Supporting Information

Chiral iodine-catalyzed asymmetric oxyamination of unactivated olefins

Gui-Ping Han,^a Jia-Qi Wang,^a Jing-Feng Zhao,^a Dao-Yong Zhu,^b Lu-Wen Zhang,^a and Wei

He*,a

^aDepartment of Chemistry, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, P. R. China. E-mail: <u>weihechem@fmmu.edu.cn</u>.

^bSchool of Pharmacy, Lanzhou University, Lanzhou 730000, China.

Table of Contents

1.	General Information	S3
2.	Starting Materials	S4
2.1	Raw materials for preparing catalysts	S4
2.2	Raw materials for preparing alkenyl carboxylic acid substrates	S4
3.	Synthesis of Chiral Aryl Iodine Catalysts	S6
3.1	Synthesis of Chiral Aryl Iodine Catalysts Based on Bilateral Lactic Acid Structure	e 86
3.1.1	Synthesis of Chiral aryl iodine catalyst (CIC 3)	S6
3.1.2	2 Synthesis of Chiral aryl iodine catalyst (CIC 9)	S8
3.2	Synthesis of chiral aryl iodide catalysts based on bilateral ester side chains	S9
3.2.1	Synthesis of 2-iodo-3-(((R)-1,2,3,4-tetrahydronaphthalene-1-carbonyl)oxy)phenyl	(S)-
	1,2,3,4-tetrahydronaphthalene-1-carboxylate (CIC 10)	S9
3.2.2	Synthesis of chiral aryl iodide catalysts (S)-1-phenylethyl 2-iodo-3-methylben	zoate
	based on unilateral ester side chains (CIC 13)	S10
3.2.3	B Synthesis route of aryl iodide catalyst based on bilateral ether bond structure (CIG	C 14)S10
3.2.4	Synthesis of chiral aryl iodide catalysts (S)-1-iodo-2-(1-phenylethoxy)benzene bas	ed on
unila	ateral ether bond side chains (CIC 15)	S11
4.	Design and synthesis of alkenyl carboxylic acid substrates	S11
4.1	The synthesis method of alkenyl carboxylic acid substrate	S11
4.2	The second method for the synthesis of alkenyl carboxylic acid substrates	S13
5.	Study on asymmetric oxidative amination of alkenyl carboxylic acid substrates cata	lyzed
by c	hiral aryl iodides	S13
5.1	Optimization of reaction conditions	S13
5.2	Study on substrate applicability	S19
5.3	Oxidative amination gram-scale reaction of alkenyl carboxylic acid	S20
5.4	Recovery and reuse of catalyst	S20
6	Application of Chiral Aryl Iodine catalyzed Alkene Bifunctionalization Reaction in	Drug
Synt	hesis	S20
7	Structural characterization	
7.1	Characterization of the catalysts	S21
7.2	Characterization of Vinyl Carboxylic Acid Substrates	S26
7.3	Data characterization and chiral results of aminolactone products and derivatives	S32

1. General Information

Commercially available reagents were used as received without further purification. All reactions were carried out in 10 mL sealed tubes filled with nitrogen, using 365-370 nm LED purchased from SHANGHAI 3S TECHNOLOGY for light irradiation. Reactions were monitored by thin layer chromatography (TLC) using glass 0.25 mm silica gel plates with visualization under UV light (254 nm and 365 nm), or KMnO₄ staining solution as chromogenic agents. Organic solutions were concentrated under reduced pressure on a Heidolph rotary evaporator. Chromatographic purification of products was accomplished by flash chromatography on Merck Silica Gel 60F-254 (200-400 mesh). TBADT (tetrabutylammonium decatungstate) was synthesized according to the reported methods¹. All of allyl sulfones **2** were synthesized according to the literatures², and all of the spectra were in full accordance with the data in the literatures.

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance III-400 in solvents as indicated. Chemical shift are reported in ppm from TMS with the solvent resonance as internal standard (CDCl₃: ¹H-NMR: δ 7.26; ¹³C-NMR: δ 77.0). Data for ¹H NMR and ¹⁹F are reported as follows: chemical shift referred to TMS (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad singlet, dd = doublet of doublets, td = triplet of doublets etc.), coupling constants (*J*) are reported in units of hertz (Hz). Data for ¹³C NMR are reported in terms of chemical shift. High-resolution mass spectra (HRMS) were performed on an AB Sciex X500_R QTOF spectrometer.

2. Starting Materials

2.1Raw materials for preparing catalysts

Directly available starting materials for the preparation of chiral catalysts:

2.2Raw materials for preparing alkenyl carboxylic acid substrates

Alkyl carboxylic acid raw materials can be purchased directly:

Raw materials for preparing alkenyl carboxylic acid substrates: Method 1:

3. Synthesis of Chiral Aryl Iodine Catalysts

3.1 Synthesis of Chiral Aryl Iodine Catalysts Based on Bilateral Lactic

Acid Structure

3.1.1 Synthesis of Chiral aryl iodine catalyst (CIC 3) :

Synthesis of 2-iodoresorcinol (1b) :

Resorcinol (1.65 g, 15 mmol, 1.0 equiv.) was added to a 100 mL reaction flask, 30 mL of CHCN was added to fully dissolve, and stirred in an ice water bath at 0 °C for 10 minutes. Subsequently, N-iodosuccinimide (3.7g, 1.1 equiv.) was slowly added, and the solution immediately became orange. The reaction was stopped after 15 minutes, and the reaction was quenched with saturated sodium thiosulfate solution, and then extracted with ethyl acetate (3×50 mL). After the organic phase was combined, it was washed with saturated NaCl water again, and then dried with anhydrous sodium sulfate. After filtration, the solvent was removed under reduced pressure. The residue was separated by rapid column chromatography (mobile phase PE / DCM = 2 : 1) to obtain 1.9 g white solid product 1b, with a yield of 53 %.

Synthesis of diethyl (2R, 2'R) -2,2 ' - (2-iodo-1,3-phenylene) bis (oxy) dipropionate (1c) :

Triphenylphosphine (6.3 g, 2.4 equiv.) and 1b (2.36 g, 10 mmol, 1.0 equiv.) were put into a 100 mL reaction bottle, and then 30 mL tetrahydrofuran was added to fully dissolve and stirred in an ice water bath at 0 °C for 15 minutes. Subsequently, ethyl L-lactate (2.7mL, 2.4equiv.) was added under argon protection, and then diisopropyl azodicarboxylate (4.75mL, 2.4equiv.) was slowly added. After all was added, it was moved to room temperature to continue the reaction for 8-12 hours. The reaction was monitored by TLC until the raw material completely disappeared. The solvent tetrahydrofuran was removed under reduced pressure, and the sample was loaded by dry method. After rapid column chromatography separation (mobile phase PE / EA = 10 : 1), 4.1 g colorless oily liquid product 1c was obtained, with a yield of 94 %.

Synthesis of (2R, 2'R) -2,2 ' - (2-iodo-1,3-phenylene) bis (oxy) dipropionic acid (1d):

1c (4.36 g, 10 mmol) was put into a 250 mL reaction flask, 50 mL tetrahydrofuran, 50 mL anhydrous methanol and 50 mL sodium hydroxide solution with a concentration of 2 mol/L were added, and stirred at room temperature for 15 hours. Then tetrahydrofuran and methanol were removed by rotary evaporator under reduced pressure, and the pH of the remaining solution was adjusted to acidity by concentrated hydrochloric acid. The reaction solution was observed to become white turbid liquid. It was extracted with ethyl acetate (3×50 mL). After the organic phase was combined, it was washed with saturated NaCl solution, dried with anhydrous sodium sulfate, filtered, and the ethyl acetate was removed under reduced pressure. A small amount of mixture was retained and recrystallized with petroleum ether / dichloromethane solvent system to obtain 2.7g white solid product for 1d, with a yield of 71 %.

Synthesis of Chiral aryl iodine catalyst (CIC 3) :

Under the protection of argon, 1d (380 mg, 1 mmol, 1.0 equiv.) was loaded into a 100 mL reaction flask, added with 20 mL of dichloromethane solution to fully dissolve, and stirred in an ice water bath at 0 $^{\circ}$ C for 15 minutes. Subsequently, oxalyl chloride (0.34 mL, 4.0 equiv)

was added to the reaction bottle, and $2 \sim 3$ drops of N, N-dimethylformamide were added to produce a large number of bubbles. Continue to stir for ten minutes, and then rise to room temperature for 5 hours. After the reaction was completed, the dichloromethane solution and the remaining oxalyl chloride in the reaction bottle were removed by decompression and protected by argon. The crude product of the obtained acyl chloride intermediate was dissolved in 10 mL dichloromethane solution for use. Another 100 mL reaction bottle was added with N-isopropylaniline (0.3 mL, 2.2 equiv) and triethylamine (0.56 mL, 4.0 equiv) under argon protection, dissolved with a small amount of dichloromethane, and stirred in an ice water bath at 0 $^{\circ}$ C. After 15 minutes, the previously prepared acyl chloride intermediate solution was slowly added dropwise to the reaction flask with a syringe. After the dropwise addition was completed, the reaction was continued at room temperature for 12 hours. After the completion of the reaction, 50 mL saturated ammonium chloride solution was used to quench the reaction, and the mixture was extracted with dichloromethane (3×50 mL). The organic phase was combined, dried with anhydrous sodium sulfate, filtered, and removed under reduced pressure. The dichloromethane solution was loaded by dry method, and the crude product was separated by rapid column chromatography (mobile phase PE / EA = 5: 1) to obtain white solid product CIC 3 with a yield of 63 %. Chiral aryl iodide catalyst CIC 4 was obtained by the same method.

3.1.2 Synthesis of Chiral aryl iodine catalyst (CIC 9)

1d (380 mg, 1 mmol, 1.0 equiv.) and 2,4,6-trimethylbenzyl alcohol (330 mg, 2.2 equiv.) were put into a 100 mL reaction flask, dissolved in 25 mL dichloromethane solution, and stirred in an ice water bath at 0 $^{\circ}$ C for 15 minutes. Subsequently, 4-dimethylaminopyridine (DMAP, 61 mg, 0.5 equiv.) and dicyclohexylcarbodiimide (DCC, 516 mg, 2.5 equiv.) were added to the bottle. After all was added, the reaction was continued at room temperature for 12 hours. It was observed that the raw material points in the thin layer chromatography disappeared, the reaction was quenched with saturated ammonium chloride solution, and extracted with dichloromethane (3×50 mL). After the organic phase was combined, it was dried with anhydrous sodium sulfate, filtered, and the dichloromethane solution was removed

under reduced pressure. The dry sample was loaded, and the crude product was separated by rapid column chromatography (mobile phase PE / EA = 10 : 1) to obtain white solid product CIC 9, with a yield of 70 %. Chiral aryl iodide catalysts CIC 1、 CIC 2、 CIC 5、 CIC 6、 CIC 7 and CIC 8 were obtained by the same method.

3.2 Synthesis of chiral aryl iodide catalysts based on bilateral ester side

chains :

3.2.1 Synthesis of 2-iodo-3-(((R)-1,2,3,4-tetrahydronaphthalene-1carbonyl)oxy)phenyl(S)-1,2,3,4-tetrahydronaphthalene-1-carboxylate (CIC 10):

Ib (236 mg, 1 mmol, 1.0 equiv.) and (R)-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid (388 mg, 2.2 equiv.) were put into a 100 mL reaction bottle, dissolved in 25 mL dichloromethane solution, and stirred in an ice water bath at 0 °C for 15 minutes. Subsequently, 4-dimethylaminopyridine (61 mg, 0.5 equiv.) and dicyclohexylcarbodiimide (516 mg, 2.5 equiv.) were added to the bottle. After all added, move to room temperature to continue the reaction for 12 hours. It was observed that the raw material points in the thin layer chromatography disappeared, the reaction was quenched with saturated ammonium chloride solution, and extracted with dichloromethane (3×50 mL). After the organic phase was combined, it was dried with anhydrous sodium sulfate, filtered, and the dichloromethane solution was removed under reduced pressure. The dry sample was loaded, and the crude product was separated by rapid column chromatography (mobile phase PE / DCM = 2 : 1) to obtain colorless yellow oily liquid product Compound CIC 10, the yield was 65 %. Chiral aryl iodide catalysts CIC 11 and CIC 12 were obtained by the same method.

3.2.2 Synthesis of chiral aryl iodide catalysts (S)-1-phenylethyl 2-iodo-3methylbenzoate based on unilateral ester side chains (CIC 13) :

2-iodobenzoic acid (248 mg, 1 mmol, 1.0 equiv.) and (S)-1-phenylethan-1-ol (122 mg, 1.0 equiv.) were put into a 100 mL reaction flask, dissolved in 25 mL dichloromethane solution, and stirred in an ice water bath at 0 °C for 15 min. Subsequently, 4-dimethylaminopyridine (DMAP, 61 mg, 0.5 equiv.) and dicyclohexylcarbodiimide (DCC, 309 mg, 1.5 equiv.) were added to the bottle. After all added, move to room temperature to continue the reaction for 12 hours. It was observed that the raw material points in the thin layer chromatography disappeared, the reaction was quenched with saturated ammonium chloride solution, and extracted with dichloromethane (3×50 mL). After the organic phase was combined, it was dried with anhydrous sodium sulfate, filtered, and the dichloromethane solution was removed under reduced pressure. The dry sample was loaded, and the crude product was separated by rapid column chromatography (mobile phase PE / EA = 10 : 1) to obtain colorless oily product CIC 13, with a yield of 75 %.

3.2.3 Synthesis route of aryl iodide catalyst based on bilateral ether bond structure (CIC 14):

Under the protection of nitrogen, 2-iodo-1,3-benzenediol (236 mg, 1 mmol, 1.0 equiv.) and triphenylphosphine (629 mg, 2.4 equiv.) were loaded into a 100 mL reaction flask, and 30 mL of tetrahydrofuran solution was added to fully dissolve and stirred in an ice water bath at 0 °C for 15 minutes. Subsequently, (S) -1-phenylethanol (268 mg. 2.2 equiv.). Continue stirring for ten minutes, and then slowly add diisopropyl azodicarboxylate (0.47 mL, 2.4 equiv.). After all added, move to room temperature to continue the reaction for 12 hours.

After the raw material points in the thin layer chromatography completely disappeared, the solvent tetrahydrofuran was removed under reduced pressure, and the sample was loaded by dry method. After rapid column chromatography separation (mobile phase PE / EA = 30 : 1), 366 mg colorless oily liquid product CIC 14 was obtained, and the yield was 82 %.

3.2.4 Synthesis of chiral aryl iodide catalysts (S)-1-iodo-2-(1-phenylethoxy)benzene based on unilateral ether bond side chains (CIC 15):

2-Iodophenol (220 mg, 1 mmol, 1.0 equiv.) and triphenylphosphine (314 mg, 1.2 equiv.) were put into a 100 mL reaction bottle, and 20 mL tetrahydrofuran solution was added to fully dissolve and stirred in an ice water bath at 0 °C for 15 minutes. Subsequently, (S)-1-phenylethan-1-ol (134mg, 1.1 equiv.) was added to the flask under argon protection. Continue stirring for ten minutes, and then slowly add diisopropyl azodicarboxylate (DIAD, 0.24 mL, 1.2 equiv.). After all added, move to room temperature to continue the reaction for 12 hours. After the raw material points in the thin layer chromatography completely disappeared, the solvent tetrahydrofuran was removed under reduced pressure, and the sample was loaded by dry method. After rapid column chromatography separation (mobile phase PE / EA = 50 : 1), colorless yellow oily liquid product CIC 15 was obtained with a yield of 58 %.

4. Design and synthesis of alkenyl carboxylic acid substrates

4.1 The synthesis method of alkenyl carboxylic acid substrate :

Under the protection of argon, 2,2-diphenylacetic acid (2.12 g, 10 mmol) was added to a 100 mL reaction flask, and then 30 mL THF was added to fully dissolve. The reaction flask was placed in an ice water bath at 0 °C and stirred. After ten minutes, LDA (15 mL, 30 mmol, 2.0 mol/L in THF) was slowly added, and the solution was observed to change from colorless to brown. After the addition, the reaction bottle was stirred in an oil bath at 60 °C for 1 h. Subsequently, the reaction was cooled to 0 °C, and 3-bromopropene (1.8 mL, 15 mmol) was slowly added. At this time, the solution became pale yellow, and the stirring reaction was continued at 60 °C after the addition was completed. After 16 h of reaction, the reaction was slowly cooled, then the pH of the reaction solution was adjusted to 1 with 2 M hydrochloric acid solution, and ethyl acetate was used for extraction ($50 \text{ mL} \times 3$). The organic phase was combined, washed with saturated NaCl water and dried with anhydrous Na₂SO₄.After filtration, the ethyl acetate solution was removed by rotary evaporator under reduced pressure to obtain a yellow liquid crude product. The crude product was separated by rapid column chromatography (PE : EA = 10 : 1) to obtain 2.16 g white solid product 3a with a yield of 86 %. 3b ~ 3g, 3i ~ 3k, 3m ~ 3u were synthesized by the same method.

4.2 The second method for the synthesis of alkenyl carboxylic acid substrates :

Potassium tert-butoxide (3.4 g, 30.0 mmol) and methyltriphenylphosphonium bromide (7.2 g, 20.0 mmol) were added to a 250 mL round-bottom flask, and then 90 mL THF was added to make it fully dissolved. Stir at room temperature for 1 h under argon protection. Subsequently, the tetrahydrofuran solution of o-carboxybenzaldehyde (1.5 g, 10.0 mmol, in 10 mL THF) was slowly added to the reaction bottle, and then moved to an 80 ° C oil bath for reflux for 12 h. After the reaction was completed, the reaction was quenched with saturated NH4Cl solution, and then extracted with ethyl acetate ($50 \text{ mL} \times 3$). The ethyl acetate was combined, washed with saturated NaCl solution, dried with anhydrous sodium sulfate, and filtered under reduced pressure to remove ethyl acetate to obtain a pale yellow liquid crude product. The crude product was separated by fast column chromatography (PE : EA = 5 : 1) to obtain 1.18 g white solid product 3w, and the yield was 80 %.

5. Study on asymmetric oxidative amination of alkenyl carboxylic acid substrates catalyzed by chiral aryl iodides

5.1 Optimization of reaction conditions

Table S1 Screening of chiral catalysts

Entry ^a	Catalyst	Oxidant	Solvent	yield (%) ^b	ee (%) ^c
1	CIC 1	Selectfluor	CH ₃ CN	86	35
2	CIC 2	Selectfluor	CH ₃ CN	80	13

3	CIC 3	Selectfluor	CH ₃ CN	75	20
4	CIC 4	Selectfluor	CH ₃ CN	79	43
5	CIC 5	Selectfluor	CH ₃ CN	74	12
6	CIC 6	Selectfluor	CH ₃ CN	81	13
7	CIC 7	Selectfluor	CH ₃ CN	42	48
8	CIC 8	Selectfluor	CH ₃ CN	70	37
9	CIC 9	Selectfluor	CH ₃ CN	71	24
10	CIC 10	Selectfluor	CH ₃ CN	41	21
11	CIC 11	Selectfluor	CH ₃ CN	<5	-
12	CIC 12	Selectfluor	CH ₃ CN	<5	-
13	CIC 13	Selectfluor	CH ₃ CN	<5	-
14	CIC 14	Selectfluor	CH ₃ CN	74	12
15	CIC 15	Selectfluor	CH ₃ CN	69	14

^aReaction conditions: 3a (0.2 mmol), Catalyst (15 mol %), HNTs2 (1.5 equiv, 0.3 mmol), and Oxidant

(1.75 equiv) in Solvent (0.5M, 4 mL) were stirred in a Glass tube at RT for 24 h. ^bYields after purification

by column chromatography. cee was determined by HPLC.

Table S2 The amount of chiral a	aryl iodide	catalyst	CIC4
---------------------------------	-------------	----------	------

ОН -	Selectfluor (1.5 e CIC 4 (0 ~ 100 HNTs ₂ (1.5 equ CH ₃ CN, r.t., 24	equiv) mol%) ^{Jiv)}	
Entry ^a	CIC4 (mol %)	Yield of 4a (%) ^b	<i>ee</i> of 4a (%) ^c
1	0	0	0
2	5	67	22
3	10	74	37
4	15	79	43
5	20	83	49
6	30	83	48
7	50	83	49
8	100	82	49

^{*a*} Reaction conditions : 3a (0.2 mmol), Selectfluor (1.5 equiv.), HNTs₂ (1.5 equiv.), CH₃CN

(4 mL), r.t., for 24 h. b .Separation yield. c Enantioselectivity was obtained by HPLC analysis.

Table S3 Screening of oxidants

	Oxidant (1.5 equiv) CIC 4 (20 mol%) HNTs ₂ (1.5 equiv)	
3a	CH ₃ CN, r.t., 24h	

Entry ^a	Oxidant	Yield of $4a(\%)^b$	<i>ee</i> of 4a (%) ^c
1	Selectfluor	84	48
2	<i>m</i> -CPBA	78	47
3	CHP	-	-
4	H ₅ IO ₆	-	-
5	Triazox	73	44
6	NaOCl • 5H ₂ O	-	-
7	TBHP	-	-
8	TBPB	-	-

^{*a*} Reaction conditions : 3a (0.2 mmol), Oxidant (1.5 equiv.), HNTs₂ (1.5 equiv.), CH₃CN (4 mL), r.t., for 24 h.^{*b*}.Separation yield.^{*c*} Enantioselectivity was analyzed by HPLC.

Table 54 Screening of reaction solvent	Table	S4 Scre	ening o	f reaction	solvent
--	-------	---------	---------	------------	---------

Entry ^a	Solvent	Yield of $4a(\%)^b$	<i>ee</i> of 4a (%) ^c
1	Selectfluor+CH ₃ CN	84	48
2	Selectfluor+DMF	-	-
3	Selectfluor+DMSO	-	-
4	Selectfluor+HFIP	-	-
5	Selectfluor+MeOH	64	13
6	<i>m</i> -CPBA+CH ₃ CN	80	47
7	<i>m</i> -CPBA+CF ₃ Ph	79	76
8	<i>m</i> -CPBA+THF	-	-

9	<i>m</i> -CPBA+DCM	75	55
10	<i>m</i> -CPBA+ <i>t</i> BuOMe	-	-
11	<i>m</i> -CPBA+MeOH	59	12
12	<i>m</i> -CPBA+DCE	74	72
13	<i>m</i> -CPBA+CHCl ₃	71	70
14	<i>m</i> -CPBA+Toluene	63	36
15	<i>m</i> -CPBA+CCl ₄	77	47
16	<i>m</i> -CPBA+HFIP	-	-
17	<i>m</i> -CPBA+TFA	Trace	-
18	<i>m</i> -CPBA+Et ₂ O	48	33

^{*a*} Reaction conditions : 3a (0.2 mmol), CIC4 (20 mol %), Oxidant (1.5 equiv.), HNTs₂ (1.5 equiv.), Solvent (4 mL), r.t., for 24 h.^{*b*} Separation yield.^{*c*} Enantioselectivity was analyzed by HPLC.

Table S5 Screening of reaction temperature

	СРВА (СІС 4 НNTs ₂ (НNTs ₂ (СГ СГ Т (-15 24	(1.5 equiv) (20 mol%) (1.5 equiv) ₃Ph ~ 60°C) ¼h	
Entry ^a	Temperature (°C)	Yield of $4a(\%)^b$	<i>ee</i> of 4a (%) ^c
1	-15°C	61	40
2	0°C	64	63
3	25°C	79	77
4	40°C	82	95
5	50°C	83	89
6	60°C	85	82

^{*a*} Reaction conditions : 3a (0.2 mmol), mCPBA (1.5 equiv.), HNTs₂ (1.5 equiv.), CF₃Ph (4 mL), T °C, for 24 h.^{*b*} Separation yield.^{*c*} Enantioselectivity was obtained by HPLC analysis.

Fig. S1The curve of ee value of the product changing with temperature

ОН –	<i>m</i> CPBA (1.5 equiv) CIC 4 (20 mol%) HNTs ₂ (1.5 equiv) CF ₃ Ph,40 °C, Time	
Entry ^a	Time (h)	<i>ee</i> of 4a (%) ^b
1	5	23
2	10	28
3	15	47
4	20	68
5	25	96
6	30	97
7	35	99
8	40	98
9	50	98
10	60	91
11	70	94
12	80	93
13	90	89
14	100	82

 $^a\,$ Reaction conditions : 3a (0.2 mmol), mCPBA (1.5 equiv.), HNTs_2 (1.5 equiv.), CF_3Ph (4 mL), 40 $^\circ C$, for 5 to 100 h. b The enantioselectivity was obtained by HPLC analysis.

Fig. S2 The curve of the ee value of the product with the reaction time is shown.

Table S7 Screening of additives

^{*a*} Reaction conditions : 3a (0.2 mmol), mCPBA (1.5 equiv.), HNTs₂ (1.5 equiv.), CF₃Ph (4 mL),

40 °C, for 35 h, Additive (1.0 equiv.).^{*b*} separation yield.^{*c*} enantioselectivity was obtained by HPLC analysis.

5.2 Study on substrate applicability

^{*a*} Reaction conditions were as follows : 3 (0.2 mmol), mCPBA (1.5 equiv.), HNTs₂ (1.5 equiv.), CF₃Ph (4 mL), 40 °C, for 35 h.^{*b*} Separation yield.^{*c*} The enantioselectivity was analyzed by HPLC.^{*d*} Using catalyst CIC5.

5.3 Oxidative amination gram-scale reaction of alkenyl carboxylic acid

5.4 Recovery and reuse of catalyst

Recycle 1

6. Application of Chiral Aryl Iodine catalyzed Alkene Bifunctionalization Reaction in Drug SynthesisStructural characterization

Synthesis of **5b**: A 100 mL high-temperature and pressure-resistant reaction bottle was taken, and product **4b** (1 g, 1.7 mmol), resorcinol (935 mg, 8.5 mmol), HBr solution (16 mL, 33 % wt in acetic acid) were added. After all addition, the reaction was heated overnight at 85 °C. After the reaction is completed, the acetic acid in the solution is removed by a rotary evaporator. Distilled water (50 mL) was added to the residual liquid to dissolve, and then the water phase (50 mL × 3) was extracted and washed with Et₂O. The water phase was collected and the water phase was yellow. The pH of the aqueous phase was adjusted to >7 by adding saturated NaHCO₃ solution, and then the aqueous phase was extracted with DCM (50 mL × 3). The organic phase was dried, filtered, and decompressed to remove the solvent to obtain the crude product. The crude product was separated by column chromatography (DCM : MeOH = 10: 1) to obtain 313 mg yellow solid compound **5b** with a yield of 68 %.

Synthesis of **M'**: A 100 mL reaction flask was added with **5b** (313 mg, 1.18 mmol), K_2CO_3 (1.4 g, 9.9 mmol), 15 mL of iodoethane and 20 mL of THF solution, and refluxed at 69°C for 24 h. After the reaction, the solvent was removed by vacuum rotary evaporation. The residue was separated by column chromatography (DCM: MeOH = 15: 1) to obtain 334 mg of pale yellow solid compound **M'**, with a yield of 88 % and an enantioselectivity of 20 % *ee*.

7 Structural characterization

7.1 Characterization of the catalysts

Dibenzyl 2,2'-((2-iodo-1,3-phenylene)bis(oxy))(2R,2'R)-dipropionate (CIC 1) : Colorless oil; (89 %.); (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.23 (m, 10H), 7.00 (t, *J* = 8.2 Hz, 1H), 6.30 (d, *J* = 8.4 Hz, 2H), 5.17 (s, 4H), 4.79 (q, *J* = 6.8 Hz, 2H), 1.70 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.48, 158.23, 135.36, 129.55, 128.58, 128.39, 128.23, 107.05, 80.73, 74.23, 66.92, 18.56. HRMS (ESI) *m/z*: C₂₆H₂₅IO₆ [M + H]⁺ Cal: 561.0769; Found: 561.0770.

Dimethyl 2,2'-((2-iodo-1,3-phenylene)bis(oxy))(2R,2'R)-bis(3-phenylpropanoate) (CIC 2).^[1] Colorless oil; (80 %.); (EtOAc/petroleum ether = 1:8); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.33 (m, 4H), 7.29 – 7.18 (m, 6H), 7.00 (td, *J* = 8.4, 2.3 Hz, 1H), 6.17 (d, *J* = 8.3 Hz, 2H), 4.77 (dd, *J* = 7.8, 4.2 Hz, 2H), 3.61 (d, *J* = 2.6 Hz, 6H), 3.28 (qt, *J* = 14.1, 6.2 Hz, 4H). HRMS (ESI) *m/z*: C₂₆H₂₅IO₆ [M + H]⁺ Cal: 561.0769; Found: 561.0771.

[1]J.C. Sarie, C. Thiehoff, J. Neufeld, C.G. Daniliuc, R. Gilmour, Enantioselective Synthesis of 3-Fluorochromanes via Iodine(I)/Iodine(III) Catalysis, *Angew. Chem. Int. Ed.*, 2020, **59**(35), 15069-15075.

S21

(2R,2'R)-2,2'-((2-iodo-1,3-phenylene)bis(oxy))bis(N-isopropyl-N-phenylpropanamide)

(CIC 3). White solid (63%.); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-d) δ 7.34 (h, J = 9.7, 8.4 Hz, 6H), 7.06 – 6.98 (m, 3H), 6.91 (d, J = 7.2 Hz, 2H), 6.26 (d, J = 8.2 Hz, 2H), 5.01 (p, J = 6.9 Hz, 2H), 4.40 (q, J = 6.4 Hz, 2H), 1.47 (d, J = 6.4 Hz, 6H), 1.03 (t, J = 5.9 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.74, 158.14, 137.04, 130.37, 130.26, 129.47, 129.13, 128.78, 128.60, 109.09, 83.64, 73.81, 46.64, 20.83, 20.74, 18.13, 17.88. HRMS (ESI) *m/z*: C₃₀H₃₅IN₂O₄[M+H]⁺ Cal: 615.1714; Found: 615.1714.

(2R,2'R)-2,2'-((2-iodo-1,3-phenylene)bis(oxy))bis(N-methyl-N-(naphthalen-1-

yl)propanamide) (CIC 4). Yellow solid (66%.); (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.67 (m, 5H), 7.60 – 7.30 (m, 8H), 7.13 – 6.79 (m, 2H), 6.14 (dt, *J* = 20.7, 8.2 Hz, 2H), 4.58 – 4.35 (m, 2H), 3.37 (dd, *J* = 12.7, 4.8 Hz, 6H), 1.49 (dd, *J* = 24.2, 6.5 Hz, 3H), 1.35 (dd, *J* = 12.1, 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.51, 171.13, 157.95, 138.67, 138.52, 134.74, 129.96, 129.92, 129.87, 129.23, 129.12, 128.96, 128.82, 128.77, 128.56, 128.47, 127.44, 127.25, 126.99, 126.66, 125.89, 125.55, 122.62, 122.10, 109.56, 109.16, 83.91, 73.47, 37.70, 18.20. HRMS (ESI) *m/z*: C₃₄H₃₁IN₂O₄ [M+H]⁺ Cal: 659.1401; Found: 659.1400.

Di(9H-fluoren-9-yl) 2,2'-((2-iodo-1,3-phenylene)bis(oxy))(2R,2'R)-bis(3-phenylpropanoate) (CIC 5). White solid (70%.); (EtOAc/petroleum ether = 1:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (t, *J* = 7.1 Hz, 4H), 7.47 – 7.41 (m, 4H), 7.40 – 7.36 (m, 3H), 7.26 (ddd, *J* = 45.7, 14.0, 7.2 Hz, 11H), 7.12 (t, *J* = 7.5 Hz, 2H), 7.04 – 6.95 (m, 3H), 6.71 (s, 2H), 6.33 (d, *J* = 8.3 Hz, 2H), 4.95 (dd, *J* = 7.8, 5.2 Hz, 2H), 3.45 (dd, *J* = 13.9, 7.8 Hz, 2H), 3.36 (dd, *J* = 14.0, 5.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.26, 158.15, 141.44, 141.17, 141.07, 140.99, 135.75, 130.09, 129.71, 129.63, 129.39, 128.57, 127.85, 127.83, 127.16, 126.21, 125.71, 120.08, 120.03, 106.44, 78.84, 75.99, 39.05. HRMS (ESI) *m/z*: C₅₀H₃₇IO₆ [M + H]⁺ Cal: 861.1708; Found: 861.1710.

Di-tert-butyl 2,2'-((2-iodo-5-methyl-1,3-phenylene)bis(oxy))(2R,2'R)-bis(3-phenylpropanoate) (CIC 6). Colorless oil; (64 %.); (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, J = 6.8 Hz, 4H), 7.31 (t, J = 7.1 Hz, 4H), 7.27 – 7.23 (m, 2H), 6.11 (d, J = 8.0 Hz, 2H), 4.70 (dt, J = 8.4, 4.3 Hz, 2H), 3.35 (dd, J = 14.0, 7.7 Hz, 2H), 3.25 (dd, J = 14.0, 4.9 Hz, 2H), 2.18 (s, 3H), 1.32 (s, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.64, 157.93, 157.86, 139.43, 136.39, 130.08, 128.26, 126.85, 107.16, 107.04, 82.10, 38.99, 27.80, 27.77, 21.70. HRMS (ESI) *m/z*: C₃₃H₃₉IO₆ [M + H]⁺ Cal: 659.1864; Found: 659.1863.

Di(pyren-1-yl) 2,2'-((2-iodo-5-methyl-1,3-phenylene)bis(oxy))(2R,2'R)-dipropionate (CIC 7). White solid (75%.); (EtOAc/petroleum ether = 1:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 – 8.11 (m, 6H), 8.06 – 7.96 (m, 8H), 7.93 – 7.87 (m, 2H), 7.76 (d, J = 8.1 Hz, 2H), 6.70 (s, 2H), 5.30 (q, J = 7.0 Hz, 2H), 2.46 (s, 3H), 2.10 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.86, 158.30, 143.71, 140.72, 131.10, 130.87, 129.54, 128.28, 127.33, 127.04, 126.39, 125.63, 125.57, 125.34, 124.94, 124.43, 123.04, 119.96, 119.28, 108.80, 74.59, 22.06, 18.95. HRMS (ESI) *m/z*: C₄₅H₃₁IO₆ [M + H]⁺ Cal: 795.1238; Found: 795.1239.

Di(naphthalen-1-yl)2,2'-((2-iodo-1,3-phenylene)bis(oxy))(2R,2'R)-dipropionate (CIC 8).

White solid (71%.); (EtOAc/petroleum ether = 1:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.65 (t, *J* = 7.3 Hz, 4H), 7.39 (dt, *J* = 20.3, 7.3 Hz, 6H), 7.24 (t, *J* = 8.3 Hz, 1H), 7.17 – 7.13 (m, 2H), 6.64 (d, *J* = 8.2 Hz, 2H), 5.12 (q, *J* = 6.4 Hz, 2H), 1.93 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.20, 157.45, 145.06, 133.62, 128.91, 126.98, 125.53, 125.28, 124.24, 119.98, 116.69, 106.40, 73.51, 17.78. HRMS (ESI) *m/z*: C₃₂H₂₅IO₆ [M + H]⁺ Cal: 633.0769; Found: 633.0776.

Bis(2,4,6-trimethylbenzyl)2,2'-((2-iodo-1,3-phenylene)bis(oxy))(2R,2'R)-dipropionate

(CIC 9). White solid (70%.); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02 (t, *J* = 8.3 Hz, 1H), 6.86 (s, 4H), 6.32 (dd, *J* = 8.3, 3.8 Hz, 2H), 5.24 (qd, *J* = 12.1, 3.4 Hz, 4H), 4.75 (q, *J* = 6.7 Hz, 2H), 2.29 (d, *J* = 6.0 Hz, 18H), 1.69 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.80, 158.27, 138.66, 138.29, 129.41, 129.09, 128.44, 106.97, 74.26, 61.94, 21.04, 19.51, 18.59. HRMS (ESI) *m/z*: C₃₂H₃₇IO₆ [M + Na]⁺ Cal: 667.1527; Found: 667.1532.

2-iodo-3-(((R)-1,2,3,4-tetrahydronaphthalene-1-carbonyl)oxy)phenyl (S)-1,2,3,4tetrahydronaphthalene-1-carboxylate (CIC 10). Yellow solid (65%.); (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.32 (m, 3H), 7.27 – 7.19 (m, 4H), 7.19 – 7.15 (m, 2H), 6.97 (d, *J* = 8.1 Hz, 2H), 4.17 (t, *J* = 5.9 Hz, 2H), 2.88 (dtd, *J* = 23.4, 16.7, 6.2 Hz, 4H), 2.47 (qd, *J* = 8.1, 2.7 Hz, 2H), 2.19 (dddd, *J* = 32.7, 17.3, 8.9, 3.5 Hz, 4H), 1.87 (ddd, *J* = 13.9, 10.3, 6.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.14, 152.67, 137.52, 132.32, 129.89, 129.58, 129.44, 127.24, 125.96, 120.21, 88.06, 44.92, 29.11, 26.59, 20.58. HRMS (ESI) *m/z*: C₂₈H₂₅IO₄ [M + Na]⁺ Cal: 575.0690; Found: 575.0710.

2-*iodo-5-methyl-1,3-phenylene (2S,2'S)-bis(2-(4-isobutylphenyl)propanoate)* (CIC 11). White solid (58%.); (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 4H), 7.15 (d, *J* = 7.6 Hz, 4H), 6.69 (s, 2H), 3.99 (q, *J* = 7.3 Hz, 2H), 2.48 (d, *J* = 7.2 Hz, 4H), 2.27 (s, 3H), 1.86 (dq, *J* = 14.1, 7.1 Hz, 2H), 1.66 (d, *J* = 7.0 Hz, 6H), 0.98 – 0.89 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.13, 152.10, 140.96, 140.21, 136.70, 129.47, 127.70, 120.95, 83.49, 45.37, 45.08, 30.25, 22.44, 20.96, 18.43. HRMS (ESI) *m/z*: C₃₃H₃₉IO₄ [M + H]⁺ Cal: 627.1966; Found: 627.1961.

2-iodo-5-methyl-1,3-phenylene (2S,2'S)-bis(2-(6-methoxynaphthalen-2-yl)propanoate) (CIC 12). Yellow solid (59%.); (EtOAc/petroleum ether = 1:1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.72 (m, 6H), 7.53 (dd, *J* = 8.6, 1.9 Hz, 2H), 7.20 – 7.12 (m, 4H), 6.66 (s, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 6H), 2.23 (s, 3H), 1.74 (d, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.08, 157.78, 152.09, 140.31, 134.57, 133.93, 129.41, 128.97, 127.33, 126.61, 126.53, 120.98, 119.11, 105.63, 83.57, 55.35, 45.68, 20.93, 18.53. HRMS (ESI) *m/z*: C₃₅H₃₁IO₆ [M + H]⁺ Cal: 675.1238; Found: 675.1228.

(S)-1-phenylethyl 2-iodo-3-methylbenzoate (CIC 13). Colourless oil (75%.); (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 7.5 Hz, 2H), 7.38 – 7.25 (m, 5H), 7.22 (t, *J* = 7.5 Hz, 1H), 6.12 (q, *J* = 6.6 Hz, 1H), 2.47 (s, 3H), 1.68 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.60, 143.35, 141.19, 138.73, 131.64, 128.55, 128.05, 127.77, 127.01, 126.39, 99.84, 74.05, 29.63, 22.15. HRMS (ESI) *m/z*: C₁₆H₁₅IO₂ [M + H]⁺ Cal: 367.0189; Found: 367.0190.

((1R,1'R)-((2-iodo-1,3-phenylene)bis(oxy))bis(ethane-1,1-diyl))dibenzene (CIC 14). Colourless oil

(82%.); (EtOAc/petroleum ether = 1:50); ¹H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.29 (m, 4H), 7.29 – 7.20 (m, 4H), 7.20 – 7.16 (m, 2H), 6.81 (t, J = 8.3 Hz, 1H), 6.17 (d, J = 8.3 Hz, 2H), 5.27 (q, J = 6.4 Hz, 2H), 1.62 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.99, 142.87, 129.12, 128.62, 127.52, 125.65, 106.99, 81.04, 77.38, 24.57. HRMS (ESI) *m/z*: C₂₂H₂₁IO₂ [M + H]⁺ Cal: 445.0659; Found: 445.0661.

(S)-1-iodo-2-(1-phenylethoxy)benzene (CIC 15). Pale yellow oily (58%.); (EtOAc/petroleum ether = 1:50);¹H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.61 (m, 1H), 7.32 (d, J = 7.1 Hz, 2H), 7.29 – 7.16 (m, 3H), 7.04 (t, J = 7.7 Hz, 1H), 6.56 (dq, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 4.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 6.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 6.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9, 5.2 Hz, 2H), 5.27 (q, J = 6.2, 6.9 Hz, 1H), 1.62 (d, J = 10.8, 6.9 Hz, 1H), 5.27 (q, J = 10.8, 6.9 Hz = 3.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.50, 142.59, 139.48, 129.18, 128.69, 127.64, 125.68, 122.52, 114.19, 87.69, 77.38, 24.50. HRMS (ESI) *m/z*: C₁₄H₁₃IO [M + H]⁺ Cal: 325.0084; Found: 325.0078.

7.2 Characterization of Vinyl Carboxylic Acid Substrates

2,2-diphenylpent-4-enoic acid (3a). White solid (86%.); (EtOAc/petroleum ether = 1:5); ¹H NMR $(400 \text{ MHz}, \text{DMSO-}d_6) \delta 7.34 - 7.18 \text{ (m, 10H)}, 5.56 \text{ (ddt}, J = 17.2, 10.3, 6.9 \text{ Hz}, 1\text{H}), 4.96 - 4.85 \text{ (m, 2H)}, 4.96 - 4.85 \text$ 3.11 (d, J = 6.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 174.81, 142.88, 134.65, 128.66, 127.69, 126.48, 117.92, 59.51, 42.08. HRMS (ESI) *m/z*: C₁₇H₁₆O₂ [M-H]⁻Cal: 251.1078; Found: 251.1079.

9-allyl-9H-fluorene-9-carboxylic acid (3b). Pale yellow solid (64%.); (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.3 Hz, 2H), 7.34 (dt, J = S26 23.8, 7.6 Hz, 4H), 5.58 (dq, *J* = 17.1, 8.1 Hz, 1H), 4.92 (dd, *J* = 28.7, 13.7 Hz, 2H), 2.73 (t, *J* = 6.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 146.48, 140.43, 135.40, 127.00, 126.84, 124.61, 119.87, 117.08, 46.16, 36.68. HRMS (ESI) *m/z*: C₁₇H₁₄O₂ [M + H]⁺Cal: 251.1067; Found: 251.1067.

1-allylcyclopentane-1-carboxylic acid (**3**c). Pale yellow oil (67%); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.09 (s, 1H), 5.69 (ddt, *J* = 17.3, 10.2, 7.2 Hz, 1H), 5.08 – 4.96 (m, 2H), 2.28 (d, *J* = 7.2 Hz, 2H), 2.01 – 1.89 (m, 2H), 1.56 (qt, *J* = 7.0, 4.9, 3.6 Hz, 4H), 1.44 (tt, *J* = 8.5, 3.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 178.14, 135.22, 117.25, 52.68, 42.30, 34.96, 24.56. HRMS (ESI) *m/z*: C₉H₁₄O₂ [M–H]⁻Cal: 153.0921; Found: 153.0934.

1-allylcyclohexane-1-carboxylic acid (3d). Pale yellow oil (59%); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.14 (s, 1H), 5.67 (ddt, *J* = 15.7, 10.8, 7.5 Hz, 1H), 5.05 – 4.94 (m, 2H), 2.17 (d, *J* = 7.5 Hz, 2H), 1.89 (dd, *J* = 13.1, 5.1 Hz, 2H), 1.50 (tq, *J* = 9.6, 4.4 Hz, 3H), 1.34 – 1.12 (m, 5H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.01, 133.92, 117.40, 45.91, 43.89, 33.19, 25.35, 22.69. HRMS (ESI) *m/z*: C₁₀H₁₆O₂ [M–H]⁻Cal: 167.1078; Found: 167.1079.

1-allylcycloheptane-1-carboxylic acid (3e). Yellow oil (66%); (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.11 (s, 1H), 5.72 – 5.58 (m, 1H), 5.07 – 4.94 (m, 2H), 2.19 (d, *J* = 7.4 Hz, 2H), 1.94 (t, *J* = 9.4 Hz, 2H), 1.44 (dq, *J* = 18.7, 10.3 Hz, 10H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 178.05, 134.60, 117.50, 48.68, 44.47, 35.40, 29.46, 23.05. HRMS (ESI) *m/z*: C₁₁H₁₈O₂ [M–H]⁻ Cal: 181.1234; Found: 181.1235.

9-allyl-9H-xanthene-9-carboxylic acid (**3f**). Yellow solid (48%); (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.29 (t, *J* = 7.7 Hz, 4H), 7.18 – 7.05 (m, 4H), 5.13 (ddt, *J* = 17.4, 10.7, 7.1 Hz, 1H), 4.82 – 4.67 (m, 2H), 2.99 (d, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.34, 149.94, 132.95, 128.69, 127.51, 123.37, 121.52, 118.90, 116.12, 49.10, 44.42. HRMS (ESI) *m/z*: C₁₇H₁₄O₃ [M–H]⁻ Cal: 265.0870; Found: 265.0878.

4-methyl-2,2-diphenylpent-4-enoic acid (3g). White solid (70%); (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, DMSO-d₆) δ 7.32 – 7.24 (m, 8H), 7.23 – 7.15 (m, 2H), 4.68 – 4.63 (m, 1H), 4.50 (d, J = 2.4 Hz, 1H), 3.12 (s, 2H), 1.32 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 174.67, 143.64, 142.06, 128.62, 127.56, 126.34, 114.71, 59.33, 45.05, 24.15. HRMS (ESI) *m/z*: C₁₈H₁₈O₂ [M + H]⁺ Cal: 267.1380; Found: 263.1378.

2,2-diethylpent-4-enoic acid (3i). Colorless oil (62%); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.09 (s, 1H), 5.66 (ddt, *J* = 17.3, 10.2, 7.3 Hz, 1H), 5.14 – 4.97 (m, 2H), 2.22 (d, *J* = 7.4 Hz, 2H), 1.49 – 1.44 (m, 4H), 0.84 (t, 3H), 0.75 (t, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.25, 134.30, 117.52, 48.04, 36.83, 26.61, 24.38, 11.60, 8.23. HRMS (ESI) *m/z*: C₉H₁₆O₂ [M–H]⁻Cal: 155.1078; Found: 155.1079.

2,2-dipropylpent-4-enoic acid (**3**j). Colorless oil (63%); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.12 (s, 1H), 5.67 (ddt, *J* = 17.4, 10.3, 7.4 Hz, 1H), 5.25 – 4.75 (m, 2H), 2.23 (d, *J* = 7.4 Hz, 2H), 1.46 – 1.35 (m, 4H), 1.25 – 1.11 (m, 4H), 0.85 (q, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.46, 134.37, 117.54, 47.96, 44.41, 37.86, 36.99, 34.10, 20.08, 16.79, 14.48, 13.84. HRMS (ESI) *m/z*: C₁₁H₂₀O₂ [M–H]⁻Cal: 183.1391; Found: 183.1392.

2,2-diphenylhex-5-enoic acid (3k). White solid (65%); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.79 (s, 1H), 7.28 (dq, *J* = 15.1, 7.3 Hz, 10H), 5.77 (ddt, *J* = 16.6, 9.3, 6.1 Hz, 1H), 4.90 (d, *J* = 11.6 Hz, 2H), 2.45 – 2.29 (m, 2H), 1.75 (q, *J* = 7.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.92, 143.14, 138.29, 128.57, 127.79, 126.49, 114.60, 59.40, 36.65, 29.42. HRMS (ESI) *m/z*: C₁₈H₁₈O₂ [M–H]⁻Cal: 265.1234; Found: 265.1235.

3,3-dimethylpent-4-enoic acid (**3m**). Colorless oil (69%); (EtOAc/petroleum ether = 1:8); ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.93 (s, 1H), 5.90 (dd, *J* = 17.5, 10.7 Hz, 1H), 4.98 – 4.86 (m, 2H), 2.19 (s, 2H), 1.07 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.52, 147.18, 110.49, 46.02, 35.40, 26.59. HRMS (ESI) *m/z*: C₇H₁₂O₂ [M–H]-Cal: 127.0765; Found: 127.0767.

5-methyl-2,2-diphenylhex-4-enoic acid (3n). White solid (67%); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, DMSO- d_6) δ 12.74 (s, 1H), 7.31 – 7.20 (m, 10H), 5.03 (td, J = 6.8, 3.6 Hz, 1H), 3.03 (d, J = 6.9 Hz, 2H), 1.52 (s, 3H), 1.24 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 175.07, 143.09, 133.43, 128.71, 127.55, 126.32, 120.12, 59.79, 36.37, 25.66, 17.36. HRMS (ESI) m/z: C₁₉H₂₀O₂ [M + H]⁺ Cal: 281.1536; Found: 281.1564.

2-allyl-2,3-dihydro-1H-indene-2-carboxylic acid (**3o**). White solid (50%); (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.17 (dt, *J* = 7.4, 3.6 Hz, 2H), 7.14 – 7.04 (m, 2H), 5.72 (ddt, *J* = 17.5, 10.4, 7.2 Hz, 1H), 5.14 – 4.97 (m, 2H), 3.34 (s, 1H), 3.30 (s, 1H), 2.86 (d, *J* = 16.2 Hz, 2H), 2.41 (d, *J* = 7.3 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.34, 141.17, 134.47, 126.34, 124.27, 117.92, 52.92, 42.02, 41.19. HRMS (ESI) *m/z*: C₁₃H₁₄O₂ [M–H]⁻Cal: 201.0921; Found: 201.0922.

1-allylcyclopropane-1-carboxylic acid (**3p**). Colorless oil (47%); (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.10 (s, 1H), 5.83 (ddt, *J* = 16.9, 10.1, 6.7 Hz, 1H), 5.06 – 4.94 (m, 2H), 2.23 (d, *J* = 6.7 Hz, 2H), 1.03 (q, *J* = 3.7 Hz, 2H), 0.70 (q, *J* = 3.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 175.89, 136.14, 116.18, 36.62, 22.21, 14.03. HRMS (ESI) *m/z*: C₇H₁₀O₂ [M–H]⁻Cal: 125.0608; Found: 125.0608.

1-allylcyclobutane-1-carboxylic acid (**3q**). Colorless oil (53%); (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, DMSO-*d*₆) δ 5.68 (ddt, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.12 – 4.99 (m, 2H), 2.43 (d, *J* = 7.0 Hz, 2H), 2.27 (td, *J* = 9.9, 8.7, 4.0 Hz, 2H), 1.90 – 1.74 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.44, 134.25, 117.41, 46.21, 41.17, 28.75, 14.75. HRMS (ESI) *m/z*: C₈H₁₂O₂ [M–H]⁻ Cal: 139.0765; Found: 139.0765.

2,2-difluoropent-4-enoic acid (3r). Yellow oil (66%); (EtOAc/petroleum ether = 1:2); ¹H NMR (400

MHz, DMSO-*d*₆) δ 5.71 (ddt, *J* = 17.2, 10.0, 7.0 Hz, 1H), 5.27 (t, *J* = 13.8 Hz, 2H), 2.85 (td, *J* = 17.0, 7.0 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.04, 164.73, 164.42, 127.72, 127.66, 127.61, 121.58, 118.03, 115.55, 113.07, 38.46, 38.23, 37.99. HRMS (ESI) *m/z*: C₅H₆F₂O₂ [M−H]⁻Cal: 135.0263; Found: 135.0262.

2,2-dibenzylpent-4-enoic acid (3s). Yellow oil (89%); (EtOAc/petroleum ether = 1:4); ¹H NMR (400 MHz, DMSO- d_6) δ 12.64 (s, 1H), 7.30 – 7.16 (m, 10H), 6.05 (ddt, J = 17.1, 10.1, 6.8 Hz, 1H), 5.26 – 5.05 (m, 2H), 3.01 (d, J = 13.6 Hz, 2H), 2.82 (d, J = 13.7 Hz, 2H), 2.08 (d, J = 6.9 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 181.36, 142.68, 139.72, 135.15, 133.23, 131.62, 123.88, 56.03, 46.67, 40.35. HRMS (ESI) m/z: C₁₉H₂₀O₂ [M–H]⁻Cal: 279.1391; Found: 279.1391.

4-allyl-1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (3t). White solid (60%); (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, DMSO- d_6) δ 12.51 (s, 1H), 5.67 (ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 5.09 – 5.01 (m, 2H), 3.69 (dt, J = 14.0, 4.1 Hz, 2H), 2.87 (s, 2H), 2.23 (d, J = 7.3 Hz, 2H), 1.88 (dt, J = 13.4, 3.6 Hz, 2H), 1.38 (s, 9H), 1.28 (ddd, J = 13.9, 11.0, 4.2 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 176.12, 153.86, 133.32, 118.14, 78.52, 44.59, 43.03, 32.36, 28.04. HRMS (ESI) *m/z*: C₁₄H₂₃NO₄ [M–H]⁻Cal: 268.1554; Found: 268.1554.

4-allyltetrahydro-2H-pyran-4-carboxylic acid (**3u**). Pale yellow oil (65%); (EtOAc/petroleum ether = 1:4); ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.46 (s, 1H), 5.68 (ddt, *J* = 17.5, 10.5, 7.4 Hz, 1H), 5.09 – 4.95 (m, 2H), 3.70 (dt, *J* = 11.9, 3.9 Hz, 2H), 3.32 (td, *J* = 11.3, 2.5 Hz, 2H), 2.23 (d, *J* = 7.4 Hz, 2H), 1.87 (d, *J* = 13.7 Hz, 2H), 1.40 (ddd, *J* = 14.4, 10.8, 4.5 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 176.31, 133.23, 118.03, 64.36, 43.85, 43.67, 33.28. HRMS (ESI) *m/z*: C₉H₁₄O₃ [M–H]⁻Cal: 169.0870; Found: 169.0870.

7.3 Data characterization and chiral results of aminolactone products

4-methyl-N-((5-oxo-4,4-diphenyltetrahydrofuran-2-yl)methyl)-Ntosylbenzenesulfonamide (4a). TLC (PE:EA = 4:1), $R_f = 0.54$, Pale yellow solid, yield 83 %; (EtOAc/petroleum ether = 1:5);¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.0 Hz, 4H), 7.24 – 7.11 (m, 14H), 4.51 (dq, *J* = 10.7, 5.4 Hz, 1H), 4.07 (dd, *J* = 15.7, 6.3 Hz, 1H), 3.78 (dd, *J* = 15.7, 5.0 Hz, 1H), 2.86 (dd, *J* = 13.1, 5.1 Hz, 1H), 2.59 (dd, *J* = 13.2, 10.3 Hz, 1H), 2.34 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.96, 145.36, 141.46, 139.46, 136.32, 129.77, 128.96, 128.58, 128.44, 127.81, 127.67, 127.35, 127.23, 57.76, 51.19, 40.97, 21.71. HRMS (ESI) *m/z*: C₃₁H₂₉NO₆S₂ [M + H]⁺Calcd for: 576.1509; Found: 576.1503. ^{[*a*]²⁵_D -6.312 (c = 1.0, CHCl₃). Enantiomeric excess: 99%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R = 11.326 min (minor), t_R = 13.337 min (major).}

4-methyl-N-((2'-oxo-4',5'-dihydro-2'H-spiro[fluorene-9,3'-furan]-5'-yl)methyl)-Ntosylbenzenesulfonamide (4b). TLC (PE:EA = 3:1), R_f = 0.41, White solid, yield of 48 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, J = 8.2 Hz, 4H), 7.73 (d, J = 7.6 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.32 (dt, J = 19.3, 7.8 Hz, 8H), 5.29 (dtd, J = 10.8, 6.7, 4.3 Hz, 1H), 4.38 (dd, J = 15.8, 7.0 Hz, 1H), 3.97 (dd, J = 15.8, 4.5 Hz, 1H), 2.71 (dd, J = 13.5, 10.0 Hz, 1H), 2.60 (dd, J = 13.5, 6.5 Hz, 1H), 2.43 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.68, 145.52, 145.48, 144.70, 141.44, 140.62, 136.23, 129.82, 128.96, 128.93, 128.82, 128.34, 128.05, 123.60, 122.81, 120.69, 120.41, 58.48, 52.10, 38.95, 21.71. HRMS (ESI) *m*/*z*: C₃₁H₂₇NO₆S₂ [M + H]⁺ Calcd for: 574.1353; Found: 574.1352. [α]²⁵_D -61.964 (c = 1.0, CHCl₃). Enantiomeric excess: 90%, determined by HPLC (ChiracelIA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.2 mL/min, T = 50 °C, 245 nm): $t_R = 8.034$ min (major), $t_R = 11.584$ min (minor).

4-methyl-N-((1-oxo-2-oxaspiro[4.4]nonan-3-yl)methyl)-N-tosylbenzenesulfonamid (4c). TLC (PE:EA = 5:1), R_f = 0.45, Pale yellow solid, yield 70 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.5 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 4.74 – 4.63 (m, 1H), 4.11 (dd, J = 15.7, 7.3 Hz, 1H), 3.70 (dd, J = 15.8, 4.5 Hz, 1H), 2.46 (s, 6H), 2.17 – 2.07 (m, 2H), 1.87 – 1.75 (m, 4H), 1.72 – 1.57 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.20, 145.33, 136.28, 129.69, 128.75, 51.71, 49.79, 40.26, 37.41, 36.87, 25.41, 25.35, 21.69. HRMS (ESI) *m/z*: C₂₃H₂₇NO₆S₂ [M + H]⁺ Calcd for: 478.1353; Found: 478.1354. $[\alpha]_D^{25}$ -2.798 (c = 1.0, CHCl₃). Enantiomeric excess: 64%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R =

8.758 min (minor), $t_R = 10.826$ min (major).

4-methyl-N-((1-oxo-2-oxaspiro[4.5]decan-3-yl)methyl)-N-tosylbenzenesulfonamide (4d). TLC (PE:EA = 5:1), R_f = 0.47, Pale yellow solid, yield 63 %; (EtOAc/petroleum ether = 1:5);¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 6.6 Hz, 4H), 7.36 (d, *J* = 7.9 Hz, 4H), 4.70 (ddt, *J* = 10.3, 8.0, 5.4 Hz, 1H), 4.15 – 4.04 (m, 1H), 3.75 – 3.65 (m, 1H), 2.46 (s, 6H), 2.29 – 2.21 (m, 1H), 1.72 (dq, *J* = 44.4, 12.2, 11.3 Hz, 6H), 1.44 (d, *J* = 13.0 Hz, 1H), 1.41 – 1.12 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 180.27, 145.33, 136.31, 129.69, 128.76, 52.09, 44.60, 36.69, 34.09, 31.71, 25.20, 22.09, 22.01, 21.69. HRMS (ESI) *m/z*: $C_{24}H_{29}NO_6S_2$ [M + H]⁺Calcd for: 492.1509; Found: 492.1510. $[\alpha]_D^{25}$ +6.555 (c = 1.0, CHCl₃). Enantiomeric excess: 66%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R = 9.218 min (minor), t_R = 10.443 min (major).

4-methyl-N-((1-oxo-2-oxaspiro[4.6]undecan-3-yl)methyl)-N-tosylbenzenesulfonamide (4e). TLC (PE:EA = 3:1), R_f = 0.56, Pale yellow solid, yield 67 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.0 Hz, 4H), 7.35 (d, J = 8.0 Hz, 4H), 4.68 (dtd, J = 10.5, 6.7, 4.2 Hz, 1H), 4.14 – 4.04 (m, 1H), 3.69 (dd, J = 15.7, 4.5 Hz, 1H), 2.46 (s, 6H), 2.16 (dd, J = 12.9, 6.2 Hz, 1H), 1.95 (ddd, J = 14.5, 10.5, 2.0 Hz, 1H), 1.84 – 1.72 (m, 2H), 1.71 – 1.66 (m, 2H), 1.63 (s, 2H), 1.60 – 1.54 (m, 2H), 1.54 – 1.47 (m, 2H), 1.44 – 1.32 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 181.17, 145.32, 136.31, 129.68, 128.75, 52.02, 47.11, 39.28, 36.96, 35.45, 29.27, 29.15, 23.57, 23.50, 21.69. HRMS (ESI) *m/z*: C₂₅H₃₁NO₆S₂ [M + H]⁺ Calcd for: 506.1666; Found: 506.1670. $[\alpha]_D^{25}$ +7.682 (c = 1.0, CHCl₃). Enantiomeric excess: 73%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R = 8.995 min (minor), t_R = 11.957 min (major).

4-methyl-N-((2-oxo-4,5-dihydro-2H-spiro[furan-3,9'-xanthen]-5-yl)methyl)-Ntosylbenzenesulfonamide (4f). TLC (PE:EA = 3:1), R_f = 0.49, Yellow solid, yield of 27 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.1 Hz, 4H), 7.37 – 7.28 (m, 6H), 7.19 – 7.00 (m, 6H), 5.05 – 4.86 (m, 1H), 4.28 (dd, J = 15.8, 7.2 Hz, 1H), 3.78 (dd, J = 15.7, 4.6 Hz, 1H), 2.56 (dd, J = 13.5, 6.4 Hz, 1H), 2.46 (s, 6H), 2.22 (dd, J = 13.5, 9.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.90, 151.50, 150.71, 145.47, 136.22, 129.76, 129.34, 129.13, 128.75, 127.12, 125.57, 124.30, 124.05, 122.88, 122.18, 117.50, 116.76, 51.66, 49.42, 46.68, 21.70. HRMS (ESI) *m/z*: C₃₁H₂₇NO₇S₂ [M + H]⁺ Calcd for: 590.1302; Found: 590.1302. $[\alpha]_D^{25}$ +1.015(c = 1.0, CHCl₃). Enantiomeric excess: 81%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 245 nm): t_R = 15.583 min (major), t_R = 17.248 min (minor).

4-methyl-N-((2-methyl-5-oxo-4,4-diphenyltetrahydrofuran-2-yl)methyl)-N-

tosylbenzenesulfonamide (4g). TLC (PE:EA = 5:1), $R_f = 0.48$, White solid, yield 59 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.91 (m, 4H), 7.36 – 7.30 (m, 4H), 7.26 – 7.19 (m, 8H), 7.12 – 7.05 (m, 2H), 4.23 (d, *J* = 16.4 Hz, 1H), 3.93 (d, *J* = 16.3 Hz, 1H), 3.20 (d, *J* = 13.9 Hz, 1H), 2.92 (d, *J* = 13.8 Hz, 1H), 2.37 (s, 6H), 1.13 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.64, 145.09, 142.58, 142.19, 136.75, 129.63, 128.88, 128.63, 128.38, 127.33, 127.26, 126.98, 82.91, 57.77, 56.20, 44.84, 24.89, 21.67. HRMS (ESI) *m/z*: C₃₂H₃₁NO₆S₂ [M + H]⁺ Calcd for: 590.1666; Found: 590.1660. $[\alpha]_D^{25} + 1.870$ (c = 1.0, CHCl₃). Enantiomeric excess: 97%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R = 6.428 min

(minor), $t_R = 8.737 \text{ min}$ (major).

N-((4,4-dimethyl-5-oxotetrahydrofuran-2-yl)methyl)-4-methyl-N-

tosylbenzenesulfonamide (4h). TLC (PE:EA = 3:1), $R_f = 0.42$, White solid, yield 68 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.0 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 4.73 (tq, J = 10.4, 5.7, 4.8 Hz, 1H), 4.10 (dd, J = 15.8, 7.3 Hz, 1H), 3.70 (dd, J = 15.9, 4.1 Hz, 1H), 2.46 (s, 6H), 2.10 (dd, J = 12.9, 6.2 Hz, 1H), 1.77 (dd, J = 12.8, 9.8 Hz, 1H), 1.23 (s, 3H), 1.20 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.62, 144.32, 135.22, 128.67, 127.74, 74.25, 50.87, 39.62, 39.12, 23.91, 23.38, 20.68. HRMS (ESI) *m/z*: C₂₁H₂₅NO₆S₂ [M + H]⁺ Calcd for: 452.1196; Found: 452.1191. $[\alpha]_D^{25}$ -3.792 (c = 1.0, CHCl₃). Enantiomeric excess: 62%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R = 7.323 min (minor), t_R = 9.637 min (major).

N-((4,4-diethyl-5-oxotetrahydrofuran-2-yl)methyl)-4-methyl-N-

tosylbenzenesulfonamide (4i). TLC (PE:EA = 3:1), $R_f = 0.45$, Pale yellow solid, yield 62 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 8.1 Hz, 4H), 7.36 (d, *J* = 8.0 Hz, 4H), 4.70 (dtd, *J* = 14.5, 7.2, 4.7 Hz, 1H), 4.13 – 4.03 (m, 1H), 3.67 (dd, *J* = 15.7, 4.7 Hz, 1H), 2.46 (s, 6H), 2.05 – 1.99 (m, 1H), 1.84 (dd, *J* = 13.3, 9.2 Hz, 1H), 1.60 – 1.54 (m, 4H), 0.88 (td, *J* = 7.5, 2.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.66, 144.31, 135.24, 128.66, 127.74, 51.24, 47.40, 33.81, 28.07, 27.27, 20.67, 7.60. HRMS (ESI) *m/z*: C₂₃H₂₉NO₆S₂ [M + H]⁺ Calcd for: 480.1509; Found: 480.1516. ^{[*α*]²⁵_D + 1.659 (c = 1.0, CHCl₃). Enantiomeric excess: 33%, determined by HPLC (Chiralcel OD-H, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 254 nm): t_R = 8.078 min (minor), t_R = 9.248 min (major).}

4-methyl-N-((5-oxo-4,4-dipropyltetrahydrofuran-2-yl)methyl)-N-

tosylbenzenesulfonamide (4j). TLC (PE:EA = 3:1), $R_f = 0.53$, Pale yellow oily, yield 70 %; (EtOAc/petroleum ether = 1:5);¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 7.89 (m, 4H), 7.36 (d, *J* = 8.0 Hz, 4H), 4.67 (dtd, *J* = 14.5, 7.1, 4.6 Hz, 1H), 4.08 (td, *J* = 15.5, 7.2 Hz, 1H), 3.67 (dd, *J* = 15.7, 4.6 Hz, 1H), 2.46 (s, 6H), 2.06 – 2.00 (m, 1H), 1.85 (dd, *J* = 13.2, 9.4 Hz, 1H), 1.55 – 1.42 (m, 4H), 1.39 – 1.20 (m, 4H), 0.90 (dt, *J* = 10.1, 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.84, 144.30, 135.27, 128.66, 127.74, 51.23, 46.74, 38.03, 37.36, 34.75, 20.67, 16.59, 16.56, 13.36, 13.30. HRMS (ESI) *m/z*: C₂₅H₃₃NO₆S₂ [M + H]⁺Calcd for: 508.1822; Found: 508.1823. $[\alpha]_D^{25} + 2.309$ (c = 1.0, CHCl₃). Enantiomeric excess: 55%, determined by HPLC (Chiralcel OD-H, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 260 nm): t_R = 6.670 min (minor), t_R = 7.547 min (major).

4-methyl-N-((6-oxo-5,5-diphenyltetrahydro-2H-pyran-2-yl)methyl)-N-

tosylbenzenesulfonamide (4k). TLC (PE:EA = 3:1), R_f = 0.51, Pale yellow solid, yield 67 %; (EtOAc/petroleum ether = 1:5);¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.1 Hz, 4H), 7.36 – 7.25 (m, 10H), 7.23 – 7.13 (m, 4H), 4.77 – 4.66 (m, 1H), 4.09 (td, J = 15.7, 15.1, 7.3 Hz, 1H), 3.50 (dd, J = 15.7, 4.3 Hz, 1H), 2.71 (ddd, J = 14.4, 9.3, 5.1 Hz, 1H), 2.57 (dt, J = 14.3, 5.7 Hz, 1H), 2.44 (s, 6H), 1.90 (dq, J = 11.2, 5.4 Hz, 1H), 1.64 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.10, 145.19, 142.51, 141.48, 136.12, 129.62, 128.93, 128.50, 128.19, 128.15, 127.52, 127.30, 56.89, 51.93, 31.54, 22.92, 21.69. HRMS (ESI) *m/z*: C₃₂H₃₁NO₆S₂ [M + H]⁺Calcd for: 590.1666; Found: 590.1667. $[\alpha]_D^{25}$ -11.636 (c = 1.0, CHCl₃). Enantiomeric excess: 92%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R = 10.507 min (minor), t_R = 20.464 min (major).

4-methyl-N-((5-oxotetrahydrofuran-2-yl)methyl)-N-tosylbenzenesulfonamide (4I). TLC (PE:EA = 2:1), $R_f = 0.37$, White solid, yield 62 %; (EtOAc/petroleum ether = 1:4);¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.2 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 4.83 (dt, J = 12.2, 5.8 Hz, 1H), 4.07 (dd, J = 15.8, 7.5 Hz, 1H), 3.66 (dd, J = 15.8, 4.7 Hz, 1H), 2.52 (q, J = 8.5, 7.4 Hz, 2H), 2.46 (s, 6H), 2.28 (q, J = 7.1, 6.3 Hz, 1H), 2.03 – 1.92 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.86, 145.39, 136.15, 129.71, 128.75, 51.21, 28.03, 25.22, 21.71. HRMS (ESI) *m/z*: C₁₉H₂₁NO₆S₂ [M + H]⁺ Calcd for: 424.0883; Found: 424.0882. $[\alpha]_D^{25} + 4.893$ (c = 1.0, CHCl₃). Enantiomeric excess: 55%, determined by HPLC (Chiracel-

IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30 °C, 245 nm): $t_R = 8.703$ min (minor), $t_R = 15.250$ min (major).

N-((3,3-dimethyl-5-oxotetrahydrofuran-2-yl)methyl)-4-methyl-N-

tosylbenzenesulfonamide (4m). TLC (PE:EA = 3:1), $R_f = 0.52$, White solid, yield of 53 %; (EtOAc/petroleum ether = 1:3);¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.2 Hz, 4H),

7.37 (d, J = 8.0 Hz, 4H), 4.51 – 4.43 (m, 1H), 4.15 (dd, J = 16.1, 9.6 Hz, 1H), 3.55 (dd, J = 16.2, 1.7 Hz, 1H), 2.46 (s, 6H), 2.38 (d, J = 16.9 Hz, 1H), 2.33 (s, 1H), 1.24 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.70, 145.25, 136.28, 129.62, 128.91, 86.59, 48.08, 44.25, 38.92, 25.24, 21.70, 21.04. HRMS (ESI) *m/z*: C₂₁H₂₅NO₆S₂ [M + H]⁺Calcd for: 452.1196; Found: 452.1197. $[\alpha]_D^{25}$ +5.172 (c = 1.0, CHCl₃). Enantiomeric excess: 64%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 260 nm): t_R = 5.136 min (minor), t_R = 7.882 min (major).

4-methyl-N-((2-oxo-1',3',4,5-tetrahydro-2H-spiro[furan-3,2'-inden]-5-yl)methyl)-Ntosylbenzenesulfonamide (40). TLC (PE:EA = 3:1), $R_f = 0.5$, White solid, yield of 78 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.93 (m, 4H), 7.36 (d, J = 8.2 Hz, 4H), 7.19 (dq, J = 8.6, 3.2, 2.2 Hz, 4H), 4.86 – 4.75 (m, 1H), 4.21 – 4.11 (m, 1H), 3.72 (dd, J = 15.8, 4.4 Hz, 1H), 3.59 (d, J = 16.0 Hz, 1H), 3.27 (d, J = 15.6 Hz, 1H), 2.91 (dd, J = 37.5, 15.8 Hz, 2H), 2.46 (s, 6H), 2.30 (dd, J = 12.9, 6.0 Hz, 1H), 1.90 (dd, J = 13.0, 9.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.60, 144.37, 139.66, 138.29, 135.14, 128.69, 127.72, 126.15, 125.99, 123.48, 123.43, 50.56, 49.58, 42.35, 39.58, 20.68. HRMS (ESI) *m/z*: C₂₇H₂₇NO₆S₂ [M + H]⁺Calcd for: 526.1353; Found: 526.1353. $[\alpha]_D^{25}$ +9.819 (c = 1.0, CHCl₃). Enantiomeric excess: 94%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): t_R = 15.002 min (minor), t_R = 19.988 min (major).

4-methyl-N-((4-oxo-5-oxaspiro[2.4]heptan-6-yl)methyl)-N-tosylbenzenesulfonamide (**4p**). TLC (PE:EA = 3:1), $R_f = 0.31$; Pale yellow solid, yield 61 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.0 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 4.94 (p, J = 6.8 Hz, 1H), 4.13 (dd, J = 15.5, 7.4 Hz, 1H), 3.71 (dd, J = 15.6, 5.1 Hz, 1H), 2.46 (s, 6H), 2.30 (dd, J = 12.9, 7.9 Hz, 1H), 2.10 (dd, J = 13.0, 6.2 Hz, 1H), 1.32 – 1.22 (m, 2H), 1.02 – 0.92 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.69, 145.34, 136.20, 129.70, 128.74, 51.54, 32.64, 21.70, 19.79, 15.23, 15.07. HRMS (ESI) m/z: C₂₁H₂₃NO₆S₂ [M + H]⁺ Calcd for: 450.1040; Found: 450.1035. $[\alpha]_D^{25}$ +1.021 (c = 1.0, CHCl₃). Enantiomeric excess: 29%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 260 nm): t_R = 9.274 min (minor), t_R = 11.457 min (major).

4-methyl-N-((5-oxo-6-oxaspiro[3.4]octan-7-yl)methyl)-N-tosylbenzenesulfonamide (4q). TLC (PE:EA = 3:1), R_f = 0.39; Pale yellow solid, yield 57 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.2 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 4.66 (qd, J = 7.4, 4.7 Hz, 1H), 4.02 (dd, J = 15.8, 7.5 Hz, 1H), 3.64 (dd, J = 15.7, 4.6 Hz, 1H), 2.58 – 2.52 (m, 1H), 2.46 (s, 6H), 2.39 (dd, J = 12.9, 6.4 Hz, 2H), 2.13 (qd, J = 8.8, 7.7, 3.5 Hz, 1H), 2.06 – 1.97 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.88, 145.33, 136.22, 129.68, 128.76, 51.52, 43.87, 39.06, 31.31, 29.84, 21.69, 16.41. HRMS (ESI) *m/z*: C₂₂H₂₅NO₆S₂ [M + H]⁺Calcd for: 464.1196; Found: 464.1199. $[\alpha]_D^{25}$ +1.539 (c = 1.0, CHCl₃). Enantiomeric excess: 31%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 254 nm): t_R = 8.891 min (minor), t_R = 10.793 min (major).

N-((4,4-difluoro-5-oxotetrahydrofuran-2-yl)methyl)-4-methyl-N-

tosylbenzenesulfonamide (4r). TLC (PE:EA = 3:1), R_f = 0.55, Colorless oily, yield 45 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, J = 8.0 Hz, 4H), 7.37 (d, J = 8.0 Hz, 4H), 4.95 (qd, J = 7.2, 4.6 Hz, 1H), 4.14 (dd, J = 16.2, 7.4 Hz, 1H), 3.77 (dd, J = 16.0, 4.6 Hz, 1H), 2.78 (tdd, J = 15.0, 9.1, 6.7 Hz, 1H), 2.47 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.92, 145.80, 135.74, 129.88, 128.69, 50.76, 35.42, 35.20, 34.98, 21.73. HRMS (ESI) m/z: C₁₉H₁₉F₂NO₆S₂ [M + H]⁺ Calcd for: 460.0695; Found: 460.0696. $[\alpha]_D^{25}$ -2.814 (c = 1.0, CHCl₃). Enantiomeric excess: 29%, determined by HPLC

(Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 235 nm): $t_R = 5.980 \text{ min (minor)}, t_R = 10.743 \text{ min (major)}.$

N-((4,4-dibenzyl-5-oxotetrahydrofuran-2-yl)methyl)-4-methyl-N-

tosylbenzenesulfonamide (4s). TLC (PE:EA = 4:1), $R_f = 0.55$, White solid, yield of 72 %; (EtOAc/petroleum ether = 1:8); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.2 Hz, 4H), 7.31 (d, J = 9.1 Hz, 5H), 7.26 (d, J = 13.7 Hz, 5H), 7.18 (dt, J = 7.6, 3.6 Hz, 4H), 3.72 – 3.61 (m, 1H), 3.36 (dd, J = 15.7, 6.8 Hz, 1H), 3.19 (d, J = 13.7 Hz, 1H), 3.16 – 3.07 (m, 2H), 2.73 (dd, J = 17.4, 13.5 Hz, 2H), 2.44 (s, 6H), 2.14 (dd, J = 13.6, 7.5 Hz, 1H), 1.92 (dd, J = 13.6, 9.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.75, 145.11, 136.52, 136.19, 135.93, 130.44, 129.90, 129.59, 128.70, 128.57, 127.44, 127.09, 51.77, 51.42, 44.36, 43.46, 32.70, 21.69. HRMS (ESI) *m/z*: C₃₃H₃₃NO₆S₂ [M+H]⁺Calcd for: 604.1822; Found: 604.1823. $[\alpha]_D^{25} + 4.350$ (c = 1.0, CHCl₃). Enantiomeric excess: 89%, determined by HPLC (Chiralcel

OD-H, *n*-hexane/2-propanol = 80/20, flow rate 1.2 mL/min, T = 40 °C, 214 nm): $t_R = 11.963$ min (major), $t_R = 19.588$ min (minor).

tert-butyl-3-(((4-methyl-N-tosylphenyl)sulfonamido)methyl)-1-oxo-2-oxa-8-

azaspiro[4.5]*decane-8-carboxylate* (4t). TLC (PE:EA = 2:1), $R_f = 0.49$, White solid, yield of 67 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (dd, J = 8.5, 2.2 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 4.76 (s, 1H), 4.11 (dd, J = 15.8, 7.1 Hz, 1H), 3.94 (s, 1H), 3.80 (s, 1H), 3.72 (dd, J = 15.8, 4.5 Hz, 1H), 3.06 (dt, J = 24.0, 11.5 Hz, 2H), 2.47 (s, 6H), 2.24 (dd, J = 13.0, 6.4 Hz, 1H), 1.89 (t, J = 10.6 Hz, 1H), 1.75 (d, J = 10.9 Hz, 2H), 1.53 (d, J = 17.8 Hz, 2H), 1.46 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.67, 153.57, 144.44, 135.14, 128.71, 127.72, 78.90, 50.79, 41.62, 35.68, 32.24, 30.51, 27.39, 20.68. HRMS (ESI) *m/z*: C₂₈H₃₆N₂O₈S₂ [M + H]⁺ Calcd for: 593.1986; Found: 593.1996. $[\alpha]_D^{25}$ +5.967 (c = 0.5, CHCl₃). Enantiomeric excess: 79%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-

propanol = 80/20, flow rate 1.2 mL/min, T = 50 °C, 235 nm): $t_R = 11.128$ min (minor), $t_R = 13.365$ min (major).

4-methyl-N-((1-oxo-2,8-dioxaspiro[4.5]decan-3-yl)methyl)-N-tosylbenzenesulfonamide (4u). TLC (PE:EA = 1:1), R_f = 0.57, White solid, yield of 65 %; (EtOAc/petroleum ether = 1:3); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.0 Hz, 4H), 7.36 (d, J = 8.0 Hz, 4H), 4.76 (dtd, J = 10.7, 6.7, 4.3 Hz, 1H), 4.15 – 4.07 (m, 1H), 4.02 (dt, J = 11.9, 4.5 Hz, 1H), 3.89 (dt, J = 12.1, 4.5 Hz, 1H), 3.72 (dd, J = 15.8, 4.5 Hz, 1H), 3.49 (dddd, J = 21.8, 12.2, 9.5, 2.9 Hz, 2H), 2.46 (s, 6H), 2.32 (dd, J = 13.1, 6.3 Hz, 1H), 2.03 (dt, J = 9.9, 7.4 Hz, 1H), 1.90 – 1.75 (m, 2H), 1.45 (tdd, J = 17.9, 14.9, 6.9, 3.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.60, 145.45, 136.17, 129.72, 128.75, 63.92, 63.60, 51.83, 41.88, 37.20, 33.62, 32.02, 21.70. HRMS (ESI) *m/z*: C₂₃H₂₇NO₇S₂ [M + H]⁺ Calcd for: 494.1302; Found: 494.1297. [α]²⁵_D -7.384 (c = 1.0, CHCl₃). Enantiomeric excess: 89%, determined by HPLC (Chiracel-IA₃,

n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30 °C, 245 nm): t_R = 12.640 min (minor), t_R = 17.126 min (major).

4-chloro-N-((4-chlorophenyl)sulfonyl)-N-((5-oxo-4,4-diphenyltetrahydrofuran-2-

yl)methyl)benzenesulfonamide (4a'). TLC (PE:EA = 3:1), $R_f = 0.69$, White solid, yield of 77 %; (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.3 Hz, 4H), 7.40 (d, J = 8.3 Hz, 4H), 7.18 (dq, J = 32.6, 7.8 Hz, 10H), 4.48 (h, J = 4.6 Hz, 1H), 4.05 (td, J = 15.1, 14.4, 7.1 Hz, 1H), 3.74 (dd, J = 15.8, 3.9 Hz, 1H), 2.86 (dd, J = 13.1, 5.2 Hz, 1H), 2.54 (dd, J = 13.2, 10.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.73, 141.25, 141.18, 139.30, 137.45, 130.17, 129.54, 129.06, 128.56, 127.96, 127.58, 127.52, 127.16, 57.68, 51.74, 40.82. HRMS (ESI) *m/z*: C₂₉H₂₃Cl₂NO₆S₂ [M +H]⁺Calcd for: 616.0417; Found:

616.0416. $[\alpha]_D^{25}$ -5.913 (c = 1.0, CHCl₃). Enantiomeric excess: 83%, determined by HPLC (Chiracel-IA₃, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 254 nm): t_R = 11.763 min (minor), t_R = 22.577 min (major).

5'-(aminomethyl)-4',5'-dihydro-2'H-spiro[fluorene-9,3'-furan]-2'-one (5b). TLC (DCM:MeOH = 10:1), $R_f = 0.32$, (DCM/MeOH = 10:1), Yellow solid, yield of 68 %. ¹H NMR (400 MHz, DMSO- d_6) δ 7.82 (dd, J = 17.6, 8.3 Hz, 3H), 7.60 (d, J = 7.0 Hz, 2H), 7.43 – 7.34 (m, 2H), 7.32 (s, 1H),

5.25 (s, 1H), 4.48 (s, 1H), 3.59 (d, J = 11.0 Hz, 1H), 3.34 (s, 2H), 2.34 (t, J = 11.7 Hz, 1H), 1.89 (d, J = 12.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 170.31, 150.79, 150.47, 140.87, 140.70, 128.05, 127.95, 127.76, 127.67, 124.64, 123.86, 120.52, 120.18, 62.00, 57.31, 48.91, 42.42. HRMS (ESI) m/z: C₁₇H₁₅NO₂ [M + H]⁺ Calcd for: 266.1176; Found: 266.1175. $[\alpha]_D^{25}$ -53.294 (c = 0.6, CHCl₃).

5'-((*diethylamino*)*methyl*)-4',5'-*dihydro-2'H-spiro[fluorene-9,3'-furan]-2'-one* (M'). TLC (DCM:MeOH = 10:1), R_f = 0.54, (DCM/MeOH = 15:1), light yellow solid, yield of 88 %. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91 (dd, *J* = 7.5, 3.7 Hz, 2H), 7.68 (dd, *J* = 20.8, 7.5 Hz, 2H), 7.50 – 7.34 (m, 4H), 5.24 (dq, *J* = 10.8, 5.7 Hz, 1H),

2.98 – 2.84 (m, 2H), 2.79 (dd, J = 13.2, 9.9 Hz, 1H), 2.70 – 2.57 (m, 5H), 1.03 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 176.48, 146.27, 145.67, 140.93, 139.94, 128.61, 128.53, 128.14, 128.10, 123.96, 123.24, 120.55, 120.32, 77.60, 58.29, 56.77, 47.31, 38.05, 11.90. HRMS (ESI) m/z: C₂₁H₂₃NO₂ [M + H]⁺ Calcd for: 322.1802; Found: 322.1799. $[\alpha]_D^{25}$ -37.812 (c = 0.5, CHCl₃). Enantiomeric excess: 20%, determined by HPLC (Chiralpak AD-H, *n*-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, T = 30°C, 230 nm): t_R = 9.880 min (major), t_R = 13.645 min (minor).

 $\langle ^{I.7I}_{I.69}$

7.40 7.39 7.38 7.38 7.28 7.22 7.20 7.20 7.00 7.00 6.98 6.97 6.98 6.97

CIC 10

140 130 120 f1 (ppm)

$\begin{array}{c} 7.859 \\ 7.840 \\ 7.889 \\ 7.585 \\ 7.3365 \\ 7.3326 \\$

II (ppm)

14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

$\begin{array}{c} 12.462\\ 5.736\\ 5.7727\\ 5.7727\\ 5.7729\\ 5.7729\\ 5.5689\\ 5.689\\ 5.689\\ 5.649\\ 5.649\\ 5.649\\ 5.649\\ 5.649\\ 5.649\\ 5.649\\ 5.6729\\ 5$

7.831 7.811 7.811 7.811 7.811 7.152 7.162 7.157 7.259 7.259 7.259 7.259 7.259 7.25597.255

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$\begin{array}{c} 8,027\\ 8,007\\ 7,738\\ 7,431\\ 7,432\\ 7,432\\ 7,432\\ 7,432\\ 7,432\\ 7,432\\ 7,432\\ 7,432\\ 7,432\\ 7,432\\ 7,422\\ 7,422\\ 7,422\\ 7,338\\ 7,5329\\ 7,3328\\ 7$

S81

7.954 7.937 7.937 7.2361 7.3356 7.3356 7.3333333 7.3338 7.3338 7.3338 7.2338 7.2338 7.2201 7.2232 7.2201 7.2202 7.2202 7.201 7.2023 7.20333 7.20333 7.20333 7.203337

– 1.131

7.966 7.962 7.962 7.962 7.962 7.962 7.962 4.050 4.050 4.050 2.043 2.043 2.043 2.043 2.043 2.043 2.043 2.043 2.043 1.852 1.852 1.496 1.446 1.446 1.446 1.446 1.446 1.446 1.446 1.446 1.446 1.446 1.446 1.431 1.361 1.361 1.361 1.361 1.361 1.361 1.252 1.361 1.252 1.245 0.913 0.903 0.9030.8888

-0.5

Results							
Peak No.	Peak ID	Ret Time	Area	Height	Conc.		
1		11.326	153.81976	5.98117	0.3758		
2		13.337	4.07729e4	1479.59460	99.6242		
Total			4.09267e4	1485.57577	100.0000		

Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		8.405	1.86778e4	607.91687	50.0147	
2		11.964	1.86668e4	367.24213	49.9853	
Total			3.73446e4	975.15900	100.0000	

Result	ts
--------	----

Peak No.	Peak ID	Ret Time	Area	Height	Conc.
1		8.770	3.11451e4	1761.72852	50.0003
2		10.954	3.11447e4	1494.63306	49.9997
Total			6.22898e4	3256.36157	100.0000

Resu	lts
------	-----

Peak No.	Peak ID	Ret Time	Area	Height	Conc.
1		9.436	4.02889e4	2018.62390	49.9317
2		10.892	4.03991e4	1841.14795	50.0683
Total			8.06881e4	3859.77185	100.0000

Results							
Peak No.	Peak ID	Ret Time	Area	Height	Conc.		
1		9.218	5169.50244	275.32242	17.2073		
2		10.443	2.48730e4	1211.48157	82.7927		
Total			3.00425e4	1486.80399	100.0000		

4e

Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		8.816	1.95119e4	1067.37732	50.3603	
2		11.760	1.92328e4	858.82690	49.6397	
Total			3.87447e4	1926.20422	100.0000	

Results							
Peak No.	Peak ID	Ret Time	Area	Height	Conc.		
1		8.995	2433.95898	132.71954	13.6498		
2		11.957	1.53975e4	674.55322	86.3502		
Total			1.78315e4	807.27277	100.0000		
						1	

Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		5.973	1.43139e4	1066.61292	50.0389	
2		8.294	1.42916e4	848.69830	49.9611	
Total			2.86055e4	1915.31122	100.0000	

Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		6.428	178.92024	9.34496	1.5556	
2		8.737	1.13228e4	589.69086	98.4444	
Total			1.15018e4	599.03582	100.0000	

Results							
Peak No.	Peak ID	Ret Time	Area	Height	Conc.		
1		7.323	1.12476e4	724.76978	19.0468		
2		9.637	4.78051e4	2428.60376	80.9532		
Total			5.90528e4	3153.37354	100.0000		

Results									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		8.078	4382.39648	213.09979	33.3018				
2		9.248	8777.25879	353.09375	66.6982				
Total			1.31597e4	566.19354	100.0000				

Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		6.685	2551.46973	144.98872	49.5584				
2		7.622	2596.93799	122.83116	50.4416				
Total			5148.40771	267.81989	100.0000				

Results									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		6.670	2633.49097	151.98375	22.4532				
2		7.547	9095.29004	436.30298	77.5468				
Total			1.17288e4	588.28673	100.0000				

4k

Results								
Peak No.	Peak ID	Ret Time	Area	Height	Conc.			
1		10.399	2.53124e4	1032.52991	49.8338			
2		20.372	2.54813e4	633.17181	50.1662			
Total			5.07937e4	1665.70172	100.0000			

Nesuits									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		10.507	400.17773	15.03325	3.8367				
2		20.464	1.00301e4	246.83543	96.1633				
Total			1.04303e4	261.86868	100.0000				

Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		8.629	3.89941e4	1794.40173	48.6661	
2		14.918	4. 11318e4	1155.61157	51.3339	
Total			8.01259e4	2950.01331	100.0000	

Results								
Peak No.	Peak ID	Ret Time	Area	Height	Conc.			
1		8.703	1.44466e4	578.92560	22.7723			
2		15.250	4. 89928e4	1246.74390	77.2277			
Total			6.34394e4	1825.66949	100.0000			

-

_

Results								
Peak No.	Peak ID	Ret Time	Area	Height	Conc.			
1		5.198	2170.31836	161.43170	49.9773			
2		7.794	2172.29321	123.79023	50.0227			
Total			4342.61157	285.22193	100.0000			

Results									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		5.136	499.69714	38.49426	18.1755				
2		7.882	2249.59961	122.21233	81.8245				
Total			2749.29675	160.70659	100.0000				

Results									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		15.595	4.33326e4	1130.80396	49.9718				
2		20.565	4.33815e4	781.68488	50.0282				
Total			8.67141e4	1912.48883	100.0000				

Results									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		15.002	357.03622	8.09039	3.1703				
2		19.988	1.09050e4	197.35199	96.8297				
Total			1.12620e4	205.44238	100.0000				

4p

4

neo uno									
Peak ID	Ret Time	Area	Height	Conc.					
	9.758	5188.95898	247.82069	49.8932					
	12.158	5211.17041	210.25146	50.1068					
		1.04001e4	458.07216	100.0000					
	Peak ID	Peak ID Ret Time 9.758 12.158	Peak ID Ret Time Area 9.758 5188.95898 12.158 5211.17041 1.04001e4	Peak ID Ret Time Area Height 9.758 5188.95898 247.82069 12.158 5211.17041 210.25146 1.04001e4 458.07216					

Results									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		9.274	4127.03760	213.58298	35.3146				
2		11.457	7559.45850	329.74402	64.6854				
Total			1.16865e4	543.32700	100.0000				

Results									
Peak No.	Peak ID	Ret Time	Area	Height	Conc.				
1		8.891	5261.69482	291.21335	34.6082				
2		10.793	9941.92676	450.98694	65.3918				
Total			1.52036e4	742.20029	100.0000				

	Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.		
1		5.980	6544.95361	478.14331	35.7359		
2		10.743	1.17698e4	574.81445	64.2641		
Total			1.83148e4	1052.95776	100.0000		

	Results					
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		11.794	1.56604e4	428.69846	49.7845	
2		19.279	1.57960e4	248.46797	50.2155	
Total			3.14565e4	677.16643	100.0000	

Results					
Peak No.	Peak ID	Ret Time	Area	Height	Conc.
1		11.963	6.00173e4	1594.40735	94.5600
2		19.588	3452.80420	53.64519	5.4400
Total			6.34701e4	1648.05254	100.0000

BocŅ

NTs₂

4t

Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		11.916	5.58901e4	2027.41980	49.7109	
2		14.197	5.65401e4	1830.91187	50.2891	
Total			1.12430e5	3858.33167	100.0000	

Results					
Peak No.	Peak ID	Ret Time	Area	Height	Conc.
1		11.128	6452.74170	262.58838	10.6718
2		13.365	5.40129e4	1866.01721	89.3282
Total			6.04656e4	2128.60559	100.0000

Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		12.225	1.26430e4	447.33575	49.7426	
2		16.579	1.27739e4	363.48743	50.2574	
Total			2.54169e4	810.82318	100.0000	

Results							
Peak No.	Peak ID	Ret Time	Area	Height	Conc.		
1		12.640	1204.85767	41.48252	5.4013		
2		17.126	2.11019e4	568.51923	94.5987		
Total			2.23068e4	610.00175	100.0000		

_

	Results					
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		11.494	2.98603e4	983.30377	48.7963	
2		22.722	3.13335e4	556.94550	51.2037	
Total			6.11939e4	1540.24927	100.0000	

Results						
Peak No.	Peak ID	Ret Time	Area	Height	Conc.	
1		11.763	3287.87085	118.75880	8.4760	
2		22.577	3.55027e4	608.95129	91.5240	
Total			3.87906e4	727.71009	100.0000	

Peak No.	Peak ID	Ret Time	Area	Height	Conc.
1		9.880	5898.05176	361.74747	59.9237
2		13.645	3944.54980	190.24530	40.0763
Total			9842.60156	551.99277	100.0000

CIC 1 HRMS (ESI) m/z: C₂₆H₂₅IO₆ [M + H]⁺ Cal: 561.0769; Found: 561.0770.

Spectrum from WJQ2.wiff2 (sample 43) - 2-89, +TOF MS (50 - 2000) from 0.236 min

CIC 2 HRMS (ESI) m/z: C₂₆H₂₅IO₆ [M + H]⁺ Cal: 561.0769; Found: 561.0771.

CIC 3 HRMS (ESI) m/z: C₃₀H₃₅IN₂O₄ [M+H]⁺ Cal: 615.1714; Found: 615.1714.

Spectrum from WJQ2.wiff2 (sample 84) - 3-88, +TOF MS (50 - 1000) from 0.329 min

CIC 5 HRMS (ESI) m/z: C₅₀H₃₇IO₆ [M + H]⁺ Cal: 861.1708; Found: 861.1710.

Spectrum from WJQ2.wiff2 (sample 49) - 2-99, +TOF MS (50 - 2000) from 1.108 min

CIC 7 HRMS (ESI) m/z: C₄₅H₃₁IO₆ [M + H]⁺ Cal: 795.1238; Found: 795.1239.

Spectrum from WJQ2.wiff2 (sample 47) - 2-55, +TOF MS (50 - 2000) from 0.830 min

CIC 8 HRMS (ESI) m/z: C₃₂H₂₅IO₆ [M + H]⁺ Cal: 633.0769; Found: 633.0776.

Spectrum from WJQ2.wiff2 (sample 14) - 3-54, +TOF MS (50 - 2000) from 0.250 min

CIC 11 HRMS (ESI) m/z: C₃₃H₃₉IO₄ [M + H]⁺ Cal: 627.1966; Found: 627.1961.

Spectrum from wjq.wiff2 (sample 279) - WJQ-2-61, +TOF MS (50 - 1500) from 0.839 min

CIC 12 HRMS (ESI) m/z: C₃₅H₃₁IO₆ [M + H]⁺ Cal: 675.1238; Found: 675.1228.

CIC 13 HRMS (ESI) m/z: C₁₆H₁₅IO₂ [M + H]⁺ Cal: 367.0189; Found: 367.0190.

Spectrum from wjq.wiff2 (sample 111) - WJQ-1-120--1-, +TOF MS (300 - 380) from 4.494 min

CIC 15 HRMS (ESI) m/z: C₁₄H₁₃IO [M + H]⁺ Cal: 325.0084; Found: 325.0078.

3a HRMS (ESI) *m/z*: C₁₇H₁₆O₂ [M–H]⁻Cal: 251.1078; Found: 251.1079.

S128

3b HRMS (ESI) *m/z*: C₁₇H₁₄O₂ [M + H]⁺Cal: 251.1067; Found: 251.1067.

3c HRMS (ESI) m/z: C₉H₁₄O₂ [M-H]⁻Cal: 153.0921; Found: 153.0934.

3e HRMS (ESI) m/z: C₁₁H₁₈O₂ [M-H]⁻Cal: 181.1234; Found: 181.1235.

3f HRMS (ESI) m/z: C₁₇H₁₄O₃ [M-H]⁻Cal: 265.0870; Found: 265.0878. Spectrum from wjq.wiff2 (sample 73) - WJQ-1-95-2-, -TOF MS (250 - 300) from 3.974 min

3g HRMS (ESI) m/z: C₁₈H₁₈O₂ [M + H]⁺ Cal: 267.1380; Found: 263.1378.

3j HRMS (ESI) m/z: C₁₁H₂₀O₂ [M-H]⁻Cal: 183.1391; Found: 183.1392.

3k HRMS (ESI) m/z: C₁₈H₁₈O₂ [M-H]⁻ Cal: 265.1234; Found: 265.1235. Spectrum from WJQ2.wiff2 (sample 29) - 3-14, -TOF MS (50 - 1000) from 0.310 min

HRMS (ESI) *m*/*z*: C₇H₁₂O₂ [M−H]⁻Cal: 127.0765; Found: 127.0767. 3m

3p HRMS (ESI) *m/z*: C₇H₁₀O₂ [M–H]⁻Cal: 125.0608; Found: 125.0608.

3q HRMS (ESI) m/z: C₈H₁₂O₂ [M–H]⁻Cal: 139.0765; Found: 139.0765.

3r HRMS (ESI) m/z: C₅H₆F₂O₂ [M-H]⁻Cal: 135.0263; Found: 135.0262.

3s HRMS (ESI) m/z: C₁₉H₂₀O₂ [M–H]⁻Cal: 279.1391; Found: 279.1391. Spectrum from wjq.wiff2 (sample 359) - WJQ-3-36, -TOF MS (50 - 2000) from 0.357 min

3t HRMS (ESI) *m*/*z*: C₁₄H₂₃NO₄ [M–H]⁻Cal: 268.1554; Found: 268.1554.

3u HRMS (ESI) *m/z*: C₉H₁₄O₃ [M–H]⁻Cal: 169.0870; Found: 169.0870.

Spectrum from wjq.wiff2 (sample 120) - WJQ-1-130-2, -TOF MS (100 - 300) from 3.656 min

4a HRMS (ESI) m/z: C₃₁H₂₉NO₆S₂ [M + H]⁺ Calcd for: 576.1509; Found: 576.1503.

Spectrum from WJQ2.wiff2 (sample 34) - P-1, +TOF MS (50 - 1000) from 0.607 min

4c HRMS (ESI) m/z: C₂₃H₂₇NO₆S₂ [M + H]⁺ Calcd for: 478.1353; Found: 478.1354.

 $\label{eq:spectrum from WJQ2.wiff2 (sample 93) - WJQ-P-9, +TOF MS (50 - 1000) from 0.204 min } \\ \end{tabular}$

4e HRMS (ESI) m/z: C₂₅H₃₁NO₆S₂ [M + H]⁺ Calcd for: 506.1666; Found: 506.1670.

4g HRMS (ESI) m/z: C₃₂H₃₁NO₆S₂ [M + H]⁺ Calcd for: 590.1666; Found: 590.1660.

4i HRMS (ESI) m/z: C₂₃H₂₉NO₆S₂ [M + H]⁺ Calcd for: 480.1509; Found: 480.1516.

4k HRMS (ESI) m/z: C₃₂H₃₁NO₆S₂ [M + H]⁺ Calcd for: 590.1666; Found: 590.1667.

4l HRMS (ESI) m/z: C₁₉H₂₁NO₆S₂ [M + H]⁺ Calcd for: 424.0883; Found: 424.0882. Spectrum from wjq.wiff2 (sample 315) - WJQ-2-84, +TOF MS (50 - 1000) from 0.139 min

4m HRMS (ESI) m/z: C₂₁H₂₅NO₆S₂ [M + H]⁺ Calcd for: 452.1196; Found: 452.1197.

4p HRMS (ESI) m/z: C₂₁H₂₃NO₆S₂ [M + H]⁺ Calcd for: 450.1040; Found: 450.1035.

 $\begin{array}{l} \mbox{4q} \quad HRMS \ (ESI) \ \mbox{m/z: $C_{22}H_{25}NO_6S_2$ [M + H]^+ Calcd for: 464.1196; Found: 464.1199. Spectrum from WJQ2.wiff2 (sample 31) - 3-67, +TOF MS (50 - 1000) from 0.278 min } \end{array}$

4r HRMS (ESI) m/z: C₁₉H₁₉F₂NO₆S₂ [M + H]⁺Calcd for: 460.0695; Found: 460.0696.

4s

Spectrum from wjq.wiff2 (sample 360) - WJQ-3-41, +TOF MS (50 - 2000) from 0.552 min

4t HRMS (ESI) m/z: C₂₈H₃₆N₂O₈S₂ [M + H]⁺Calcd for: 593.1986; Found: 593.1996.

Spectrum from wjq.wiff2 (sample 343) - WJQ-3-13, +TOF MS (50 - 3000) from 0.213 min

4a' HRMS (ESI) m/z: C₂₉H₂₃Cl₂NO₆S₂ [M + H]⁺Calcd for: 616.0417; Found: 616.0416.

Spectrum from WJQ2.wiff2 (sample 81) - N-CI, +TOF MS (50 - 2000) from 0.278 min