.38(16)
C(9)-N(1)-C(8)-C(7)	6.5(2)
C(10)-N(2)-C(7)-C(4)	-170.63(15)
C(10)-N(2)-C(7)-C(8)	5.3(2)
C(11)-C(9)-C(10)-N(2)	-68.12(18)
C(11)-C(9)-C(10)-C(13)	50.4(2)

Table S16. Torsion angles $[^{\circ}]$ for 7b.

C(11)-C(9)-C(10)-C(14)	175.82(15)
C(12)-C(9)-C(10)-N(2)	168.37(14)
C(12)-C(9)-C(10)-C(13)	-73.15(19)
C(12)-C(9)-C(10)-C(14)	52.3(2)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(2)#1	0.95(2)	1.97(2)	2.909(2)	171(2)

Table S17. Hydrogen bonds for 7b [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1

Table S18. Crystal data and structure refi	nement for 8b .		
Identification code	2366251		
Empirical formula	C ₁₄ H ₁₇ Br N ₂ O		
Formula weight	309.20		
Temperature	99.97(16) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 12.47732(7) Å	<i>α</i> = 90°.	
	b = 10.43720(5) Å	β=114.5849(6)°.	
	c = 11.94409(6) Å	<i>γ</i> = 90°.	
Volume	1414.450(14) Å ³		
Z	4		
Density (calculated)	1.452 g/cm ³		
Absorption coefficient	3.880 mm ⁻¹		
F(000)	632		
Crystal size	0.38 x 0.27 x 0.17 mm ³		
Theta range for data collection	3.896 to 80.001°.		
Index ranges	-15<=h<=15, -13<=k<=13, -15<=l<=15		
Reflections collected	43942		
Independent reflections	3082 [R(int) = 0.0310]		
Observed reflections	3065		
Completeness to theta = 67.684°	100.0 %		
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.328		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3082 / 6 / 191		
Goodness-of-fit on F ²	1.070		
Final R indices [I>2sigma(I)]	R1 = 0.0255, WR2 = 0.0609		
R indices (all data)	R1 = 0.0255, wR2 = 0.0610		
Extinction coefficient	0.00268(14)		
Largest diff. peak and hole	0.470 and -0.425 e.Å ⁻³		

	Х	У	Z	U(eq)	
Br(1)	1719(1)	6730(1)	6646(1)	36(1)	
O(1)	4152(4)	3731(5)	3211(5)	32(1)	
O(1A)	4282(9)	4067(10)	3139(10)	32(1)	
N(1)	3323(1)	4144(2)	2179(1)	33(1)	
N(2)	1389(1)	4553(2)	-112(1)	34(1)	
C(1)	1923(1)	6170(1)	5232(1)	25(1)	
C(2)	949(1)	5809(2)	4187(1)	27(1)	
C(3)	1115(1)	5350(2)	3181(1)	25(1)	
C(4)	2251(1)	5235(1)	3220(1)	21(1)	
C(5)	3214(1)	5627(1)	4287(1)	24(1)	
C(6)	3053(1)	6101(1)	5292(1)	25(1)	
C(7)	2380(1)	4764(2)	2120(1)	24(1)	
C(8)	3483(2)	3987(3)	954(2)	26(1)	
C(8A)	3233(4)	3330(5)	1042(4)	26(1)	
C(9)	2258(2)	3532(2)	0(2)	23(1)	
C(9A)	2645(4)	4276(4)	-31(4)	23(1)	
C(10)	1437(1)	4979(2)	896(1)	26(1)	
C(11)	4455(2)	2983(2)	1228(2)	36(1)	
C(12)	3862(3)	5276(3)	611(3)	37(1)	
C(12A)	2517(6)	2088(6)	875(6)	37(1)	
C(13)	1889(3)	2253(2)	373(3)	30(1)	
C(13A)	3378(5)	5489(5)	108(5)	30(1)	
C(14)	2226(9)	3394(11)	-1289(5)	29(1)	
C(14A)	2425(14)	3647(14)	-1272(11)	29(1)	

Table S19. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **8b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(1)	1.9020(14)
O(1)-N(1)	1.310(5)
O(1A)-N(1)	1.269(10)
N(1)-C(7)	1.318(2)
N(1)-C(8)	1.566(3)
N(1)-C(8A)	1.565(5)
N(2)-C(9)	1.486(3)
N(2)-C(9A)	1.556(4)
N(2)-C(10)	1.262(2)
C(1)-C(2)	1.384(2)
C(1)-C(6)	1.383(2)
C(2)-H(2)	0.9500
C(2)-C(3)	1.387(2)
C(3)-H(3)	0.9500
C(3)-C(4)	1.404(2)
C(4)-C(5)	1.400(2)
C(4)-C(7)	1.4734(19)
C(5)-H(5)	0.9500
C(5)-C(6)	1.388(2)
C(6)-H(6)	0.9500
C(7)-C(10)	1.463(2)
C(8)-C(9)	1.553(3)
C(8)-C(11)	1.531(3)
C(8)-C(12)	1.537(4)
C(8A)-C(9A)	1.541(6)
C(8A)-C(11)	1.491(5)
C(8A)-C(12A)	1.540(7)
C(9)-C(13)	1.537(3)
C(9)-C(14)	1.530(6)
C(9A)-C(13A)	1.530(6)
C(9A)-C(14A)	1.538(11)
C(10)-H(10)	0.9500
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(11)-H(11D)	0.9800
C(11)-H(11E)	0.9800
C(11)-H(11F)	0.9800

Table S20.	Bond lengths [Å] and angles [°] for 8b .	

C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(12A)-H(12D)	0.9800
C(12A)-H(12E)	0.9800
C(12A)-H(12F)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(13A)-H(13D)	0.9800
C(13A)-H(13E)	0.9800
C(13A)-H(13F)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(14A)-H(14D)	0.9800
C(14A)-H(14E)	0.9800
C(14A)-H(14F)	0.9800
O(1)-N(1)-C(7)	123.4(3)
O(1)-N(1)-C(8)	119.2(3)
O(1A)-N(1)-C(7)	124.4(6)
O(1A)-N(1)-C(8A)	116.7(7)
C(7)-N(1)-C(8)	117.29(14)
C(7)-N(1)-C(8A)	118.7(2)
C(10)-N(2)-C(9)	115.10(15)
C(10)-N(2)-C(9A)	111.11(19)
C(2)-C(1)-Br(1)	119.55(11)
C(6)-C(1)-Br(1)	118.69(11)
C(6)-C(1)-C(2)	121.74(13)
C(1)-C(2)-H(2)	120.5
C(1)-C(2)-C(3)	118.93(14)
C(3)-C(2)-H(2)	120.5
C(2)-C(3)-H(3)	119.5
C(2)-C(3)-C(4)	120.92(14)
C(4)-C(3)-H(3)	119.5
C(3)-C(4)-C(7)	118.85(13)
C(5)-C(4)-C(3)	118.48(13)
C(5)-C(4)-C(7)	122.60(13)
C(4)-C(5)-H(5)	119.5

C(6)-C(5)-C(4)	120.93(14)
C(6)-C(5)-H(5)	119.5
C(1)-C(6)-C(5)	118.96(13)
C(1)-C(6)-H(6)	120.5
C(5)-C(6)-H(6)	120.5
N(1)-C(7)-C(4)	122.80(13)
N(1)-C(7)-C(10)	117.30(13)
C(10)-C(7)-C(4)	119.91(13)
C(9)-C(8)-N(1)	104.39(17)
C(11)-C(8)-N(1)	105.59(17)
C(11)-C(8)-C(9)	113.45(19)
C(11)-C(8)-C(12)	110.6(2)
C(12)-C(8)-N(1)	109.3(2)
C(12)-C(8)-C(9)	113.0(2)
C(9A)-C(8A)-N(1)	102.2(3)
C(11)-C(8A)-N(1)	107.6(3)
C(11)-C(8A)-C(9A)	112.5(3)
C(11)-C(8A)-C(12A)	108.5(4)
C(12A)-C(8A)-N(1)	113.4(4)
C(12A)-C(8A)-C(9A)	112.4(4)
N(2)-C(9)-C(8)	107.76(18)
N(2)-C(9)-C(13)	110.72(19)
N(2)-C(9)-C(14)	105.3(3)
C(13)-C(9)-C(8)	112.0(2)
C(14)-C(9)-C(8)	111.9(4)
C(14)-C(9)-C(13)	108.9(5)
C(8A)-C(9A)-N(2)	106.8(3)
C(13A)-C(9A)-N(2)	113.2(3)
C(13A)-C(9A)-C(8A)	112.5(4)
C(13A)-C(9A)-C(14A)	108.5(6)
C(14A)-C(9A)-N(2)	104.4(7)
C(14A)-C(9A)-C(8A)	111.1(7)
N(2)-C(10)-C(7)	126.72(14)
N(2)-C(10)-H(10)	116.6
C(7)-C(10)-H(10)	116.6
C(8)-C(11)-H(11A)	109.5
C(8)-C(11)-H(11B)	109.5
C(8)-C(11)-H(11C)	109.5
C(8A)-C(11)-H(11D)	109.5
C(8A)-C(11)-H(11E)	109.5

C(8A)-C(11)-H(11F)	109.5
H(11A)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
H(11D)-C(11)-H(11E)	109.5
H(11D)-C(11)-H(11F)	109.5
H(11E)-C(11)-H(11F)	109.5
C(8)-C(12)-H(12A)	109.5
C(8)-C(12)-H(12B)	109.5
C(8)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(8A)-C(12A)-H(12D)	109.5
C(8A)-C(12A)-H(12E)	109.5
C(8A)-C(12A)-H(12F)	109.5
H(12D)-C(12A)-H(12E)	109.5
H(12D)-C(12A)-H(12F)	109.5
H(12E)-C(12A)-H(12F)	109.5
C(9)-C(13)-H(13A)	109.5
C(9)-C(13)-H(13B)	109.5
C(9)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(9A)-C(13A)-H(13D)	109.5
C(9A)-C(13A)-H(13E)	109.5
C(9A)-C(13A)-H(13F)	109.5
H(13D)-C(13A)-H(13E)	109.5
H(13D)-C(13A)-H(13F)	109.5
H(13E)-C(13A)-H(13F)	109.5
C(9)-C(14)-H(14A)	109.5
C(9)-C(14)-H(14B)	109.5
C(9)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(9A)-C(14A)-H(14D)	109.5
C(9A)-C(14A)-H(14E)	109.5
C(9A)-C(14A)-H(14F)	109.5

H(14D)-C(14A)-H(14E)109.5H(14D)-C(14A)-H(14F)109.5H(14E)-C(14A)-H(14F)109.5

_	U11	U ²²	U33	U ²³	U13	U12
_						
Br(1)	48(1)	37(1)	29(1)	-10(1)	22(1)	-2(1)
O(1)	21(1)	51(3)	20(1)	-1(2)	4(1)	9(2)
O(1A)	21(1)	51(3)	20(1)	-1(2)	4(1)	9(2)
N(1)	22(1)	55(1)	18(1)	-6(1)	5(1)	10(1)
N(2)	32(1)	47(1)	20(1)	-1(1)	7(1)	14(1)
C(1)	34(1)	21(1)	22(1)	-2(1)	15(1)	1(1)
C(2)	26(1)	29(1)	29(1)	-3(1)	14(1)	1(1)
C(3)	22(1)	29(1)	23(1)	-3(1)	8(1)	-1(1)
C(4)	22(1)	23(1)	19(1)	0(1)	9(1)	1(1)
C(5)	22(1)	25(1)	22(1)	-1(1)	8(1)	-1(1)
C(6)	28(1)	23(1)	21(1)	-2(1)	6(1)	-2(1)
C(7)	19(1)	31(1)	20(1)	-2(1)	7(1)	1(1)
C(8)	26(1)	32(1)	22(1)	-3(1)	13(1)	0(1)
C(8A)	26(1)	32(1)	22(1)	-3(1)	13(1)	0(1)
C(9)	26(1)	24(1)	21(1)	1(1)	11(1)	3(1)
C(9A)	26(1)	24(1)	21(1)	1(1)	11(1)	3(1)
C(10)	22(1)	34(1)	20(1)	-3(1)	6(1)	4(1)
C(11)	31(1)	50(1)	29(1)	0(1)	15(1)	12(1)
C(12)	42(2)	41(2)	37(1)	-7(1)	24(1)	-14(1)
C(12A)	42(2)	41(2)	37(1)	-7(1)	24(1)	-14(1)
C(13)	38(1)	27(1)	32(1)	-4(1)	20(1)	-7(1)
C(13A)	38(1)	27(1)	32(1)	-4(1)	20(1)	-7(1)
C(14)	33(3)	35(3)	21(1)	0(1)	13(1)	2(2)
C(14A)	33(3)	35(3)	21(1)	0(1)	13(1)	2(2)

Table S21. Anisotropic displacement parameters (Å²x 10³) for **8b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

—

	х	У	Z	U(eq)	
H(2)	179	5874	4159	32	
H(3)	451	5111	2455	30	
H(5)	3987	5567	4324	28	
H(6)	3709	6374	6011	30	
H(10)	793	5492	857	32	
H(11A)	5217	3359	1762	54	
H(11B)	4477	2702	455	54	
H(11C)	4293	2247	1643	54	
H(11D)	4964	3738	1509	54	
H(11E)	4448	2678	450	54	
H(11F)	4755	2305	1849	54	
H(12A)	3230	5905	438	56	
H(12B)	4020	5165	-121	56	
H(12C)	4578	5578	1298	56	
H(12D)	2839	1592	1641	56	
H(12E)	2565	1579	208	56	
H(12F)	1692	2301	669	56	
H(13A)	1980	2307	1227	45	
H(13B)	2389	1564	299	45	
H(13C)	1064	2073	-170	45	
H(13D)	2909	6123	-506	45	
H(13E)	4086	5278	-18	45	
H(13F)	3609	5843	936	45	
H(14A)	1448	3085	-1859	43	
H(14B)	2830	2780	-1264	43	
H(14C)	2380	4228	-1570	43	
H(14D)	1857	2946	-1434	43	
H(14E)	3169	3307	-1243	43	
H(14F)	2110	4286	-1930	43	

Table S22. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **8b**.

Br(1)-C(1)-C(2)-C(3)	-177.24(12)
Br(1)-C(1)-C(6)-C(5)	176.50(11)
O(1)-N(1)-C(7)-C(4)	9.8(3)
O(1)-N(1)-C(7)-C(10)	-170.0(2)
O(1)-N(1)-C(8)-C(9)	137.2(3)
O(1)-N(1)-C(8)-C(11)	17.3(3)
O(1)-N(1)-C(8)-C(12)	-101.7(3)
O(1A)-N(1)-C(7)-C(4)	-12.1(5)
O(1A)-N(1)-C(7)-C(10)	168.0(5)
O(1A)-N(1)-C(8A)-C(9A)	-137.1(5)
O(1A)-N(1)-C(8A)-C(11)	-18.4(6)
O(1A)-N(1)-C(8A)-C(12A)	101.6(6)
N(1)-C(7)-C(10)-N(2)	5.4(3)
N(1)-C(8)-C(9)-N(2)	61.6(2)
N(1)-C(8)-C(9)-C(13)	-60.4(2)
N(1)-C(8)-C(9)-C(14)	177.0(4)
N(1)-C(8A)-C(9A)-N(2)	-64.6(3)
N(1)-C(8A)-C(9A)-C(13A)	60.3(4)
N(1)-C(8A)-C(9A)-C(14A)	-177.8(7)
C(1)-C(2)-C(3)-C(4)	0.9(2)
C(2)-C(1)-C(6)-C(5)	-1.6(2)
C(2)-C(3)-C(4)-C(5)	-1.7(2)
C(2)-C(3)-C(4)-C(7)	-178.92(14)
C(3)-C(4)-C(5)-C(6)	1.0(2)
C(3)-C(4)-C(7)-N(1)	-151.68(16)
C(3)-C(4)-C(7)-C(10)	28.2(2)
C(4)-C(5)-C(6)-C(1)	0.7(2)
C(4)-C(7)-C(10)-N(2)	-174.49(17)
C(5)-C(4)-C(7)-N(1)	31.3(2)
C(5)-C(4)-C(7)-C(10)	-148.86(15)
C(6)-C(1)-C(2)-C(3)	0.8(2)
C(7)-N(1)-C(8)-C(9)	-47.0(2)
C(7)-N(1)-C(8)-C(11)	-166.91(17)
C(7)-N(1)-C(8)-C(12)	74.1(2)
C(7)-N(1)-C(8A)-C(9A)	48.6(4)
C(7)-N(1)-C(8A)-C(11)	167.3(2)
C(7)-N(1)-C(8A)-C(12A)	-72.7(4)
C(7)-C(4)-C(5)-C(6)	178.03(14)

Table S23. Torsion angles $[^{\circ}]$ for 8b.

C(8)-N(1)-C(7)-C(4)	-165.74(16)
C(8)-N(1)-C(7)-C(10)	14.4(2)
C(8A)-N(1)-C(7)-C(4)	161.6(2)
C(8A)-N(1)-C(7)-C(10)	-18.3(3)
C(9)-N(2)-C(10)-C(7)	13.1(3)
C(9A)-N(2)-C(10)-C(7)	-25.1(3)
C(10)-N(2)-C(9)-C(8)	-47.9(2)
C(10)-N(2)-C(9)-C(13)	74.9(2)
C(10)-N(2)-C(9)-C(14)	-167.5(5)
C(10)-N(2)-C(9A)-C(8A)	56.7(3)
C(10)-N(2)-C(9A)-C(13A)	-67.7(4)
C(10)-N(2)-C(9A)-C(14A)	174.5(6)
C(11)-C(8)-C(9)-N(2)	176.04(17)
C(11)-C(8)-C(9)-C(13)	54.0(3)
C(11)-C(8)-C(9)-C(14)	-68.6(5)
C(11)-C(8A)-C(9A)-N(2)	-179.8(3)
C(11)-C(8A)-C(9A)-C(13A)	-54.9(5)
C(11)-C(8A)-C(9A)-C(14A)	67.0(7)
C(12)-C(8)-C(9)-N(2)	-57.1(2)
C(12)-C(8)-C(9)-C(13)	-179.1(2)
C(12)-C(8)-C(9)-C(14)	58.3(5)
C(12A)-C(8A)-C(9A)-N(2)	57.4(4)
C(12A)-C(8A)-C(9A)-C(13A)	-177.8(4)
C(12A)-C(8A)-C(9A)-C(14A)	-55.9(8)

	5i	6c	7b	8b
Brutto formula	$C_{16}H_{22}N_2O_4$	$C_{14}H_{17}ClN_2O_2$	$C_{14}H_{17}BrN_2O_2$	$C_{14}H_{17}BrN_2O$
Formula weight	306.35	280.74	325.20	309.20
Crystal size,	0.1 imes 0.04 imes	0.82 imes 0.44 imes	0.79 imes 0.18 imes	$0.38 \times 0.27 \times 0.17$
mm	0.03	0.22	0.12	
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
a, Å	10.76900(10)	9.58470(10)	10.54497(6)	12.47732(7)
b, Å	12.7670(2)	11.18550(10)	7.19449(4)	10.43720(5)
c, Å	22.6802(3)	13.06700(10)	18.56940(11)	11.94409(6)
α, °	90	90	90	90
β, °	90	102.1830(10)	100.3895(6)	114.5849(6)
γ, °	90	90	90	90
Volume, Å ³	3118.25(7)	1369.36(2)	1385.683(13)	1414.450(14)
Density, gcm ⁻³	1.305	1.362	1.559	1.452
T_{min}/T_{max}	0.81207/1.00000	0.296/1.000	0.426/1.000	0.328/1.000
μ , mm ⁻¹	0.773	2.472	4.048	3.880
Space group	Pbca	P 2 ₁ /c	P 2 ₁ /n	P 2 ₁ /c
Z	8	4	4	4
F(000)	1312	592	664	632
Reflections collected	20617	22397	22811	43942
Independent reflections	3415	2983	3026	3082
Observed reflections	3126	2964	3017	3065
Parameters	210	177	181	191
R	0.0283	0.0315	0.0301	0.0310
20min - 20mar °	3.898 - 80.784	4.720 - 79.911	4507 - 80.048	3 896 - 80 001
20 max, $20 max$, $310 max$	0.0030	0.0812	0.0696	0.0610
reflections)	0.0737	0.0012	0.0090	0.0010
$R_{\perp}(I > \sigma(I))$	0.0347	0.0311	0.0270	0.0255
GOF	1 081	1 055	1 099	1 070
$\Delta = \sqrt{\alpha} = \Delta^{-3}$		_0 20//0 371		_0 /25/0 /70
Pmin/Pmax, CA	-0.100/0.520	-0.204/0.371	-0.407/0.4/4 0	-0.425/0.470
Restraints	U	U	U	U

Table 1. Crystal data and structure refinement for **5i**, **6c**, **7b**, and **8b**.