Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Silver-Mediated Radical Cascade

Trifluoromethylthiolation/Cyclization of Benzimidazole Derivatives

with AgSCF₃

Pan Liu,^a Yang Geng,^b Dapeng Zou,^{a,*} Yangjie Wu,^a and Yusheng Wu ^{a,c,d,*}

^aCollege of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
^bDepartment of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 451460, People's Republic of China.

°TYK Medicines, Inc. Huzhou, 313000, People's Republic of China.

^dTetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ, 08901, USA

*Corresponding author. Tel.: (+86)-371-6776-6865; fax: (+86)-371-6776-3390; e-mail: zdp@zzu.edu.cn *Corresponding author. Tel.: (+1)-732-253-7326; fax: (+1)-732-253-7327; e-mail: yusheng.wu@tykmedicines.com

Table of Contents

1. General Information	2
2. Substrates Preparation	2
3. General procedure for the synthesis of Trifluoromethylthiolated Tricyclic Benzimidazoles	4
4. Optimization of the reaction conditions	4
5. Scale-up Reaction	7
6. Procedure for the synthesis of 7 ^[3]	8
6. Characterization data of products 3	9
7. Mechanistic Experiments	20
8. X-ray crystallographic data of 3a	21
9. References	22
10. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	23

1. General Information

All manipulations were performed in dried glass reaction tube equipped with a magnetic stir bar under Ar atmosphere. Solvents and reagents were purchased from commercial sources and used as received. Flash column chromatography was performed using silica gel (60-Å pore size, 32-63 µm, standard grade). Products were purified by flash chromatography on silica gel (200-300 mesh). All NMR spectra were obtained on Bruker AVANCE III systems using CDCl₃ as solvent, TMS as internal standard substance, at 400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, and 376 MHz for ¹⁹F NMR. The chemical shifts (δ) are reported in ppm relative to tetramethylsilane. The multiplicities of signals are designated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quarter), m (multiplet), dd (doublet and doublet). The mass spectra were indicated by GC-MS (Thermo Fisher Scientific ISQ). High-resolution mass spectrometry (HRMS) data were obtained on an Agilent Technologies 1290-6530 UHPLC/Accurate-Mass Quadrupole Time-of Flight (Q-TOF) LC/MS using ESI as ion source. Measured values are reported to 4 decimal places of the calculated value. X-ray analysis was performed with a single-crystal X-ray diffractometer (Gemini E). Melting points were measured with a SGW X-4A microscopic melting point apparatus and were uncorrected. An oil bath is used as heat source for reactions that require heating. Magnetic hot plate stirrer (MS-H-Pro+) was purchased from DLAB Scientific Co., Ltd. The material of the reaction vessel (Schlenk tubes) is borosilicate glass.

2. Substrates Preparation

Procedure A^[1]:

A dried 100 mL round bottom flask equipped with a magnetic stir bar was charged with 1*H*-benzo[*d*]imidazole (10 mmol, 1.0 equiv.) and DMF (25 mL). After cooling to 0 °C, NaH (12 mmol, 1.2 equiv.) was added and stirring was continued for 30 min at 0 °C. Subsequently, 5-bromopent-1-ene (15 mmol, 1.5 equiv.) in DMF was added to the reaction mixture. The reaction mixture was stirred at room temperature for 2-6 h. After the starting materials completely disappeared (monitored by thin layer chromatography), the reaction mixture was washed with water and extracted with ethyl acetate three times. The combined organic layer was washed with saturated NaCl solution, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (Petroleum ether/EtOAc) to afford co rresponding products (70% yield).

A dried 50 mL round bottom flask equipped with a magnetic stir bar was charged with 1-fluoro-4-methyl-2-nitrobenzene (5.0 mmol, 1.0 equiv.), Pent-4-en-1-amine hydrochloride (6 mmol, 1.2 equiv.), K_2CO_3 (12.5 mmol, 2.5 equiv.), and 1,4-dioxane (20 mL). After stirring for 10 h at 105 °C under Ar atmosphere. The solution was poured into H₂O (30 mL) and the resulting mixture was extracted with EtOAc (3 × 20 mL). The organic layers were combined and dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to obtain 4-methyl-2-nitro-N-(pent-4-en-1-yl)aniline. The crude product is used in the next step without further purification.

A dried 50 mL round bottom flask equipped with a magnetic stir bar was charged with 4-methyl-2-nitro-N-(pent-4-en-1-yl)aniline (5mmol, 1.0 equiv.), $SnCl_2 \cdot 2H_2O$ (20 mmol, 4.0 equiv.), and ethanol (20 mL). Subsequently, the resulting mixture was stirred at 90 °C for 5 h under vigorous stirring. After cooling down to room temperature, the reaction mixture was adjusted with 1 M NaOH to pH 7-8, then filtered with diatomite. The filtrate was diluted with EtOAc (30 mL) and successively washed with H₂O (30 mL) and brine (30 mL). Organic layers were combined, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to afford 4-methyl-N¹-(pent-4-en-1-yl)benzene-1,2-diamine without further purification.

A dried 50 mL round bottom flask equipped with a magnetic stir bar was charged with 4-methyl-N¹-(pent-4-en-1-yl)benzene-1,2-diamine (5 mmol, 1.0 equiv.), (EtO)₃CH (20 mL). Then, *p*-TsOH (0.4 mmol, 0.1 equiv.) was added and the resulting solution was stirred at room temperature until the reaction was complete (monitored by thin layer chromatography). The solution was diluted with EtOAc, washed with saturated NaHCO₃ (3 × 50 mL) and extracted with ethyl acetate (3 × 30 mL). The organic layers were combined, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography on slica gel (EtOAc/Petroleum ether = 1:1). The pure product 5-methyl-1-(pent-4-en-1-yl)-1Hbenzo[d]imidazole was obtained as yellow oil (530 mg, 75% yield of 3 steps).

3. General procedure for the synthesis of Trifluoromethylthiolated

Tricyclic Benzimidazoles

Experimental Procedure: A dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 1 (0.20 mmol, 1.0 equiv.), 2 (0.30 mmol, 1.5 equiv.), $K_2S_2O_8$ (108.2 mg, 0.4 mmol, 2.0 equiv.), NaHCO₃ (20.2 mg, 0.24 mmol, 1.2 equiv.) and DMSO (2.0 mL). The reaction mixture was then stirred at 40 °C for 4 h under Ar atmosphere. The reaction mixture was washed with water and extracted with ethyl acetate three times. The combined organic layer was washed with saturated NaCl solution, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (Petroleum ether/EtOAc) to afford the desired products **3**. The products were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR, and HRMS.

4. Optimization of the reaction conditions

N N	+ AgSCF	Catalyst, Oxid Solvent, Add	dant itive	SCF3
1a Entry	2 Oxidant(equiv.)	Solvent	3a Additive(equiv.)	Vieldb(%)
1	K ₂ S ₂ O ₈ (2)	CH ₃ CN	-	41
2	$K_2S_2O_8(2)$	DMAC	-	42
3	$K_2S_2O_8(2)$	DMF	-	58
4	$K_2S_2O_8(2)$	DMSO	-	68
5	$K_2S_2O_8(2)$	MeOH	-	28
6	$K_2S_2O_8(2)$	NMP	-	22
7	$K_2S_2O_8(2)$	DCE	-	trace

Table S1. Screening of Solvents^a

8	$K_2S_2O_8(2)$	THF	-	NR
9	$K_2S_2O_8(2)$	dioxane	-	NR

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2** (0.4mmol, 2.0 equiv.), K₂S₂O₈ (0.4mmol, 2.0 equiv.), solvent (2.0 mL), 40 °C, 4 h, Ar. ^bIsolated yield.

Table S2. Screening of Additives^a

N	+ Ag <mark>SCF</mark>	Catalyst,	Oxidant	SCF3
N N		Solvent, /	Additive N	
1a	2		3a	
Entry	Oxidant(equiv.)	Solvent	Additive(equiv.)	Yield ^b (%)
1	$K_2S_2O_8(2)$	DMSO	-	68
2	$K_2S_2O_8(2)$	DMSO	$4-MeC_6H_4COOH(2)$	37
3	$K_2S_2O_8(2)$	DMSO	TsOH(2)	42
4	$K_2S_2O_8(2)$	DMSO	H ₃ PO ₃ (2)	62
5	$K_2S_2O_8(2)$	DMSO	CH ₃ COOH(2)	69
6	$K_2S_2O_8(2)$	DMSO	$4-CF_3C_6H_4COOH(2)$	70
7	$K_2S_2O_8(2)$	DMSO	PivOH(2)	74
8	$K_2S_2O_8(2)$	DMSO	CF ₃ COOH(2)	75
9	$K_2S_2O_8(2)$	DMSO	NaHCO ₃ (2)	75
10	$K_2S_2O_8(2)$	DMSO	Et ₃ N(2)	69
11	$K_2S_2O_8(2)$	DMSO	K ₂ HPO ₄ (2)	65
12	$K_2S_2O_8(2)$	DMSO	DBU(2)	48
13	$K_2S_2O_8(2)$	DMSO	DABCO(2)	15
14	$K_2S_2O_8(2)$	DMSO	$Cs_2CO_3(2)$	13
15	$K_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.0)	72
16	$K_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.2)	77
17	$K_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.5)	75
18°	$K_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.2)	34
19 ^d	$K_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.2)	56

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2** (0.4mmol, 2.0 equiv.), K₂S₂O₈ (0.4mmol, 2.0 equiv.), additive, DMSO (2.0 mL), 40 °C, 4 h, Ar. ^bIsolated yield. ^cO₂. ^dAir.

Table S3. Screening of Oxidants^a

	+ Ag <mark>SCF</mark> 3	Catalyst, Oxic Solvent, Addi	tive	∕─SCF ₃	
1a	2		3a		
Entry	Oxidant(equiv.)	Solvent	Additive(equiv.)	Yield ^b (%)	
1	$K_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.2)	77	
2	$Na_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.2)	67	
3	$(NH_4)_2S_2O_8(2)$	DMSO	NaHCO ₃ (1.2)	47	
4	TBHP(2)	DMSO	NaHCO ₃ (1.2)	NR	
5	DTBP(2)	DMSO	NaHCO ₃ (1.2)	NR	
6	TEMPO(2)	DMSO	NaHCO ₃ (1.2)	NR	
7	BPO(2)	DMSO	NaHCO ₃ (1.2)	NR	
8	PhI(OAc) ₂ (2)	DMSO	NaHCO ₃ (1.2)	NR	
9	AIBN(2)	DMSO	NaHCO ₃ (1.2)	NR	
10	-	DMSO	NaHCO ₃ (1.2)	NR	
11	PIFA(2)	DMSO	NaHCO ₃ (1.2)	NR	
12	NFSI(2)	DMSO	NaHCO ₃ (1.2)	NR	
13	$K_2S_2O_8(1.5)$	DMSO	NaHCO ₃ (1.2)	74	
14	$K_2S_2O_8(2.5)$	DMSO	NaHCO ₃ (1.2)	68	

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2** (0.4mmol, 2.0 equiv.), oxidant, NaHCO₃ (0.24mmol, 1.2 equiv.), DMSO (2.0 mL), 40 °C, 4 h, Ar. ^bIsolated yield.

Table S4. Screening of Temperature^a

	+	Ag <mark>SCF</mark> 3	Catalyst, Oxidant Solvent, Additive		-SCF ₃
	1a	2		3a	
Entry	Oxidant(equiv.)	Solvent	Tempreture(°C	Additive(equiv.	Yield ^b (%
1	$K_2S_2O_8(2)$	DMSO	27	NaHCO ₃ (1.2)	40
2	$K_2S_2O_8(2)$	DMSO	40	NaHCO ₃ (1.2)	77

3	$K_2S_2O_8(2)$	DMSO	50	NaHCO ₃ (1.2)	75
---	----------------	------	----	--------------------------	----

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2** (0.4mmol, 2.0 equiv.), K₂S₂O₈ (0.4mmol, 2.0 equiv.), NaHCO₃ (0.24mmol, 1.2 equiv.), DMSO (2.0 mL), temperature (°C), 4 h, Ar. ^bIsolated yield.

Table S5. Screening of Time^a

	N + Ag	g <mark>SCF₃ Cat</mark> So	talyst, Oxidant		-SCF ₃
	1a	2		3a	
Entry	Oxidant(equiv.)	Solvent	Time(h)	Additive(equiv.	Yield ^b (%
1	$K_2S_2O_8(2)$	DMSO	2	NaHCO ₃ (1.2)	66
2	$K_2S_2O_8(2)$	DMSO	3	NaHCO ₃ (1.2)	71
3	$K_2S_2O_8(2)$	DMSO	4	NaHCO ₃ (1.2)	77
4	$K_2S_2O_8(2)$	DMSO	6	NaHCO ₃ (1.2)	75

^aReaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2** (0.4mmol, 2.0 equiv.), K₂S₂O₈ (0.4mmol, 2.0 equiv.), NaHCO₃ (0.24mmol, 1.2 equiv.), DMSO (2.0 mL), 40 °C, time (h), Ar. ^bIsolated yield.

5. Scale-up Reaction

A dried 50 mL round bottom flask equipped with a magnetic stir bar was charged with 1-(pent-4-en-1-yl)-1H-benzo[d]imidazole **1a** (0.930 g, 5.0 mmol, 1.0 equiv.), AgSCF₃ **2** (1.567 g, 7.5 mmol, 1.5 equiv.), K₂S₂O₈ (2.073 g, 10 mmol, 2.0 equiv.), NaHCO₃ (0.504 g, 6 mmol, 1.2 equiv.) and DMSO (30 mL). The reaction mixture was then stirred at 40 °C for 4 h under Ar atmosphere. The reaction mixture was washed with water and extracted with ethyl acetate three times. The combined organic layer was washed with saturated NaCl solution, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (Petroleum ether/EtOAc = 3:1) to afford the pure product **3a** (0.975 g) in 68% yield.

6. Procedure for the synthesis of 7^[3]

A dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with methyl 1-(pent-4-en-1-yl)-1H-benzo[d]imidazole-5-carboxylate **1i** (0.5 mmol, 1.0 equiv.), NaOH (1.5 mmol, 3.0 equiv.), and CH₃OH (5 mL). The reaction mixture was heated to 80 °C for 6 h. Then, the accomplished reaction was cooled to room temperature. The filtrate was concentrated under vacuo. Then, 1 M HCl was added to the concentrated filtrate until grey solids were precipitated (pH to 4-6). The pure product **4** is afforded in 74 % yield.

A dried 50 mL round bottom flask equipped with a magnetic stir bar was charged with estrone (5 mmol, 1,0 equiv.), K_2CO_3 (7.5 mmol, 1.5 equiv.) and DMF. The reaction mixture was heated to 55 °C for 10 mins, then 1,3-dibromopropane (7.5 mmol, 1.5 equiv.) was added dropwise to the reaction solution and stirred at 55 °C for 12 h. After cooling down to room temperature, the reaction mixture was washed with water and extracted with ethyl acetate three times. The combined organic layer was washed with saturated NaCl solution. The organic layers were combined, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (Petroleum ether/EtOAc = 5:1) to obtain the desired product **5**.

A dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 4 (0.2 mmol, 1.0 equiv.), brominated estrone 5 (0.3 mmol, 1.5 equiv.), K_2CO_3 (0.3 mmol, 1.5 equiv.) and DMF. The reaction mixture was stirred at room temperature for 6 h. Then the reaction mixture was washed with water and extracted with ethyl acetate three

times. The combined organic layer was washed with saturated NaCl solution and dried with anhydrous Na_2SO_4 and filtered. The organic layers were combined, dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (Petroleum ether/EtOAc = 3:1) to obtain the desired product **6** (colorless liquid, 61.7 mg, 57% yield).

A dried 50 mL round bottom flask equipped with a magnetic stir bar was charged with compound **6** (54.1 mg, 0.1 mmol, 1.0 equiv.), AgSCF₃ **2** (31.2 mg, 0.15 mmol, 1.5 equiv.), $K_2S_2O_8$ (54.1 mg, 0.2 mmol, 2.0 equiv.), NaHCO₃ (10.1 mg, 0.12 mmol, 1.2 equiv.) and DMSO (1 mL). The reaction mixture was then stirred at 40 °C for 4 h under Ar atmosphere. The reaction mixture was washed with water and extracted with ethyl acetate three times. The combined organic layer was washed with saturated NaCl solution and dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (Petroleum ether/EtOAc = 3:1) to afford the desired product **7** (white solid, 27.8 mg, in 43% yield).

6. Characterization data of products 3

4-(((trifluoromethyl)thio)methyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 77% yield (44.1 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 77.2-78.9 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.74-7.72 (m, 1 H), 7.29-7.27 (m, 1 H), 7.27-7.22 (m, 2 H), 4.19-4.14 (m, 1 H), 3.97-3.90 (m, 1 H), 3.83 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.39-3.32 (m, 1 H), 3.26-3.20 (m, 1 H), 2.39-2.32 (m, 1 H), 2.30-2.24 (m, 1 H), 2.11-2.00 (m, 1 H), 1.73-1.82 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.2, 142.7, 134.6, 131.1 (q, *J* = 304.5 Hz), 122.5, 122.4, 119.4, 109.2, 42.5, 36.4, 33.0 (q, *J* = 1.9 Hz), 25.7, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.02. HRMS (ESI-TOF) *m*/*z*: [M + H] + Calcd for C₁₃H₁₄F₃N₂S 287.0824; Found 287.0822.

5-methyl-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 58% yield (34.8 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 67.0-69.4 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.18-7.12 (m, 2 H), 7.08-7.06 (m, 1 H), 4.19-4.13 (m, 1 H), 4.00-3.93 (m, 1 H), 3.85 (dd, *J* = 3.3 Hz, 1.0 Hz, 1 H), 3.44-3.37 (m, 1 H), 3.30-3.24 (m, 1 H), 2.66 (s, 3 H), 2.38-2.24 (m, 2 H), 2.02-2.13 (m, 1 H), 1.88-1.79 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.4, 142.1, 134.3, 131.2 (q, *J* = 304.1 Hz), 129.5, 122.9, 122.3, 106.6, 42.6, 36.2, 33.3 (q, *J* = 1.6 Hz), 25.7, 21.4, 16.8; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.00. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₄H₁₆F₃N₂S 301.0981; Found 301.0979.

6-methyl-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 74% yield (44.1 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 114.0-116.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7. 7.51 (s, 1 H), 7.17 (d, *J* = 2.0 Hz, 1 H), 7.08 (dd, *J* = 2.0 Hz, *J* = 0.2 Hz, 1 H), 4.19-4.14 (m, 1 H), 3.98-3.91 (m, 1 H), 3.82 (dd, *J* = 3.4 Hz, *J* = 1.0 Hz, 1 H), 3.39-3.32 (m, 1 H), 3.27-3.21 (m, 1 H), 2.47 (s, 3 H), 2.37-2.25 (m, 2 H), 2.13-2.02 (m, 1 H), 1.84-1.74 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.1, 143.0, 132.7, 132.2, 131.2 (q, *J* = 304.2 Hz), 123.9, 119.2, 108.7, 42.5, 36.3, 33.1 (q, *J* = 1.7 Hz), 25.7, 21.7, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.01. HRMS (ESI-TOF) *m/z*: [M + H] ⁺ Calcd for C₁₄H₁₆F₃N₂S 301.0981; Found 301.0982.

7-methyl-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 68% yield (40.9 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 57.2-59.1 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.60 (d, *J* = 2.1 Hz, 1 H), 7.09-7.07 (m, 2 H), 4.17-4.12 (m, 1 H), 3.95-3.89 (m, 1 H), 3.82 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.38-3.31 (m, 1 H), 3.25-3.20 (m, 1 H), 2.49 (s, 3 H), 2.39-2.24 (m, 2 H), 2.12-2.01 (m, 1 H), 1.82-1.73 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.7, 140.8, 134.9, 132.4, 131.2 (q, *J* = 304.1 Hz), 124.1, 118.9, 109.2, 42.5, 36.4, 33.1 (q, *J* = 1.9 Hz), 25.8, 21.9, 21.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.02. HRMS (ESI-TOF) *m*/*z*: [M + H] ⁺ Calcd for C₁₄H₁₆F₃N₂S 301.0981; Found 301.0980.

9-methyl-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine White solid, 62% yield (37.4 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 72.9-74.7 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.55 (d, *J* = 2.0 Hz, 1 H), 7.11 (t, *J* = 1.9 Hz, 1 H), 6.94 (d, *J* = 1.8 Hz, 1 H), 4.64-4.59 (m, 1 H), 4.33-4.27 (m, 1 H), 3.82 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.40-3.33 (m, 1 H), 3.28-3.22 (m, 1 H), 2.70 (s, 3 H), 2.36-2.22 (m, 2 H), 2.11-2.01 (m, 1 H), 1.81-1.72 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 152.2, 143.0, 133.6, 131.2 (q, *J* = 304.3 Hz), 124.9, 122.4, 121.4, 117.4, 45.6, 36.7, 33.3 (q, *J* = 1.9 Hz), 25.2, 22.2, 18.8; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.01. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₄H₁₆F₃N₂S 301.0981; Found 301.0982.

7-methoxy-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 45% yield (28.5 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 97.1-99.6 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.23 (d, *J* = 1.0 Hz, 1 H), 7.17 (d, *J* = 2.2 Hz, 1 H), 6.90 (dd, *J* = 2.2 Hz, 1.0 Hz, 1 H), 4.19-4.13 (m, 1 H), 3.98-3.91 (m, 1 H), 3.84 (s, 3 H), 3.82 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.39-3.32 (m, 1 H), 3.26-3.20 (m, 1 H), 2.40-2.24 (m, 2 H), 2.13-2.02 (m, 1 H), 1.83-1.73 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 156.5, 152.4, 143.5, 131.2 (q, *J* = 304.2 Hz), 129.3, 112.4, 109.5, 101.8, 55.9, 42.6, 36.4, 33.1 (q, *J* = 2.0 Hz), 25.7, 21.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.07. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₄H₁₆F₃N₂OS 317.0930; Found 317.0928.

7-(trifluoromethyl)-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 69% yield (49.2 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 86.0-88.2 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.00 (s, 1 H), 7.49 (dd, *J* = 2.1 Hz, 0.3 Hz, 1 H), 7.36 (d, *J* = 2.1 Hz, 1 H), 4.26-4.21 (m, 1 H), 4.04-3.97 (m, 1 H), 3.79 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.44-3.37 (m, 1 H), 3.30-3.24 (m, 1 H), 2.43-2.30 (m, 2 H), 2.17-2.06 (m, 1 H), 1.87-1.78 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 154.4, 142.3, 136.7, 131.1 (q, *J* = 304.5 Hz), 125.1 (q, *J* = 32.0 Hz), 125.0 (q, *J* = 270.3 Hz), 119.4 (q, *J* = 3.6 Hz), 117.1 (q, *J* = 4.0 Hz), 109.6, 42.8, 36.6, 32.9 (q, *J* = 2.0 Hz), 25.6, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.12, -60.63. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₄H₁₃F₆N₂S 355.0698; Found 355.0697.

1-(4-(((trifluoromethyl)thio)methyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridin-7-yl)ethan-1-one

White solid, 72% yield (47.3 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 109.0-112.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.34 (d, *J* = 0.3 Hz, 1 H), 7.95 (dd, *J* = 2.1 Hz, 0.4 Hz, 1 H), 7.33 (d, *J* = 2.1 Hz, 1 H), 4.28-4.23 (m, 1 H), 4.05-3.98 (m, 1 H), 3.81 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.44-3.37 (m, 1 H), 3.30-3.24 (m, 1 H), 2.65 (s, 3 H), 2.44-2.30 (m, 2 H), 2.17-2.06 (m, 1 H), 1.87-1.78 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 198.0, 154.3, 142.3, 137.9, 132.4, 131.1 (q, *J* = 304.2 Hz), 122.8, 121.1, 109.2, 42.9, 36.7, 32.9 (q, *J* = 2.0 Hz), 26.8, 25.6, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.11. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₅H₁₆F₃N₂OS 329.0930; Found 329.0932.

Methyl-4-(((trifluoromethyl)thio)methyl)-1,2,3,4-

tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine-7-carboxylate

White solid, 72% yield (49.5 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 73.2-75.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.45 (d, *J* = 0.3 Hz, 1 H), 7.99 (dd, *J* = 2.1 Hz, 0.4 Hz, 1 H), 7.31 (d, *J* = 2.1 Hz, 1 H), 4.27-4.22 (m, 1 H), 4.05-3.98 (m, 1 H), 3.94 (s, 3 H), 3.83 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.44-3.37 (m, 1 H), 3.30-3.24 (m, 1 H), 2.44-2.29 (m, 2 H), 2.17-2.06 (m, 1 H), 1.88-1.78 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 167.7, 154.1, 142.3, 137.9, 131.1 (q, *J* = 304.2 Hz), 124.9, 124.2, 121.8, 108.9, 52.2, 42.9, 36.6, 32.9 (q, *J* = 1.6 Hz), 25.6, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.05. HRMS (ESI-TOF) *m*/*z*: [M + H] + Calcd for C₁₅H₁₆F₃N₂OS 345.0879; Found 345.0880.

4-(((trifluoromethyl)thio)methyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine-7-carbonitrile

White solid, 71% yield (44.2 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 98.4-101.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.00 (d, *J* = 0.2 Hz, 1 H), 7.49 (dd, *J* = 2.1 Hz, 0.4 Hz, 1 H), 7.36 (dd, *J* = 2.1 Hz, 0.1 Hz, 1 H), 4.28-4.23 (m, 1 H), 4.06-3.99 (m, 1 H), 3.79 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.45-3.38 (m, 1 H), 3.30-3.24 (m, 1 H), 2.45-2.31 (m, 2 H), 2.18-2.07 (m, 1 H), 1.88-1.79 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 155.1, 142.4, 137.4, 131.0 (q, *J* = 304.3 Hz), 126.0, 124.4, 120.0, 110.3, 105.8, 42.9, 36.6, 32.8 (q, *J* = 2.0 Hz), 25.5, 21.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.08. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₄H₁₃F₃N₃S 312.0777; Found 312.0775.

7-nitro-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 74% yield (49.1 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 147.7-149.8 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.53 (d, *J* = 0.5 Hz, 1 H), 8.12 (dd, *J* = 2.2 Hz, 0.5 Hz, 1 H), 7.32 (d, *J* = 2.2 Hz, 1 H), 4.30-4.25 (m, 1 H), 4.08-4.01 (m, 1 H), 3.80 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.45-3.38 (m, 1 H), 3.31-3.25 (m, 1 H), 2.46-2.33 (m, 2 H), 2.20-2.11 (m, 1 H), 1.89-1.80 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 156.2, 143.9, 142.1, 138.8, 131.0 (q, *J* = 304.2 Hz), 118.3, 116.0, 109.1, 43.1, 36.8, 32.7 (q, *J* = 1.8 Hz), 25.4, 21.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.09. HRMS (ESI-TOF) *m*/*z*: [M + H] + Calcd for C₁₃H₁₃F₃N₃O₂S 332.0675; Found 332.0637.

7-fluoro-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 70% yield (42.6 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 51.6-53.4 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.38 (dd, *J* = 2.4 Hz, 0.6 Hz, 1 H), 7.20-7.17 (m, 1 H), 7.01-6.96 (m, 1 H), 4.19-4.14 (m, 1 H), 3.99-3.92 (m, 1 H), 3.79 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.39-3.32 (m, 1 H), 3.26-3.20 (m, 1 H), 2.39-2.26 (m, 2 H), 2.13-2.03 (m, 1 H), 1.84-1.75 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.6 (d, *J* = 235.6 Hz), 153.7, 143.1 (d, *J* = 12.7 Hz), 131.2, 131.1 (q, *J* = 304.2 Hz), 110.7 (d, *J* = 25.9 Hz), 109.5 (d, *J* = 10.4 Hz), 105.3 (d, *J* = 24.1 Hz), 42.6, 36.5, 32.9 (q, *J* = 2.0 Hz), 25.5, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.06, -120.63. HRMS (ESI-TOF) *m*/*z*: [M + H] + Calcd for C₁₃H₁₃F₄N₂S 305.0730; Found 305.0732.

7-chloro-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 70% yield (44.6 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 72.3-74.1 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.69-7.68 (m, 1 H), 7.22-7.17 (m, 2 H), 4.19-4.14 (m, 1 H), 3.99-3.92 (m, 1 H), 3.78 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.40-3.33 (m, 1 H), 3.26-3.21 (m, 1 H), 2.40-2.26 (m, 2 H), 2.14-2.03 (m, 1 H), 1.84-1.75 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.5, 143.6, 133.3, 131.1 (q, *J* = 304.5 Hz), 128.1, 122.9, 119.3, 110.0, 42.7, 36.5, 32.9 (q, *J* = 1.9 Hz), 25.6, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.05. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₃H₁₃ClF₃N₂S 321.0435; Found 321.0434.

7-bromo-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 65% yield (47.4 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 73.5-75.7 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.85 (d, *J* = 0.4 Hz, 1 H), 7.33 (dd, *J* = 2.1 Hz, 0.4 Hz, 1 H), 7.14 (d, *J* = 2.1 Hz, 1 H), 4.19-4.14 (m, 1 H), 3.98-3.92 (m, 1 H), 3.78 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.40-3.33 (m, 1 H), 3.26-3.21 (m, 1 H), 2.41-2.27 (m, 2 H), 2.14-2.03 (m, 1 H), 1.85-1.75 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.4, 144.1, 133.6, 131.1 (q, *J* = 304.2 Hz), 125.5, 122.3, 115.5, 110.4, 42.7, 36.5, 32.9 (q, *J* = 1.7 Hz), 25.6, 21.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.05. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₃H₁₃BrF₃N₂S 364.9929; Found 364.9931.

7,8-dimethyl-4-(((trifluoromethyl)thio)methyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 62% yield (38.8 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 147.5-149.6 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.48 (s, 1 H), 7.06 (s, 1 H), 4.16-4.11 (m, 1 H), 3.95-3.88 (m, 1 H), 3.81 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.38-3.31 (m, 1 H), 3.26-3.20 (m, 1 H), 2.38 (s, 3 H), 2.36 (s, 3 H), 2.34-2.30 (m, 1 H), 2.30-2.23 (m, 1 H), 2,11-2.00 (m, 1 H), 1.82-1.73 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.3, 141.3, 133.2, 131.6, 131.3, 131.2 (q, *J* = 304.2 Hz), 119.5, 109.5, 42.5, 36.4, 33.2 (q, *J* = 1.9 Hz), 25.8, 21.6, 20.6, 20.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.01. HRMS (ESI-TOF) *m*/*z*: [M + H] + Calcd for C₁₅H₁₈F₃N₂S 315.1137; Found 315.1137.

7,8-dichloro-4-(((trifluoromethyl)thio)methyl)-1,2,3,4tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine

White solid, 71% yield (56.0 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 125.6-127.9 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.77 (s, 1 H), 7.36 (s, 1 H), 4.17-4.12 (m, 1 H), 3.97-3.90 (m, 1 H), 3.77 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.40-3.21 (m, 2 H), 2.42-2.35 (m, 1 H), 2.35-2.28 (m, 1 H), 2.15-2.04 (m, 1 H), 1.85-1.76 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 154.4, 142.1, 133.9, 131.0 (q, *J* = 304.0 Hz), 126.5, 126.4, 120.6, 110.7, 42.8, 36.6, 32.8 (q, *J* = 1.8 Hz), 25.5, 21.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.08. HRMS (ESI-TOF) *m/z*: [M + H] ⁺ Calcd for C₁₃H₁₂Cl₂F₃N₂S 355.0045; Found 355.0046.

7,8-difluoro-4-(((trifluoromethyl)thio)methyl)-3,4-dihydrobenzo[4,5]imidazo[1,2-a]pyridin-1(2H)-one

White solid, 42% yield (28.9 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 110.5-113.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.04 (dd, *J* = 2.5 Hz, 1.8 Hz, 1 H), 7.48 (dd, *J* = 2.5 Hz, 1.8 Hz, 1 H), 3.81 (dd, *J* = 3.5 Hz, 1.1 Hz, 1 H), 3.46-3.39 (m, 1 H), 3.30-3.25 (m, 1 H), 3.06-3.00 (m, 1 H), 2.93-2.84 (m, 1 H), 2.54-2.47 (m, 1 H), 2.15-2.04 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 167.9, 155.8 (d, *J* = 3.5 Hz), 150.5 (dd, *J* = 14.3 Hz, 6.5 Hz), 148.1 (dd, *J* = 14.1 Hz, 6.7 Hz), 138.0 (dd, *J* = 10.2 Hz, 2.1 Hz), 130.9 (q, *J* = 304.6 Hz), 126.7 (dd, *J* = 11.2 Hz, 1.4 Hz), 107.7 (d, *J* = 20.4 Hz), 104.2 (d, *J* = 24.3 Hz), 36.6, 32.9, 31.3 (q, *J* = 2.1 Hz), 25.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.22, -138.58 (d, *J* = 5.4 Hz), -138.72 (d, *J* = 5.4 Hz). HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₃H₁₀F₅N₂OS 337.0429; Found 337.0433.

3-(((trifluoromethyl)thio)methyl)-2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazole

White solid, 15% yield (8.1 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 2:1). M.p. = 61.0-63.2 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.75-7.71 (m, 1 H), 7.34-7.30 (m, 1 H), 7.27-7.23 (m, 2 H), 4.23-4.18 (m, 1 H), 4.12-4.05 (m, 1 H), 3.70-3.63 (m, 2 H), 3.16-3.10 (m, 1 H), 3.06-2.98 (m, 1 H), 2.59-2.50 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.4, 148.6, 132.3, 130.9 (q, *J* = 304.3 Hz), 122.6, 122.3, 120.2, 109.9, 41.9, 36.2, 32.7 (q, *J* = 2.1 Hz), 32.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.77. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₂H₁₂F₃N₂S 273.0668; Found 273.0668.

6-(((trifluoromethyl)thio)methyl)-7,8,9,10-tetrahydro-6H-benzo[4,5]imidazo[1,2-a]azepine

White solid, 26% yield (15.7 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 5:1). M.p. = 101.5-103.2 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.75-7.72 (m, 1 H), 7.30-7.21 (m, 3 H), 4.45-4.40 (m, 1 H), 3.95-3.88 (m, 1 H), 3.80 (dd, *J* = 4.1 Hz, *J* = 1.7 Hz, 1 H), 3.29-3.23 (m, 2 H), 2.21-2.06 (m, 3 H), 1.89-1.82 (m, 1 H), 1.57-1.45 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 157.0, 142.0, 135.7, 131.5 (q, *J* = 304.2 Hz), 122.5, 121.9, 119.7, 108.9, 44.1, 41.2, 32.7 (q, *J* = 2.0 Hz), 31.4, 29.8, 28.3; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -40.88. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₄H₁₆F₃N₂S 301.0981; Found 301.0979.

6-(((trifluoromethyl)thio)methyl)-6,7,8,9-tetrahydroimidazo[1,2-a:5,4-b']dipyridine

White solid, 47% yield (27.1 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 144.3-146.5 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.35 (dd, *J* = 1.2 Hz, 0.3 Hz, 1 H), 8.00 (dd, *J* = 2.0 Hz, 0.4 Hz, 1 H), 7.23 (dd, *J* = 2.0 Hz, 1.2 Hz, 1 H), 4.48-4.43 (m, 1 H), 4.10-4.03 (m, 1 H), 3.82 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.45-3.38 (m, 1 H), 3.30-3.24 (m, 1 H), 2.45-2.30 (m, 2 H), 2.15-2.04 (m, 1 H), 1.89-1.79 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.7, 147.7, 143.7, 135.0, 131.1 (q, *J* = 304.2 Hz), 126.9, 118.7, 41.7, 36.8, 32.8 (q, *J* = 2.0 Hz), 25.7, 21.4; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.10. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₂H₁₃F₃N₃S 288.0777; Found 288.0779.

9-(((trifluoromethyl)thio)methyl)-6,7,8,9-tetrahydropyrido[2,1-f]purine

White solid, 48% yield (27.8 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 120.5-123.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.06 (s, 1 H), 8.94 (s, 1 H), 4.48-4.43 (m, 1 H), 4.09-4.02 (m, 1 H), 3.80 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.47-3.39 (m, 1 H), 3.32-3.26 (m, 1 H), 2.48-2.33 (m, 2 H), 2.17-2.05 (m, 1 H), 1.90-1.81 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 155.3, 152.2, 152.1, 147.3, 133.7, 131.0 (q, *J* = 304.2 Hz), 41.9, 37.9, 32.6 (q, *J* = 2.1 Hz), 25.6, 21.3; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.14. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₁H₁₂F₃N₄S 289.0729; Found 289.0728.

1,3-dimethyl-6-(((trifluoromethyl)thio)methyl)-6,7,8,9-tetrahydropyrido[1,2-e]purine-2,4(1H,3H)-dione

White solid, 48% yield (33.1 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 188.5-191.3 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 4.54-4.49 (m, 1 H), 4.18-4.10 (m, 1 H), 3.63 (dd, *J* = 3.3 Hz, 1.0 Hz, 1 H), 3.54 (s, 3 H), 3.37 (s, 3 H), 3.28-3.21 (m, 1 H), 3.18-3.12 (m, 1 H), 2.32-2.17 (m, 2 H), 2.06-1.95 (m, 1 H), 1.79-1.70 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 155.3, 151.8, 150.7, 148.4, 131.0 (q, *J* = 304.5 Hz), 107.1, 45.0, 36.0, 32.8 (q, *J* = 1.8 Hz), 29.9, 29.0, 25.0, 21.2; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.16. HRMS (ESI-TOF) *m/z*: [M + H] ⁺ Calcd for C₁₃H₁₆F₃N₄O₂S 349.0941; Found 349.0939.

2,3-diphenyl-8-(((trifluoromethyl)thio)methyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine

White solid, 26% yield (20.2 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 128.0-130.2 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.48-7.46 (m, 2 H), 7.45-7.39 (m, 3 H), 7.34-7.32 (m, 2 H), 7.22-7.18 (m, 2 H), 7.15-7.11 (m, 1 H), 3.86 (dd, *J* = 3.3 Hz, 1.0 Hz, 1 H), 3.78-3.72 (m, 1 H), 3.69-3.62 (m, 1 H), 3.34-3.27 (m, 1 H), 3.24-3.18 (m, 1 H), 2.34-2.27 (m, 1 H), 2.14-2.07 (m, 1 H), 1.99-1.88 (m, 1 H), 1.80-1.71 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 145.3, 137.3, 134.7, 131.3 (q, *J* = 304.0 Hz), 131.0, 130.8, 129.1, 128.6, 128.3, 127.9, 127.0, 126.4, 44.0, 35.9, 33.7 (q, *J* = 1.8 Hz), 25.9, 21.9; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.01. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₂₁H₂₀F₃N₂S 389.1294; Found 389.1291.

Methyl-8-(((trifluoromethyl)thio)methyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-3-carboxylate

White solid, 65% yield (38.5 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 1:1). M.p. = 91.3-94.0 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.68 (s, 1 H), 4.53-4.74 (m, 1 H), 4.11-4.03 (m, 1 H), 3.82 (s, 3 H), 3.65 (dd, *J* = 3.3 Hz, 1.0 Hz, 1 H), 3.25-3.19 (m, 1 H), 3.16-3.11 (m, 1 H), 2.28-2.14 (m, 2 H), 2.00-1.90 (m, 1 H), 1.74-1.64 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.9, 150.5, 136.7, 131.1 (q, *J* = 304.2 Hz), 122.5, 51.5, 45.4, 36.2, 33.1 (q, *J* = 1.6 Hz), 25.0, 21.7; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -41.21. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₁H₁₄F₃N₂O₂S 295.0723; Found 295.0722.

1-(7-chloro-1-(((trifluoromethyl)thio)methyl)-2,3,4,4a-tetrahydro-1H-fluoren-9-yl)ethan-1-one

White solid, 58% yield (38.0 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 5:1). M.p. = 97.3-99.5 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.93-7.91 (m, 1 H), 7.37-7.27 (m, 3 H), 4.35-4.30 (m, 1 H), 4.05-4.00 (m, 1 H), 3.95-3.88 (m, 1 H), 3.71-3.67 (m, 1 H), 2.96-2.89 (m, 1 H), 2.72 (s, 3 H), 2.42-2.37 (m, 1 H), 2.16-2.10 (m, 2 H), 1.95-1.86 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 194.0, 146.2, 136.3, 131.2 (q, *J* = 304.1 Hz), 126.2, 122.7, 122.5, 120.7, 113.2, 110.0, 42.7, 33.3, 32.0 (q, *J* = 1.7 Hz), 31.7, 22.1, 17.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ - 40.55. HRMS (ESI-TOF) *m/z*: [M + H] ⁺ Calcd for C₁₆H₁₇F₃NOS 328.0977; Found 328.0977.

1-(2-chloro-9-(((trifluoromethyl)thio)methyl)-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl)ethan-1-one

White solid, 73% yield (52.5 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 140.4-142.7 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.85 (d, *J* = 0.3 Hz, 1 H), 7.27-7.21 (m, 2 H), 4.30-4.25 (m, 1 H), 4.02-3.96 (m, 1 H), 3.93-3.86 (m, 1 H), 3.66-3.62 (m, 1 H), 2.94-2.88 (m, 1 H), 2.66 (s, 3 H), 2.40-2.36 (m, 1 H), 2.15-2.09 (m, 2 H), 1.93-1.84 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 193.5, 147.3, 134.7, 131.1 (q, *J* = 304.2 Hz), 128.7, 127.2, 122.7, 120.3, 112.9, 110.9, 42.9, 33.3, 31.9 (q, *J* = 1.2 Hz), 31.6, 21.9, 17.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -40.56. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₆H₁₆ClF₃NOS 362.0588; Found 362.0591.

1-(2,3-difluoro-9-(((trifluoromethyl)thio)methyl)-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl)ethan-1-one

White solid, 81% yield (58.9 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 117.2-119.5 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.66-7.61 (m, 1 H), 7.14-7.09 (m, 1 H), 4.23-4.18 (m, 1 H), 4.00-3.94 (m, 1 H), 3.90-3.82 (m, 1 H), 3.64-3.60 (m, 1 H), 2.95-2.89 (m, 1 H), 2.63 (s, 3 H), 2.41-2.35 (m, 1 H), 2.16-2.09 (m, 2 H), 1.93-1.84 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 193.2, 149.1 (dd, *J* = 13.9 Hz, *J* = 10.8 Hz), 147.3 (d, *J* = 2.5 Hz), 146.9-146.6 (m), 131.5 (d, *J* = 9.3 Hz), 131.1 (q, *J* = 304.4 Hz), 121.5 (dd, *J* = 8.0 Hz, *J* = 1.3 Hz), 113.3 (d, *J* = 3.62 Hz), 108.0 (d, *J* = 20.7 Hz), 98.3 (d, *J* = 21.1 Hz), 43.0, 33.4, 31.9 (q, *J* = 1.1 Hz), 31.4, 21.9, 17.5; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -40.59, -142.30 (d, *J* = 5.5 Hz), -143.26 (d, *J* = 5.5 Hz). HRMS (ESI-TOF) *m*/*z*: [M + H] + Calcd for C₁₆H₁₅F₅NOS 364.0789; Found 364.0793.

COCH₃ SCF₃

1-(2-methyl-9-(((trifluoromethyl)thio)methyl)-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl)ethan-1-one

White solid, 46% yield (31.7 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). M.p. = 151.6-153.4 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.69 (s, 1 H), 7.24 (d, *J* = 2.1 Hz, 1 H), 7.12 (dd, *J* = 2.1 Hz, 0.3 Hz, 1 H), 4.31-4.26 (m, 1 H), 4.03-3.97 (m, 1 H), 3.92-3.84 (m, 1 H), 3.70-3.65 (m, 1 H), 2.94-2.88 (m, 1 H), 2.71 (s, 3 H), 2.52 (s, 3 H), 2.40-2.36 (m, 1 H), 2.15-2.08 (m, 2 H), 1.93-1.84 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 194.0, 146.2, 134.7, 132.2, 131.2 (q, *J* = 304.1 Hz), 126.4, 123.9, 120.6, 112.8, 109.6, 42.7, 33.3, 32.0 (q, *J* = 1.2 Hz), 31.8, 22.1, 22.0, 17.6; ¹⁹F NMR (376 MHz, CDCl₃, ppm): δ -40.55. HRMS (ESI-TOF) *m/z*: [M + H] + Calcd for C₁₇H₁₉F₃NOS 342.1134; Found 342.1133.

3-(((8R,98,138,148)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-2-yl)oxy)propyl 1-(pent-4-en-1-yl)-1Hbenzo[d]imidazole-5-carboxylate

White liquid, 57% yield (61.7 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.04 (d, *J* = 0.2 Hz, 1 H), 7.48 (dd, *J* = 2.1 Hz, 0.4 Hz, 1 H), 7.97 (s, 1 H), 7.41 (d, *J* = 2.1 Hz, 1 H), 7.18 (d, *J* = 2.2 Hz, 1 H), 6.73 (dd, *J* = 2.2 Hz, 0.7 Hz, 1 H), 6.66 (d, *J* = 0.6 Hz, 1 H), 5.83-5.73 (m, 1 H), 5.08 (s, 1 H), 5.05-5.04 (m, 1 H), 4.54 (t, 2 H), 4.20 (t, 2 H), 4.15-4.10 (m, 2 H), 2.90-2.86 (m, 2 H), 2.52-2.46 (m, 1 H), 2.41-2.36 (m, 1 H), 2.29-2.21 (m, 3 H), 2.17-2.12 (m, 1 H), 2.10-2.04 (m, 4 H), 2.02-1.92 (m, 4 H), 1.59-1.39 (m, 5 H), 0.90 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 221.1, 167.1, 156.9, 144.8, 143.6, 137.9, 137.1, 136.5, 132.3, 126.5, 124.6 (d, *J* = 1.9 Hz), 122.9, 116.6, 114.7, 112.3, 109.5, 64.5, 61.9, 50.5, 48.1, 44.5, 44.1, 38.5, 36.0, 31.7, 30.6, 29.7, 29.0, 28.8, 26.7, 26.0, 21.7, 14.0. HRMS (ESI-TOF) *m*/*z*: [M + H] + Calcd for C₃₄H₄₁N₂O₄ 541.3061; Found 541.3063.

3-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6Hcyclopenta[a]phenanthren-2-yl)oxy)propyl 4-(((trifluoromethyl)thio)methyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine-7-carboxylate

White liquid, 43% yield (27.8 mg). Column chromatography on silica gel (Petroleum ether/EtOAc = 3:1). ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 8.45 (d, *J* = 0.2 Hz, 1 H), 8.00 (dd, *J* = 2.1 Hz, 0.4 Hz, 1 H), 7.32 (d, *J* = 2.1 Hz, 1 H), 7.19 (d, *J* = 2.1 Hz, 1 H), 6.73 (dd, *J* = 2.2 Hz, 0.7 Hz, 1 H), 6.66 (d, *J* = 0.7 Hz, 1 H), 4.53 (t, 2 H), 4.28-4.23 (m, 1 H), 4.15-4.11 (m, 2 H), 4.05-3.98 (m, 1 H), 3.82 (dd, *J* = 3.4 Hz, 1.0 Hz, 1 H), 3.45-3.38 (m, 1 H), 3.31-3.12 (m, 1 H), 2.91-2.87 (m, 2 H), 2.53-2.46 (m, 1 H), 2.44-2.36 (m, 2 H), 2.35-2.30 (m, 1 H), 2.28-2.22 (m, 3 H), 2.17-2.09 (m, 2 H), 2.08-2.01 (m 2 H), 2.00-1.93 (m, 2 H), 1.88-1.78 (m, 1 H), 1.56-1.40 (m, 5 H), 0.90 (s, 3 H); ¹³C **NMR** (100 MHz, CDCl₃, ppm): δ 221.1, 167.1, 157.0, 154.1, 142.3, 137.91, 137.89, 132.3, 131.1 (q, *J* = 304.5 Hz), 126.5, 124.9, 124.3, 121.7, 114.7, 112.3, 109.0, 64.5, 61.8, 50.5, 48.2, 44.1, 42.9, 38.5, 36.6, 36.0, 32.9 (q, *J* = 1.7 Hz), 31.7, 29.8, 29.0, 26.7, 26.0, 25.6, 21.7, 21.5, 14.0. ¹⁹F **NMR** (376 MHz, CDCl₃, ppm): δ -41.05. **HRMS (ESI-TOF)** *m/z*: [M + H] ⁺ Calcd for C₃₅H₄₀F₃N₂O₄S 641.2655; Found 641.2659.

7. Mechanistic Experiments

A dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 1-(pent-4-en-1-yl)-1H-benzo[d]imidazole **1a** (0.20 mmol, 1.0 equiv.), AgSCF₃ **2** (0.30 mmol, 1.5 equiv.), K₂S₂O₈ (0.4 mmol, 2.0 equiv.), NaHCO₃ (0.24 mmol, 1.2 equiv.), TEMPO (0.4 mmol, 2.0 equiv.) and DMSO (2.0 mL). The reaction mixture was then stirred at 40 °C for 4 h under Ar atmosphere. The reaction mixture was washed with water and extracted with ethyl acetate three times. The combined organic layer was washed with saturated NaCl solution, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The GC-MS analysis of crude mixture showed that the formation of **3a** was completely inhibited.

A dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with 1-(pent-4-en-1-yl)-1H-benzo[d]imidazole **1a** (0.20 mmol, 1.0 equiv.), AgSCF₃ **2** (0.30 mmol, 1.5 equiv.), K₂S₂O₈ (0.4 mmol, 2.0 equiv.), NaHCO₃ (0.24 mmol, 1.2 equiv.), 1, 1-diphenylethylene (0.4 mmol, 2.0 equiv.) and DMSO (2.0 mL). The reaction mixture was then stirred at 40 °C for 4 h under Ar atmosphere. The reaction mixture was washed with water and extracted with ethyl acetate three times. The combined organic layer was washed with saturated NaCl solution, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated in vacuo. The GC-MS analysis of crude mixture showed that the formation of **3a** was totally suppressed. The expected adduct **8** was observed by GC-MS as following: **GC-MS** (m/z, relative intensity): 280 (M +, 87), 211 (99), 178 (66), 165 (27), 152 (15). These results showed that the reaction system proceeded in a free radical way.

Figure S1. GC-MS (m/z) of compound 8

8. X-ray crystallographic data of 3a

The product **3a** was recrystallized from CDCl₃. Further information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 2360355.

Figure S2.	X-ray o	crystal	structure	of 3a w	ith the	ellipsoid	contour	at 50%	probability	Levels.
Table S6. (Crvstal	data an	d structu	e refine	ment f	for 3a				

Identification code	3 a
Empirical formula	$C_{13}H_{13}F_3N_2S$
Formula weight	286.08
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	6.5464(4)

13.7584(8)
16.2007(10)
67.284(6)
85.636(5)
87.696(5)
1341.98(15)
4
1.417
2.381
592.0
$0.17 \times 0.11 \times 0.04$
CuKa (λ = 1.54184)
6.966 to 134.156

9. References

[1] (a) N. Shotaro, S. Takashi, S. Atsushi, K. Tohru, Y. Tsuyoshi and M. Atsunori, Org. Lett., 2012, 14, 2476-2479; (b) H. G. Huang, M. L. Yu, X. L. Su, P. Guo, J. Zhao, J. B. Zhou and Y. Li, J. Org. Chem., 2018, 83, 2425-2437.

[2] Y. X. Wang, S. L. Qi, Y. X. Luan, X. W. Han, S. Wang, H. Chen and M. Ye, J. Am. Chem. Soc., 2018, **140**, 5360-5364.

[3] X. Y. Yuan, Y. F. Si, X. Li, S. J. Wu, F. L. Zeng, Q. Y. Lv and B. Yu, Org. Chem. Front., 2022, **9**, 2728-2733.

10. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

Figure S3. ¹H NMR (400 MHz, CDCl₃) of compound 3a

Figure S4. ¹³C NMR (100 MHz, CDCl₃) of compound 3a

Figure S5. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3a

Figure S6. ¹H NMR (400 MHz, CDCl₃) of compound 3b

Figure S7. ¹³C NMR (100 MHz, CDCl₃) of compound 3b

Figure S8. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3b

Figure S10. ¹³C NMR (100 MHz, CDCl₃) of compound 3c

Figure S11. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3c

Figure S12. ¹H NMR (400 MHz, CDCl₃) of compound 3d

Figure S13. ¹³C NMR (100 MHz, CDCl₃) of compound 3d

Figure S14. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3d

Figure S16. ¹³C NMR (100 MHz, CDCl₃) of compound 3e

Figure S17. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3e

Figure S18. ¹H NMR (400 MHz, CDCl₃) of compound 3f

Figure S19. ¹³C NMR (100 MHz, CDCl₃) of compound 3f

Figure S20. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3f

Figure S22. ¹³C NMR (100 MHz, CDCl₃) of compound 3g

Figure S23. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3g

Figure S24. ¹H NMR (400 MHz, CDCl₃) of compound 3h

Figure S25. ¹³C NMR (100 MHz, CDCl₃) of compound 3h

Figure S26. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3h

Figure S28. ¹³C NMR (100 MHz, CDCl₃) of compound 3i

Figure S29. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3i

8008 7.2478 7.2478 7.2478 7.2478 7.2478 7.2478 7.2478 7.2537 4.260 7.2338 7.2537 7.2538 7.357 7.2538 7.2537 7.2538 7.3759 7.2537 7.2538 7.3759 7.2537 7.2538 7.3759 7.2537 7.2538 7.3759 7.2536 7.3759 7.2537 7.2538 7.2536 7.2538 7.2537

Figure S30. ¹H NMR (400 MHz, CDCl₃) of compound 3j

Figure S31. ¹³C NMR (100 MHz, CDCl₃) of compound 3j

Figure S32. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3j

Figure S34. ¹³C NMR (100 MHz, CDCl₃) of compound 3k

Figure S35. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3k

Figure S36. ¹H NMR (400 MHz, CDCl₃) of compound 3m

Figure S37. ¹³C NMR (100 MHz, CDCl₃) of compound 3m

Figure S38. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3m

Figure S40. ¹³C NMR (100 MHz, CDCl₃) of compound 3n

Figure S41. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3n

Figure S42. ¹H NMR (400 MHz, CDCl₃) of compound 30

Figure S43. ¹³C NMR (100 MHz, CDCl₃) of compound 30

Figure S44. ¹⁹F NMR (376 MHz, CDCl₃) of compound 30

Figure S46. ¹³C NMR (100 MHz, CDCl₃) of compound 3p

Figure S47. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3p

Figure S48. ¹H NMR (400 MHz, CDCl₃) of compound 3q

Figure S49. ¹³C NMR (100 MHz, CDCl₃) of compound 3q

Figure S50. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3q

Figure S52. ¹³C NMR (100 MHz, CDCl₃) of compound 3s

Figure S53. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3s

Figure S54. ¹H NMR (400 MHz, CDCl₃) of compound 3t

Figure S55. ¹³C NMR (100 MHz, CDCl₃) of compound 3t

Figure S56. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3t

Figure S58. ¹³C NMR (100 MHz, CDCl₃) of compound 3u

Figure S59. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3u

Figure S60. ¹H NMR (400 MHz, CDCl₃) of compound 3w

Figure S61. ¹³C NMR (100 MHz, CDCl₃) of compound 3w

Figure S62. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3w

Figure S64. ¹³C NMR (100 MHz, CDCl₃) of compound 3y

Figure S65. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3y

Figure S66. ¹H NMR (400 MHz, CDCl₃) of compound 3z

Figure S67. ¹³C NMR (100 MHz, CDCl₃) of compound 3z

Figure S68. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3z

Figure S70. ¹³C NMR (100 MHz, CDCl₃) of compound 3za

Figure S71. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3za

Figure S72. ¹H NMR (400 MHz, CDCl₃) of compound 3zb

Figure S73. ¹³C NMR (100 MHz, CDCl₃) of compound 3zb

Figure S74. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3zb

Figure S76. ¹³C NMR (100 MHz, CDCl₃) of compound 3zd

Figure S77. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3zd

Figure S78. ¹H NMR (400 MHz, CDCl₃) of compound 3ze

Figure S79. ¹³C NMR (100 MHz, CDCl₃) of compound 3ze

Figure S80. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3ze

Figure S82. ¹³C NMR (100 MHz, CDCl₃) of compound 3zf

Figure S83. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3zf

Figure S84. ¹H NMR (400 MHz, CDCl₃) of compound 3zg

Figure S85. ¹³C NMR (100 MHz, CDCl₃) of compound 3zg

Figure S86. ¹⁹F NMR (376 MHz, CDCl₃) of compound 3zg

Figure S88. ¹³C NMR (100 MHz, CDCl₃) of compound 6

Figure S90. ¹³C NMR (100 MHz, CDCl₃) of compound 7

Figure S91. ¹⁹F NMR (376 MHz, CDCl₃) of compound 7