# Expeditious and Environmentally Benign Synthesis of imidazo[4,5,1-*ij*]quinolines via sequential Povarov reaction/reductive cyclization

Laura A. Heredia-Parra<sup>a</sup> Mónica C. Ávila-Murillo<sup>\*b</sup> and Cristian Ochoa-Puentes<sup>\*a</sup>

<sup>a</sup> Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia–Sede Bogotá, Carrera 45 # 26-85, A.A 5997, Bogotá, Colombia.

<sup>b</sup> Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos, Departamento de Química, Universidad Nacional de Colombia–Sede Bogotá, Carrera 45 # 26-85, A.A 5997, Bogotá, Colombia.

Correspondence: <u>cochoapu@unal.edu.co</u> (C. ochoa-Puentes), <u>mcavilam@unal.edu.co</u> (M. Ávila-Murillo)

#### Table of contents

| DES preparation                                                                                                                 | S3   |
|---------------------------------------------------------------------------------------------------------------------------------|------|
| General procedure for the synthesis of 8-nitrotetrahydroquinolines 4a-4p                                                        | S3   |
| General procedure for the synthesis of imidazo[4,5,1-ij]quinolines <b>5a-5ac</b>                                                | \$3  |
| Characterization data for 8-nitrotetrahydroquinolines 4a-4p                                                                     | S4   |
| Characterization data for imidazo[4,5,1- <i>ij</i> ]quinolines <b>5a-5ac</b>                                                    | S13  |
| Copies of IR, <sup>1</sup> H NMR, <sup>13</sup> C NMR, APT, HMBC, HSQC and HRMS of 8-nitrotetrahydroquinolines                  |      |
| 4a-4p                                                                                                                           | S28  |
| Copies of IR, <sup>1</sup> H NMR, <sup>13</sup> C NMR, APT, HSQC and HRMS of imidazo[4,5,1- <i>ij</i> ]quinolines <b>5a-5ac</b> |      |
|                                                                                                                                 | S59  |
| Characterization data and copies of <sup>1</sup> H NMR and APT for the 8-aminotetrahydroquinoline 6                             |      |
|                                                                                                                                 | S110 |
| Microplate DPPH scavenging assay                                                                                                | S112 |

**DES preparation**. The DES was formed by mixing the components in the respective molar ratio in a glass vial. The mixture was heated up to 80 °C until a homogeneous, colourless liquid was obtained.

**General procedure for the synthesis of 8-nitrotetrahydroquinolines 4a-4p**. 0.8 g of ChCl/zinc chloride DES (1:2) was heated to 80 °C to obtain a clear melt. To this melt a mixture of substituted aniline (1 mmol), aromatic aldehyde (1.1 mmol) and *trans*-anethole (or *trans*-isoeugenol, 1.1 mmol) was added and the reaction was stirred at 110 °C. After completion of the reaction (monitored by TLC), the reaction mixture was quenched by adding water while still hot, cooled to room temperature and the crude solid was filtered, washed with water, and purified by column chromatography on silica gel (60–120 mesh) using a mixture of petroleum ether–ethyl acetate as eluent to afford the 8-nitrotetrahydroquinoline derivatives.

General procedure for the synthesis of imidazo[4,5,1-*ij*]quinolines 5a-5ac. A 10 mL microwave vial was charged with 0.26 mmol of 8-nitrotetrahydroquinoline, 0.34 mmol of aldehyde and 3 mL of EtOH/H<sub>2</sub>O (3:1). To this mixture, 226.3 mg (1.3 mmol) of Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> was added and the vial was heated at 110°C during 15 minutes in the microwave reactor. After completion of the reaction (monitored by TLC), the solvent was evaporated, NH<sub>4</sub>OH was added (pH=8) and the crude product was extracted (3x10 mL, AcOEt) and purified by column chromatography on silica gel (60–120 mesh) using a mixture of petroleum ether–ethyl acetate as eluent to afford the corresponding imidazo[4,5,1-*ij*]quinolines.

#### Characterization data for 8-nitrotetrahydroquinolines 4a-4p.



*Cis*-4-(4-methoxyphenyl)-3-methyl-8-nitro-2-phenyl-1,2,3,4-tetrahydroquinoline (4a). Light yellow solid (299 mg, 0.8 mmol, 80%);  $R_f$  [P.E-AcOEt 6:1] = 0.55; mp 155 - 157 °C; IR (ATR)  $v_{max}$  = 3327, 2924, 1604, 1495, 1574, 1335, 1249 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub> )  $\delta$  (ppm): 8.50 (s, 1H, N-H), 8.01 (d, *J* = 8.6 Hz, 1H, 7-H), 7.44 – 7.35 (m, 5H, H-2',3',4',5',6'), 7.10 (d, *J* = 8.6 Hz, 2H, H-3'',5''), 6.91 (d, *J* = 8.7 Hz, 2H, H-2'',6''), 6.75 (d, *J* = 7.2 Hz, 1H, H-5), 6.44 (dd, *J* = 8.6, 7.3 Hz, 1H, H-6), 4.32 (d, *J* = 10.2 Hz, 1H, H-2), 3.83 (s, 3H, 4''-OCH<sub>3</sub>), 3.74 (d, *J* = 11.4 Hz, 1H, H-4), 2.20 – 2.10 (m, 1H, H-3), 0.60 (d, *J* = 6.5 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub> )  $\delta$  (ppm): 158.6, 143.1, 141.2, 136.0, 134.3, 130.8, 130.2, 129.7, 128.9, 128.5, 127.6, 124.8, 114.7, 114.2, 63.4, 55.2, 51.2, 39.2, 16.4. HRMS (APCI-Q-TOF) m/z calc. for C<sub>23</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 375.1708, found: 375.1704.

*Cis*-2,4-bis(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4b). Yellow solid (332 mg, 0,82 mmol, 82%);  $R_f$  [hexane-AcOEt 6:1]: 0.42; mp 174 - 176 °C; IR (ATR)  $v_{max}$  = 3372, 2944, 1607, 1577, 1486, 1333, 1244, 1031 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.44 (s, 1H, N-H), 8.00 (d, *J* = 9.8, 1H, H-7), 7.33 (d, *J* = 8.7, 2H, H-Ar), 7.09 (d, *J* = 8.7, 2H, H-Ar), 6.91 (dd, *J* = 10.5, 8.6, 4H, H-Ar), 6.73 (d, *J* = 7.4. 1H, H-5), 6.42 (dd, *J* = 8.6, 7.3, 1H, H-6), 4.27 (d, *J* = 10.1, 1H, H-2), 3.83 (s, 3H, OCH<sub>3</sub>), 3.82 (s, 3H, OCH<sub>3</sub>), 3.72 (d, *J* = 11.4, 1H, H-4), 2.11 (m, 1H, H-3), 0.59 (d, *J* = 6.5, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 159.7, 158.6, 143.2, 136.0, 134.5, 133.2, 130.8, 130.2, 129.7, 128.7, 124.8, 114.7, 114.3, 114.3, 62.8, 55.4, 55.3, 51.3, 39.3, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 405.1814, found 405.1822.

#### Cis-2-(benzo[d][1,3]dioxol-5-yl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-

tetrahydroquinoline (4c). Orange solid (313 mg, 0.75 mmol, 75%); R<sub>f</sub>[hexane-AcOEt 6:1]: 0.42;

mp 156 - 158 °C; IR (ATR)  $v_{max} = 3349$ , 2948, 1610, 1573, 1488, 1331, 1243, 1037 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.42 (s, 1H, NH), 8.00 (d, J = 8.5 Hz, 1H, H-7), 7.08 (d, J = 8.8 Hz, 2H, H-Ar), 6.91 (m, 2H, H-Ar), 6.89 (s, 1H, H-Ar), 6.87 (d, J = 8.0 Hz, 1H, H-Ar), 6.81 (d, J = 7.9 Hz, 1H, H-Ar), 6.73 (d, J = 7.4 Hz, 1H, H-5), 6.43 (dd, J = 8.5, 7.4 Hz, 1H, H-6), 5.99 (s, 2H, OCH<sub>2</sub>O), 4.23 (d, J = 10.1 Hz, 1H, H-2), 3.82 (s, 3H, 4"-OCH<sub>3</sub>), 3.70 (d, J = 11.5 Hz, 1H, H-4), 2.13 – 2.05 (m, 1H, H-3), 0.60 (d, J = 6.5 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.6, 148.3, 147.7, 143.0, 136.1, 135.0, 134.4, 130.9, 130.2, 129.7, 124.8, 121.4, 114.8, 114.3, 108.4, 107.4, 101.3, 63.2, 55.3, 51.2, 39.3, 16.4.; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>23</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 419.1607, found 419.1605.

*Cis*-2-(4-chlorophenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4d). Dark yellow solid (408 mg, 1 mmol, 100%);  $R_f$ [hexane-AcOEt 6:1]: 0.52; mp 176 – 178 °C; IR (ATR)  $v_{max}$  = 3343, 2949, 1608, 1570, 1482, 1332, 1251, 1036, 739 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.41 (s, 1H, NH), 8.01 (d, *J* = 8.6 Hz, 1H, H-Ar), 7.42 – 7.33 (m, 4H, H-Ar), 7.08 (d, *J* = 8.6 Hz, 2H, H-Ar), 6.90 (d, *J* = 8.7 Hz, 2H, H-Ar), 6.75 (d, *J* = 7.2 Hz, 1H, H-5), 6.45 (dd, *J* = 8.7, 7.3 Hz, 1H, H-6), 4.31 (d, *J* = 10.0 Hz, 1H, H-2), 3.82 (s, 4H, 4<sup>\*\*</sup>-OCH<sub>3</sub>), 3.72 (d, *J* = 11.4 Hz, 1H, H-4), 2.16 – 2.05 (m, 1H, H-3), 0.59 (d, *J* = 6.5 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.7, 142.9, 139.8, 136.2, 134.3, 134.2, 131.1, 130.2, 129.6, 129.2, 129.0, 128.1, 124.9, 115.0, 114.3, 62.8, 55.3, 51.1, 39.3, 16.3; HRMS (APCI-Q-TOF) m/z calc. for C<sub>22</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 409.1319, found 409.1331.

### *Cis*-2-(4-methylphenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4e). Orange solid (380 mg, 0.98 mmol, 98%); $R_f$ [hexane-AcOEt 6:1]: 0.55; mp 139 - 141 °C; IR (ATR) $v_{max}$ = 3357, 2963, 1607, 1572, 1508, 1312, 1244, 1032 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) $\delta$ (ppm): 8.46 (s, 1H, NH), 8.00 (d, *J* = 8.5 Hz, 1H, H-7), 7.30 (d, *J* = 8.0 Hz, 2H, H-Ar), 7.20 (d,

J = 8.1 Hz, 2H, H-Ar), 7.09 (d, J = 8.8 Hz, 2H, H-Ar), 6.90 (d, J = 8.8 Hz, 2H, H-Ar), 6.73 (d, J = 7.8 Hz, 1H, H-5), 6.42 (dd, J = 8.7, 7.3 Hz, 1H, H-6), 4.28 (d, J = 10.3 Hz, 1H, H-2), 3.82 (s, 3H, 4''-OCH<sub>3</sub>), 3.72 (d, J = 11.6 Hz, 1H, H-4), 2.38 (s, 3H, 3'-CH<sub>3</sub>), 2.23 – 2.03 (m, 1H, H-3), 0.59 (d, J = 6.5 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.6, 143.2, 138.2, 138.2, 136.0, 134.5, 130.8, 130.2, 129.7, 129.6, 127.5, 124.8, 114.7, 114.3, 63.2, 55.3, 51.3, 39.2, 21.2, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 389.1865, found 389.1861.

#### Cis-2-(2-methylphenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline

(4f). Orange solid (376 mg, 0.97 mmol, 97%);  $R_f$  [hexane-AcOEt 6:1]: 0.55; mp 145 - 147 °C; IR (ATR)  $v_{max} = 3360, 2950, 1609, 1570, 1508, 1339, 1248, 1032 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) <math>\delta$  (ppm): 8.37 (s, 1H, NH), 8.01 (d, J = 8.6 Hz, 1H, H-7), 7.45 (d, J = 7.6 Hz, 1H, H-Ar), 7.26 – 7.18 (m, 4H, H-Ar), 7.10 (d, J = 8.8 Hz, 2H, H-Ar), 6.90 (d, J = 8.8 Hz, 2H, H-Ar), 6.75 (d, J = 7.4 Hz, 1H, H-5), 6.43 (dd, J = 8.5, 7.3 Hz, 1H, H-6), 4.69 (d, J = 10.4 Hz, 1H, H-2), 3.83 (s, 3H, 4"-OCH<sub>3</sub>), 3.77 (d, J = 11.1 Hz, 1H, H-4), 2.43 (s, 3H, 3'-CH<sub>3</sub>), 2.16 – 2.07 (m, 1H, H-3), 0.61 (d, J = 6.5 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm):  $\delta$  158.6, 143.2, 138.2, 138.2, 136.0, 134.5, 130.8, 130.2, 129.7, 129.6, 127.5, 124.8, 114.7, 114.3, 63.2, 55.3, 51.3, 39.2, 21.2, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 389.1865, found 389.1866.

#### Cis-2-(2-chlorophenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline

*J* = 11.2 Hz, 2H, H-4), 2.31 – 2.13 (m, 1H, H-3), 0.66 (d, *J* = 6.6 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>) δ (ppm): 158.7, 143.2, 138.7, 136.2, 134.2, 131.1, 130.2, 129.9, 129.6, 129.4, 127.9, 124.9, 115.0, 114.3, 55.3, 51.1, 15.7; HRMS (APCI-Q-TOF) m/z calc. for C<sub>23</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 409.1319, found 409.1325.

#### Cis-2-(3-methoxyphenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-

tetrahydroquinoline (4h). Light orange solid (363 mg, 0.9 mmol, 90%);  $R_f$  [hexane-AcOEt 6:1]: 0.47; mp 152 - 154 °C; IR (ATR)  $v_{max}$  = 3339, 2931, 1604, 1504, 1331, 1246, 1031 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) δ (ppm): 8.48 (s, 1H, NH), 8.01 (d, *J* = 8.1 Hz, 1H, H-7), 7.31 (t, *J* = 7.9 Hz, 1H, H-Ar), 7.09 (d, *J* = 8.8 Hz, 2H, H-Ar), 7.00 (d, *J* = 7.7 Hz, 1H, H-Ar), 6.96 (bs, 1H, H-Ar), 6.90 (d, *J* = 8.9 Hz, 4H, H-Ar), 6.74 (d, *J* = 7.2 Hz, 1H, H-5), 6.43 (dd, *J* = 8.7, 7.2 Hz, 1H, H-6), 4.29 (d, *J* = 10.1 Hz, 1H, H-2), 3.83 (s, 3H, OCH<sub>3</sub>), 3.82 (s, 3H, OCH<sub>3</sub>), 3.72 (d, *J* = 11.4 Hz, 1H, H-4), 2.14 (m, 1H, H-3), 0.61 (d, *J* = 6.4 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>) δ (ppm): 160.0, 158.6, 143.1, 142.8, 136.1, 134.4, 130.9, 130.2, 129.9, 129.7, 124.8, 120.1, 114.8, 114.3, 113.7, 113.3, 63.4, 55.3, 55.3, 51.2, 39.1 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 405.1814, found 405.1822.

*Cis*-4-(4-methoxyphenyl)-3-methyl-6-methoxy-2-phenyl-8-nitro-1,2,3,4-tetrahydroquinoline (4i). Red solid (404 mg, 1 mmol, 100%);  $R_f$  [hexane-AcOEt 6:1] = 0.47; mp 132 - 134 °C; IR (ATR)  $v_{max}$  = 3323, 2923, 1614, 1506, 1578, 1318, 1246, 1033 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.52 (s, 1H, N-H), 7.43 (d, *J* = 2.9, 1H, H-7), 7.41 - 7.35 (m, H-2'-H-6'), 7.08 (d, *J* = 8.8 Hz, 2H, H-2'', H-6''), 6.89 (d, *J* = 8.6 Hz, 2H, . H-3'', H-5''), 6.48 (bs, 1H, H-5), 4.31 (d, *J* = 10.1 Hz, 1H, H-2), 3.82 (s, 3H, OCH<sub>3</sub>), 3.72 (d, *J* = 11.0 Hz, 1H, H-4), 3.69 (s, 3H, OCH<sub>3</sub>), 2.20 - 2.13 (m, 1H, H-3), 0.58 (d, *J* = 6.5 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.8, 149.0, 141.3, 139.5, 134.0, 131.8, 130.2, 129.7, 127.8, 127.7, 114.4, 104.3, 63.5, 55.6, 55.3, 51.3, 39.4, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 405.1814, found 405.1827.

*Cis*-6-methoxy-2,4-bis(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4j). Red solid (395 mg, 0.91 mmol, 91%);  $R_f$ [hexane-AcOEt 3:1]: 0.47; mp 134 - 136 °C; IR (ATR)  $v_{max}$  = 3339, 2931, 1606, 1579, 1503, 1331, 1244, 1036 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.47 (s, 1H, NH), 7.43 (d, *J* = 3.1 Hz, 1H, H-7), 7.32 (d, *J* = 8.8 Hz, 2H, H-Ar), 7.08 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.92 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.47 (bs = 1H, H-5), 4.26 (d, *J* = 10.1 Hz, 1H, H-2), 3.83 (s, 3H, OCH<sub>3</sub>), 3.82 (s, 3H, OCH<sub>3</sub>), 3.81 (d, *J* = 11.2 Hz, H-4), 3.68 (s, 3H, OCH<sub>3</sub>), 2.18 – 2.07 (m, 1H, H-3), 0.58 (d, *J* = 6.5 Hz, 3H; 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 159.7, 158.7, 148.9, 139.5, 134.0, 133.3, 131.8, 130.2, 129.7, 129.4, 128.9, 128.7, 127.8, 114.5, 114.4, 114.3, 62.9, 55.6, 55.3, 55.3, 39.4, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>25</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 435.1220, found 435.1938.

*Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-6-methoxy-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4tetrahydroquinoline (4k). Dark red solid (372 mg, 0.84 mmol, 84%); R<sub>f</sub> [hexane-AcOEt 3:1]: 0.45; mp 152 - 154 °C; IR (ATR)  $v_{max} = 3323$ , 2923, 1607, 1579, 1503, 1316, 1246, 1039 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.43 (s, 1H, NH), 7.43 (d, J = 2.9. 1H, H-7), 7.07 (d, J = 8.8Hz, 2H, H-Ar), 6.91 – 6.88 (m, 3H, H-Ar), 6.87 – 6.85 (m, 1H, H-Ar), 6.80 (d, J = 8.0 Hz, 1H, H-Ar), 6.47 (bs, 1H, H-5), 5.99 (s, 2H, OCH<sub>2</sub>O), 4.22 (d, J = 10.1 Hz, 1H, H-2), 3.82 (s, 3H, OCH<sub>3</sub>), 3.79 (d, J = 11.1 Hz, 1H, H-4), 3.68 (s, 3H, OCH<sub>3</sub>), 2.14 – 2.07 (m, 1H, H-3), 0.60 (d, J = 6.6 Hz, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.7, 148.9, 148.2, 147.7, 139.4, 135.1, 133.9, 131.7, 130.1, 129.8, 127.7, 121.4, 114.4, 108.3, 107.5, 104.3, 101.3, 63.3, 55.6, 55.3, 51.3, 39.4,
16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>25</sub>H<sub>25</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup>: 449.1712, found 449.1731.

#### Cis-4-(4-methoxyphenyl)-3-methyl-6-methoxy-8-nitro-2-(thiophen-2-yl)-1,2,3,4-

tetrahydroquinoline (4l). Red solid (254 mg, 0.60 mmol, 62%); R<sub>f</sub>[hexane-AcOEt 5:1]: 0.42; mp 135 - 137 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) δ (ppm): 8.51 (s, 1H, NH), 7.43 (dd, *J*=3.1. 0.9. 1H, H-7), 7.32 (d, *J*=6.8. 1H, H-Ar), 7.12 (dd, *J*=3.5. 1.3. 1H, H-Ar), 7.08 (d, *J*=8.7. 2H, H-Ar), 7.01 – 6.98 (m, 1H, H-Ar), 6.90 (d, *J*=8.8. 2H, H-Ar), 6.47 (bs, 1H, H-5), 4.65 (d, *J*=10.1. 1H, H-2), 3.82 (s, 3H, OCH<sub>3</sub>), 3.71 (d, *J*=11.4. 1H, H-4), 3.68 (s, 3H, OCH<sub>3</sub>), 2.18 (m, 1H, H-3), 0.67 (d, *J*=6.5. 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>) δ (ppm): 158.7, 149.1, 144.7, 138.5, 133.8, 131.5, 130.2, 130.1, 127.7, 126.7, 126.4, 125.5, 114.4, 104.5, 58.8, 55.6, 55.3, 51.3, 40.5, 16.6; HRMS (APCI-Q-TOF) m/z calc. for C<sub>22</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>S [M+H]<sup>+</sup>: 411.1378, found 411.1385.

*Cis*-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-2-phenyl-8-nitro-1,2,3,4-tetrahydroquinoline (4m). Red solid (185 mg, 0.44 mmol, 88%);  $R_f$ [hexane-AcOEt 3:1]: 0.47; mp 199 - 201 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.49 (s, 1H, NH), 8.01 (d, *J* = 8.6, 1H, H-7), 7.43 – 7.36 (m, 5H, H-Ar), 6.91 (d, *J*=8.0, 1H, H-Ar), 6.78 (d, *J* = 7.3, 1H, H-Ar), 6.72 (dd, *J* = 8.1, 2.0. 1H, H-Ar), 6.60 (d, *J* = 1.9, 1H, H-Ar), 6.45 (dd, *J* = 8.7, 7.3, 1H, H-6), 5.62 (s, 1H, OH), 4.32 (d, *J* = 10.1, 1H, H-2), 3.85 (s, 3H, 3''-OCH<sub>3</sub>), 3.71 (d, *J* = 11.5, 1H, H-4), 2.16 – 2.11 (m, 1H, H-3), 0.61 (d, *J* = 6.4, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 147.1, 144.7, 143.1, 141.2, 136.1, 134.1, 130.9, 129.5, 129.0, 128.5, 127.7, 124.9, 122.6, 114.8, 114.5, 110.7, 63.4, 56.0, 51.8, 39.2, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>23</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 391.1658, found 391.1649.

#### Cis-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-6-methoxy-2-phenyl-8-nitro-1,2,3,4-

tetrahydroquinoline (4n). Red solid (218 mg, 0.52 mmol, 52%); R<sub>f</sub> [hexane-AcOEt 3:1]: 0.42;

mp 197 - 199 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 8.51 (s, 1H, NH), 7.44 (dd, *J*=3.1, 1.0, 1H, H-7), 7.42 – 7.35 (m, 5H, H-Ar), 6.90 (d, *J* = 8.0, 1H, H-Ar), 6.71 (dd, *J* = 8.1, 2.0. 1H, H-Ar), 6.60 (d, *J* = 2.0. 1H, H-5 ), 6.50(bs, 1H, H-Ar), 5.61 (s, 1H, OH), 4.31 (d, *J* = 10.1, 1H, H-2), 3.85 (s, 3H, OCH<sub>3</sub>), 3.70 (s, 3H, OCH<sub>3</sub>), 3.66 (d, *J* = 11.2, 1H, H-4), 2.18 – 2.11 (m, 1H, H-3), 0.60 (d, *J* = 6.5, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 149.0, 147.1, 144.8, 141.3, 139.4, 133.6, 131.6, 129.8, 128.9, 128.5, 127.7, 127.7, 122.6, 114.6, 110.7, 104.3, 63.5, 56.0, 55.6, 51.9, 39.3, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 421.1763, found 421.1755.

#### Cis-2-(4-chlorophenyl)-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-

tetrahydroquinoline (40). Orange solid (112.6 mg, 0.26 mmol, 53%); R<sub>f</sub> [hexane-AcOEt 3:1]: 0.47; mp 195 - 197 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) δ (ppm): 8.42 (s, 1H, NH), 8.00 (d, J = 8.6, 1H, H-7), 7.38 (s, 4H, H-Ar), 6.91 (d, J = 8.1, 1H, H-Ar), 6.79 (d, J = 7.3, 1H, H-Ar), 6.71 (dd, J = 8.1, 2.0, 1H, H-Ar), 6.60 (d, J = 2.0, 1H, H-Ar), 6.46 (dd, J = 8.7, 7.2, 1H, H-6), 5.64 (s, 1H, OH), 4.31 (d, J = 10.1, 1H, H-2), 3.85 (s, 3H, OCH<sub>3</sub>), 3.70 (d, J = 11.5, 1H, H-4), 2.09 (m, 1H, H-3), 0.61 (d, J = 6.5, 3H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>) δ (ppm): 147.1, 144.7, 142.8, 139.8, 136.2, 134.2, 133.9, 131.0, 129.4, 129.2, 129.0, 124.9, 122.6, 115.1, 114.5, 110.7, 62.8, 56.0, 51.7, 39.2, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>23</sub>H<sub>22</sub>ClN<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 425.1268, found 425.1257.

#### Cis-2-(4-chlorophenyl)-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-6-methoxy-8-nitro-

**1,2,3,4-tetrahydroquinoline (4p).** Red solid (395 mg, 0.78 mmol, 79%); R<sub>f</sub>[hexane-AcOEt 3:1]: 0.4; mp 193 - 195 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) δ (ppm): 8.43 (s, 1H, NH), 7.44 (d, *J* = 2.2, 1H, H-7), 7.37 (m, 4H, H-Ar), 7.26 (s, 1H, H-Ar), 6.90 (d, *J* = 8.0. 1H, H-Ar), 6.70 (dd, *J* = 8.1, 2.0. 1H, H-Ar), 6.58 (d, *J* = 1.9, 1H, H-Ar), 6.52 (dd, *J* = 3.6. 1.6. 1H, H-5), 5.60 (s, 1H, OH), 4.29 (d, J = 10.1.1, H, H-2), 3.85 (s, 3H, OCH<sub>3</sub>), 3.69 (s, 3H, OCH<sub>3</sub>), 3.67 (d, J = 11.4.1, H, H4), 2.10 (m, 1H, H-3), 0.60 (d, J = 6.5.3 H, 3-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 149.1, 147.1, 144.8, 139.8, 139.1, 134.2, 133.4, 131.4, 131.0, 129.2, 129.0, 127.7, 122.5, 114.6, 104.4, 62.9, 56.0, 55.6, 51.8, 39.4, 16.4; HRMS (APCI-Q-TOF) m/z calc. for C<sub>24</sub>H<sub>24</sub>ClN<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 455.1373, found 455.1362.

#### Characterization data for imidazo[4,5,1-*ij*]quinolines 5a-5ac.



Cis-6-(4-methoxyphenyl)-5-methyl-2,4-diphenyl-5,6-dihydro-4H-imidazo[4,5,1-

*ij*]quinoline (5a). White solid (91.6 mg, 0.21 mmol, 80%); R*f* [P.E-AcOEt 2:1] = 0.41; mp 224 – 226 °C; IR (ATR)  $v_{max}$  = 2991, 1604, 1506, 1250, 1029, 767, 746 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.72 (d, *J* = 8.1 Hz, 1H, 9-H), 7.44 (dd, *J* = 7.6, 1.8 Hz, 2H, H-Ar), 7.24 – 7.20 (m, 1H, 8-H), 7.19 – 7.14 (m, 3H, H-Ar), 7.07 (d, *J* = 8.6 Hz, 2H, H-3'',5''), 6.98 – 6.93 (m, 3H, H-Ar), 6.83 (dd, *J* = 7.3, 2.1 Hz, 2H, H-Ar), 6.79 (d, *J* = 8.7 Hz, 2H, H-2'',6''), 6.71 (d, *J* = 7.3 Hz, 1H, H-7), 5.33 (d, *J* = 8.0 Hz, 1H, H-4), 4.07 (d, *J* = 9.0 Hz, 1H, H-6), 3.79 (s, 3H, 4''-OCH<sub>3</sub>), 2.66 – 2.58 (m, 1H, H-5), 0.88 (d, *J* = 6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.3, 152.8, 140.9, 139.8, 134.2, 133.2, 131.2, 130.0, 128.9, 128.1, 127.8, 127.7, 127.5, 125.8, 122.5, 120.8, 117.2, 113.9, 65.7, 55.3, 47.9, 45.1, 17.7. HRMS (APCI-Q-TOF) m/z calc. for C<sub>30</sub>H<sub>27</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 431.2195, found: 431.2123

 ${\it Cis-8-methoxy-6-(4-methoxyphenyl)-5-methyl-2.4-diphenyl-5, 6-dihydro-4 H-imidazo [4,5,1-methyl-2,4-diphenyl-5, 6-dihydro-4 H-imidazo [4,5,1-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,4-methyl-2,$ 

*ij*]quinoline (5b). White solid (79.7 mg, 0.17 mmol, 70 %);  $R_f$  [hexane-AcOEt 1:1] = 0.47; mp 227 - 229 °C; IR (ATR)  $v_{max}$  = 2973, 1603 y 1512, 1242, 1025, 755, 723 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.43 (dd, J = 7.6. 1.9 Hz, 2H, H-Ar), 7.20 (d, J = 2.9 Hz, 1H, H-9), 7.15 (d, J = 7.4 Hz, 3H, H-Ar), 7.05 (d, J = 8.8 Hz, 2H, H-2", 6"), 6.96 – 6.93 (m, 3H, H-Ar), 6.83 (dd, J = 7.5. 2.1 Hz, 2H, H-Ar), 6.77 (d, J = 8.6 Hz, 2H, H-3", 5"), 6.40 (bs, 1H, H-7), 5.31 (d, J = 7.9 Hz, 1H, H-4), 4.03 (d, J = 8.4 Hz, 1H, H-6), 3.82 (s, 3H, 8-OCH<sub>3</sub>), 3.78 (s, 3H, 4"-OCH<sub>3</sub>), 2.62 (m, 1H, H-5), 0.88 (d, J = 6.8 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.3, 157.0, 152.7, 141.1, 139.6, 132.9, 131.0, 129.9, 129.0, 128.9, 128.8, 128.1, 127.8, 127.7, 127.5, 126.3, 113.9, 111.4, 99.3, 65.6, 55.9, 55.3, 47.8, 45.2, 17.7; HRMS (ESI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 461.2229, found 461.2219.

*Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*imidazo[4,5,1-*ij*]quinoline (5c). Yellowish white solid (79.8 mg, 0.16 mmol, 63%); R<sub>f</sub>[hexane-AcOEt 1:1] = 0.55; mp 194 - 196 °C; IR (ATR)  $v_{max}$  = 2950. 1603. 1508. 1468. 1250. 1032. 747. 698 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.69 (d, *J* = 8.1 Hz, 1H, H-9), 7.23 – 7.19 (m, 1H, H-Ar), 7.05 (d, *J* = 8.7 Hz, 2H, H-Ar), 7.00 (dd, *J* = 5.1, 2.1 Hz, 3H, H-Ar), 6.94 (dd, *J* = 8.1, 1.8 Hz, 1H, H-Ar), 6.91 (d, *J* = 1.6 Hz, 1H, H-Ar), 6.83 (dd, *J* = 4.8, 2.9 Hz, 2H, H-Ar), 6.78 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.70 (d, *J* = 7.3 Hz, 1H, H-Ar), 6.59 (d, *J* = 8.0 Hz, 1H, H-Ar), 5.88 (s, 2H, OCH<sub>2</sub>O), 5.28 (d, *J* = 7.9 Hz, 1H, H-4), 4.04 (d, *J* = 8.8 Hz, 1H, H-6), 3.78 (s, 3H, 4''-OCH<sub>3</sub>), 2.65 – 2.57 (m, 1H, H-5), 0.88 (d, *J* = 6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.3, 152.5, 148.1, 147.0, 140.7, 139.8, 134.1, 133.3, 130.0, 128.1, 127.6, 127.5, 125.6, 125.0, 123.4, 122.5, 120.7, 117.0, 113.8, 109.4, 107.8, 101.2, 65.6, 55.3, 47.8, 45.1, 17.8; HRMS (ESI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> : 475.2021, found 475.2007.

*Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5d). Yellowish white solid (81 mg, 0.16 mmol, 65%);  $R_f$ [hexane-AcOEt 1:1]: 0.37; mp 199 – 201 °C; IR (ATR)  $v_{max}$  = 2962. 1603. 1480. 1431. 1248. 1030. 727 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.16 (d, *J* = 2.2 Hz, 1H, H-Ar), 7.03 (d, *J* = 8.8 Hz, 2H, H-Ar), 7.00 (dd, *J* = 5.1, 2.1 Hz, 3H, H-Ar), 6.93 (dd, *J* = 8.1, 1.7 Hz, 1H, H-Ar), 6.89 (d, *J* = 1.7 Hz, 1H, H-Ar), 6.84 – 6.82 (m, 2H, H-Ar), 6.76 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.58 (d, *J* = 8.1 Hz, 1H H-Ar), 6.38 (bs, 1H, H-Ar), 5.88 (d, *J* = 2.7 Hz, 2H, OCH<sub>2</sub>O), 5.26 (d, *J* = 7.8 Hz, 1H, H-4), 4.02 (d, *J* = 8.7 Hz, 1H, H-6), 3.81 (s, 3H, OCH<sub>3</sub>), 3.77 (s, 3H, OCH<sub>3</sub>), 2.62 (m, 1H, H-5), 0.88 (d, *J* = 6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.3, 157.0, 152.4, 148.0, 146.9, 139.6, 132.9, 129.9, 128.1, 127.6, 127.5, 126.2, 123.3, 113.9, 111.2, 109.3, 107.8, 101.2, 99.3, 65.6, 55.9, 55.3, 47.8, 45.1, 17.8; HRMS (ESI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>29</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 505.2127, found 505.2108.

#### Cis-2-(hexyl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4H-imidazo[4,5,1-

*ij*]quinoline (5e). White solid (48 mg, 0.10 mmol, 41%);  $R_f$ [hexane-AcOEt 2:1] = 0.51; mp 162 - 164 °C; IR (ATR)  $v_{max}$  = 2960. 2927. 1603. 1504. 1244. 1030. 752. 749 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.57 (d, *J* = 8.1 Hz, 1H, H-9), 7.34 (m, 3H, H-Ar), 7.25 – 7.20 (m, 2H, H-Ar), 7.14 – 7.08 (m, 3H, H-Ar), 6.85 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.56 (d, *J* = 7.4 Hz, 1H, H-Ar), 4.95 (d, *J* = 9.1 Hz, 1H, H-4), 3.95 (d, *J* = 10.1 Hz, 1H, H-6), 3.80 (s, 3H, 4''-OCH<sub>3</sub>), 2.62 – 2.52 (m, 1H, H-5), 2.30 – 2.19 (m, 1H), 1.95 (ddd, *J* = 15.3, 10.1, 5.6 Hz, 1H), 1.63 – 1.48 (m, 2H), 1.28 – 1.16 (m, 3H), 1.15 – 1.05 (m, 3H), 0.83 (t, *J* = 7.2 Hz, 3H), 0.79 (d, *J* = 6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.5, 155.3, 140.1, 139.7, 133.7, 133.4, 130.2, 128.9, 128.5, 127.9, 125.5, 121.9, 119.8, 116.3, 113.9, 65.3, 55.3, 48.5, 44.8, 31.4, 29.1, 29.0, 27.6, 22.5, 16.9, 14.1; HRMS (ESI-Q-TOF) m/z calc. for C<sub>30</sub>H<sub>35</sub>N<sub>2</sub>O [M+H]<sup>+</sup> : 439.2746, found 439.2749.

#### Cis-2-(hexyl)-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4H-

**imidazo[4,5,1-***ij*]**quinoline (5f).** White solid (49.8 mg, 0.10 mmol, 43%);  $R_f$ [hexane-AcOEt 2:1] = 0.33; mp 187 - 189 °C; IR (ATR)  $v_{max}$  = 2961. 2920. 1603. 1507. 1141. 1248. 1027. 824 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.34 (dd, J = 5.1, 2.1 Hz, 3H, H-Ar), 7.23 (dd, J = 7.3, 2.4 Hz, 2H, H-Ar), 7.11 (d, J = 8.8 Hz, 2H, H-Ar), 7.07 (d, J = 3.0 Hz, 1H, H-Ar), 6.84 (d, J = 8.8 Hz, 2H, H-Ar), 6.23 (bs, 1H, H-Ar), 4.91 (d, J = 9.1 Hz, 1H, H-4), 3.89 (d, J = 10.0 Hz, 1H, H-6), 3.80 (s, 3H OCH<sub>3</sub>), 3.77 (s, 3H, OCH<sub>3</sub>), 2.58 – 2.52 (m, 1H, H-5), 2.24 – 2.15 (m, 1H), 1.92 (m, 1H), 1.59 – 1.47 (m, 2H), 1.27 – 1.15 (m, 3H), 1.13 – 1.03 (m, 3H), 0.83 (t, J = 7.2 Hz, 3H), 0.77 (d, J = 6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  ppm: 158.5, 156.5, 155.3, 139.7, 133.1, 130.1, 128.9, 128.6, 128.5, 126.0, 114.0, 109.9, 99.0, 65.2, 55.9, 55.3, 48.6, 44.9, 31.4, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0, 29.0

27.7, 22.5, 16.8, 14.1; HRMS (ESI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>37</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 469.2855, found 469.2850.

*Cis*-2.6-bis(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5g). White solid (65.2 mg, 0.14 mmol, 53%);  $R_f$ [hexane-AcOEt 1:1] = 0.47; mp 209 - 211 °C; IR (ATR)  $v_{max}$  = 2944. 1606. 1504. 1245. 1025. 842. 748. 692 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.71 (d, *J* = 8.1 Hz, 1H, H-9), 7.41 (d, *J* = 8.9 Hz, 2H, H-Ar), 7.21 (dd, *J* = 8;1, 7;4 Hz 1H, H-Ar), 7.02 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.97 – 6.94 (m, 3H, H-Ar), 6.80 (dd, *J* = 7.2. 2.3 Hz, 2H, H-Ar), 6.75 (d, *J* = 8.9 Hz, 2H, H-Ar), 6.72 (d, *J* = 7.4 Hz, 1H, H-Ar), 6.69 (d, *J* = 8.9 Hz, 2H, H-Ar), 5.32 (d, *J* = 7.5 Hz, 1H, H-4), 4.06 (d, *J* = 8.1 Hz, 1H, H-6), 3.77 (s, 3H, OCH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 2.70 – 2.64 (m, 1H, H-5), 0.91 (d, *J* = 6.8 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 160.1, 158.3, 152.9, 141.0, 140.0, 134.1, 133.5, 130.4, 130.0, 128.2, 127.6, 127.5, 125.3, 123.6, 122.5, 120.8, 117.1, 113.8, 113.4, 65.4, 55.4, 47.7, 45.1, 18.2; HRMS (ESI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>28</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> : 461.2229, found 461.2224.

*Cis*-8-methoxy-2,6-bis(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1*ij*]quinoline (5h). White solid (66.7 mg, 0.13 mmol, 55%);  $R_f$ [hexane-AcOEt 1:2] = 0.47; mp 198 - 200 °C; IR (ATR)  $v_{max}$  = 2952. 1603. 1512. 1245. 1028. 727 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.39 (d, *J* = 8.4 Hz, 2H, H-Ar), 7.19 (d, *J* = 2.3 Hz, 1H, H-Ar), 7.00 (d, *J* = 8.7 Hz, 2H, H-Ar), 6.97 – 6.92 (m, 3H, H-Ar), 6.82 – 6.78 (m, 2H, H-Ar), 6.73 (d, *J* = 8.7 Hz, 2H, H-Ar), 6.67 (d, *J* = 8.9 Hz, 2H, H-Ar), 6.40 (bs, 1H, H-Ar), 5.30 (d, *J* = 7.3 Hz, 1H, H-4), 4.01 (d, *J* = 8.2 Hz, 1H, H-6), 3.82 (s, 3H, OCH<sub>3</sub>), 3.76 (s, 3H, OCH<sub>3</sub>), 3.73 (s, 3H, OCH<sub>3</sub>), 2.66 (m, 1H, H-5), 0.90 (d, *J* = 6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 160.0, 158.2, 156.9, 152.8, 141.3, 139.8, 133.1, 130.2, 129.9, 128.8, 127.5, 127.4, 125.8, 123.5, 113.8, 113.3, 111.1, 99.3, 65.3, 55.9, 55.3, 55.2, 47.6, 45.1, 18.1; HRMS (ESI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 491.2334, found 491.2305.

#### Cis-2-(4-chlorophenyl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4H-

imidazo[4,5,1-*ij*]quinoline (5i). White solid (75.8 mg, 0.16 mmol, 61%);  $R_f$ [hexane-AcOEt 2:1] = 0.53; mp 211 – 213 °C; IR (ATR)  $v_{max}$  = 2942. 1605. 1509. 1248. 1028. 829. 750. 702 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.72 (d, *J* = 8.2 Hz, 1H, H-9), 7.36 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.22 (t, *J* = 7.8 Hz, 1H, H-Ar), 7.11 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.07 (d, *J* = 8.8 Hz, 2H, H-Ar), 7.01 – 6.98 (m, 3H, H-Ar), 6.85 – 6.80 (m, 4H, H-Ar), 6.71 (d, *J* = 7.4 Hz, 1H, H-Ar), 5.26 (d, *J* = 8.3 Hz, 1H, H-4), 4.04 (d, *J* = 9.2 Hz, 1H, H-6), 3.79 (s, 3H, 4''-OCH<sub>3</sub>), 2.58 (m, 1H, H-5), 0.86 (d, *J* = 6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.4, 151.6, 140.7, 139.5, 135.0, 134.2, 133.0, 130.2, 130.0, 129.6, 128.2, 128.0, 127.8, 126.0, 122.8, 121.0, 117.2, 113.9, 65.9, 55.3, 47.9, 45.1, 17.5; HRMS (ESI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>26</sub>ClN<sub>2</sub>O [M+H]<sup>+</sup>: 465.1733, found 465.1727.

*Cis*-2-(chlorophenyl)-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*imidazo[4,5,1-*ij*]quinoline (5j). Solid light brown (75.8 mg, 0.15 mmol, 62%); R<sub>f</sub>[hexane-AcOEt 2:1] = 0.41; mp 224 - 226 °C; IR (ATR)  $v_{max}$  = 2931. 1606. 1508. 1245. 1035. 828. 698. 664 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.36 (d, *J* = 8.6 Hz, 2H, H-Ar), 7.17 (s, 1H, H-Ar), 7.11 (d, *J* = 8.4 Hz, 2H, H-Ar), 7.05 (d, *J* = 8.7 Hz, 2H, H-Ar), 7.00 - 6.99 (m, 3H, H-Ar), 6.84 (bs, 2H, H-Ar), 6.79 (d, *J* = 7.8 Hz, 2H, H-Ar), 6.39 (bs, 1H, H-Ar), 5.26 (d, *J* = 7.9 Hz, 1H, H-4), 4.02 (d, *J* = 9.0 Hz, 1H, H-6), 3.82 (s, 3H, OCH<sub>3</sub>), 3.78 (s, 3H, OCH<sub>3</sub>), 2.62 (m, 1H, H-5), 0.87 (d, *J* = 6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.4, 157.1, 151.5, 139.5, 134.8, 132.7, 130.1, 129.9, 129.0, 128.2, 128.0, 127.7, 126.5, 113.9, 111.6, 99.4, 65.8, 55.9, 55.3, 47.9, 45.2, 17.6; HRMS (APCI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>28</sub>ClN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 495.1839, found 495.1838.

*Cis*-2,4,6-tris(4-methoxyphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5k). Pale yellow solid (78.8 mg, 0.16 mmol, 65%);  $R_f$  [hexane-AcOEt 1:1] = 0.38; mp 207 – 209 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.70 (d, *J* = 8.1 Hz, 1H, H-Ar), 7.41 (d, *J* = 8.9 Hz, 2H, H-Ar), 7.23 – 7.18 (m, 1H, H-Ar), 6.99 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.74 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.72 – 6.66 (m, 5H, H-Ar), 6.47 (d, *J* = 8.8 Hz, 2H, H-Ar), 5.28 (d, *J* = 7.4 Hz, 1H, H-4), 4.04 (d, *J* = 7.9 Hz, 1H, H-6), 3.76 (s, 3H, OCH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 3.63 (s, 3H, OCH<sub>3</sub>), 2.68 – 2.60 (m, 1H, H-5), 0.89 (d, *J* = 6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 160.1, 158.7, 158.2, 152.8, 140.8, 133.9, 133.6, 131.9, 130.3, 129.9, 128.6, 125.2, 123.5, 122.5, 120.8, 116.9, 113.7, 113.5, 113.4, 64.8, 55.2, 47.5, 45.0, 18.1; HRMS (ESI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 491.2334, found 491.2344.

#### Cis-8-methoxy-2,4,6-tris(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4H-

imidazo[4,5,1-*ij*]quinoline (51). Solid light brown (99.4 mg, 0.19 mmol, 70%);  $R_f$ [hexane-AcOEt 2:1] = 0.52; mp 162 - 164 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.41 (d, *J* = 8.8 Hz, 2H, H-Ar), 7.19 (d, *J* = 2.3 Hz, 1H, H-Ar), 6.98 (d, *J* = 8.7 Hz, 2H, H-Ar), 6.73 (d, *J* = 8.7 Hz, 2H, H-Ar), 6.69 (dd, *J* = 8.8, 2.3 Hz, 4H, H-Ar), 6.48 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.40 (bs, 1H, H-Ar), 5.27 (d, *J* = 7.3 Hz, 1H, H-4), 4.01 (d, *J* = 8.2 Hz, 1H, H-6), 3.82 (s, 3H, OCH<sub>3</sub>), 3.76 (s, 3H, OCH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 3.64 (s, 3H, OCH<sub>3</sub>), 2.64 (m, 1H, H-5), 0.89 (d, *J* = 6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 160.1, 158.7, 158.2, 157.0, 152.5, 133.2, 131.7, 130.3, 129.8,

128.6, 125.9, 113.8, 113.6, 113.4, 111.3, 99.1, 64.8, 56.0, 55.3, 55.2, 47.5, 45.1, 18.2; HRMS (APCI-Q-TOF) m/z calc. for C<sub>33</sub>H<sub>33</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 521.2440, found 521.2446.

#### Cis-2-(benzo[d][1,3]dioxol-5-yl)-4,6-bis(4-methoxyphenyl)-5-methyl-5,6-dihydro-4H-

imidazo[4,5,1-*ij*]quinoline (5m). Light yellow solid (73.5 mg, 0.18 mmol, 59%); R<sub>f</sub> [hexane-AcOEt 1:1] = 0.43; mp 150 - 152 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.71 (d, *J* = 8.1 Hz, 1H, H-Ar), 7.25 - 7.20 (m, 1H, H-Ar), 7.05 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.97 (dd, *J* = 8.1, 1.8 Hz, 1H, H-Ar), 6.92 (d, *J* = 1.6 Hz, 1H, H-Ar), 6.80 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.74 (t, *J* = 8.6 Hz, 3H, H-Ar), 6.63 (d, *J* = 8.0 Hz, 1H, H-Ar), 6.55 (d, *J* = 8.9 Hz, 2H, H-Ar), 5.91 (s, 2H, OCH<sub>2</sub>O), 5.25 (d, *J* = 7.9 Hz, 1H, H-4), 4.05 (d, *J* = 8.9 Hz, 1H, H-6), 3.80 (s, 3H, OCH<sub>3</sub>), 3.68 (s, 3H, OCH<sub>3</sub>), 2.61 (m, 1H, H-5), 0.89 (d, *J* = 6.8 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.8, 158.3, 152.4, 148.1, 147.0, 140.5, 133.9, 133.4, 131.7, 129.9, 128.8, 126.0, 125.6, 124.9, 123.5, 122.6, 120.8, 117.0, 113.8, 113.6, 109.5, 107.8, 101.2, 65.1, 55.3, 47.8, 45.1, 17.7; HRMS (ESI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>29</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 505.2127, found 505.2136.

#### Cis-2-(benzo[d][1,3]dioxol-5-yl)-8-methoxy-4,6-bis(4-methoxyphenyl)-5-methyl-5,6-

dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5n). Solid light brown (98.4mg, 0.18 mmol, 65%);  $R_f$  [hexane-AcOEt 2:1] = 0.52; mp 163 - 165 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.17 (d, J = 2.3 Hz, 1H, H-Ar), 7.01 (d, J = 8.7 Hz, 2H, H-Ar), 6.95 (dd, J = 8.1, 1.8 Hz, 1H, H-Ar), 6.90 (d, J = 1.7 Hz, 1H, H-Ar), 6.76 (d, J = 8.7 Hz, 2H, H-Ar), 6.73 (d, J = 8.7 Hz, 2H, H-Ar), 6.61 (d, J = 8.1 Hz, 1H, H-Ar), 6.52 (d, J = 8.9 Hz, 2H, H-Ar), 6.37 (bs, 1H, H-Ar), 5.89 (s, 2H, OCH<sub>2</sub>O), 5.21 (d, J = 7.8 Hz, 1H, H-4), 3.99 (d, J = 8.7 Hz, 1H, H-6), 3.81 (s, 3H, OCH<sub>3</sub>), 3.77 (s, 3H, OCH<sub>3</sub>), 3.66 (s, 3H, OCH<sub>3</sub>), 2.63 – 2.54 (m, 1H, H-5), 0.86 (d, J = 6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100

MHz, CDCl<sub>3</sub>) δ (ppm): δ 158.8, 158.3, 157.0, 152.2, 148.1, 147.0, 133.0, 131.6, 129.9, 128.7, 128.7, 126.2, 124.7, 123.4, 113.9, 113.5, 111.3, 109.4, 107.8, 101.2, 99.1, 65.1, 56.0, 55.3, 47.8, 45.1, 17.8; HRMS (ESI-Q-TOF) m/z calc. for C<sub>33</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 535.2233, found 535.2226.

#### Cis-4-(benzo[d][1,3]dioxol-5-yl)-2,6-bis(4-methoxyphenyl)-5-methyl-5,6-dihydro-4H-

imidazo[4,5,1-*ij*]quinoline (50). White solid (86.8 mg, 0.16 mmol, 68%),  $R_f$ [hexane-AcOEt 1:1] = 0.41. mp 246 - 248 °C. NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.71 (d, *J* = 8.1 Hz, 1H, H-Ar), 7.47 (d, *J* = 8.9 Hz, 2H, H-Ar), 7.25 – 7.20 (m, 1H, H-Ar), 6.98 (d, *J* = 8.7 Hz, 2H, H-Ar), 6.80 – 6.70 (m, 6H, H-Ar), 6.40 (d, *J* = 8.1 Hz, 1H, H-Ar), 6.26 (dd, *J* = 8.2, 1.9 Hz, 1H, H-Ar), 6.18 (d, *J* = 1.9 Hz, 1H, H-Ar), 5.76 (s, 2H, OCH<sub>2</sub>O), 5.27 (d, *J* = 6.9 Hz, 1H, H-4), 4.07 (d, *J* = 7.6 Hz, 1H, H-6), 3.78 (s, 3H, OCH<sub>3</sub>), 3.77 (s, 3H, OCH<sub>3</sub>), 2.71 (m, 1H, H-5), 0.93 (d, *J* = 6.7 Hz, 3H, 5-CH<sub>3</sub>), NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 160.2, 158.1, 152.7, 147.4, 146.6, 140.9, 133.7, 130.4, 129.7, 126.0, 124.7, 123.4, 122.6, 121.1, 117.1, 113.6, 113.5, 107.7, 100.9, 64.8, 55.3, 55.2, 47.3, 44.8. 18.5. HRMS (ESI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>29</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 505.2127, found 505.2137.

#### Cis-4-(benzo[d][1,3]dioxol-5-yl)-8-methoxy-2,6-bis(4-methoxyphenyl)-5-methyl-5,6-

dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5p). Solid light brown (92.6 mg, 0.17 mmol, 78%);  $R_f$  [hexane-AcOEt 2:1] = 0.45; mp 194 - 196 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.45 (d, J = 8.9 Hz, 2H, H-Ar), 7.20 (d, J = 2.7 Hz, 1H, H-Ar), 6.96 (d, J = 8.7 Hz, 2H, H-Ar), 6.73 (dd, J = 11.7, 8.8 Hz, 4H, H-Ar), 6.45 (s, 1H, H-Ar), 6.39 (d, J = 8.0 Hz, 1H, H-Ar), 6.26 (d, J = 8.1 Hz, 1H, H-Ar), 6.18 (bs, 1H, H-Ar), 5.75 (s, 2H, OCH<sub>2</sub>O), 5.23 (d, J = 6.8 Hz, 1H, H-4), 4.00 (d, J = 7.3 Hz, 1H, H-6), 3.83 (s, 3H, OCH<sub>3</sub>), 3.77 (s, 3H, OCH<sub>3</sub>), 3.76 (s, 3H, OCH<sub>3</sub>), 2.69 (m, 1H, H-5), 0.91 (d, J = 6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 160.1, 158.1, 157.0,

152.7, 147.4, 146.6, 141.4, 133.6, 133.3, 130.3, 129.7, 128.5, 125.2, 123.4, 121.1, 113.7, 113.4, 111.4, 107.7, 107.6, 100.9, 99.5, 64.7, 55.9, 55.3, 47.3, 44.9, 18.5; HRMS (ESI-Q-TOF) m/z calc. for C<sub>33</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 535.2233, found 535.2234.

#### Cis-2,4-bis(benzo[d][1,3]dioxol-5-yl)-6-(4-methoxyphenyl)-5-methyl-5,6-dihydro-4H-

imidazo[4,5,1-*ij*]quinoline (5q). Light yellow solid (65 mg, 0.11 mmol, 50 %);  $R_f$ [hexane-AcOEt 1:1] = 0.46; mp 208 - 210 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.68 (d, J = 8.2 Hz, 1H, H-Ar), 7.21 (s, 1H, H-Ar), 7.06 - 6.95 (m, 5H, H-Ar), 6.77 (d, J = 8.7 Hz, 2H, H-Ar), 6.67 (d, J = 8.1 Hz, 1H, H-Ar), 6.44 (d, J = 8.0 Hz, 1H, H-Ar), 6.30 (dd, J = 8.0, 1.9 Hz, 1H, H-Ar), 6.21 (d, J = 1.9 Hz, 1H, H-Ar), 5.93 (d, J = 2.2 Hz, 2H, OCH<sub>2</sub>O), 5.79 (d, J = 1.2 Hz, 2H, OCH<sub>2</sub>O), 5.23 (d, J = 7.4 Hz, 1H, H-4), 4.06 (d, J = 8.3 Hz, 1H, H-6), 3.78 (s, 3H, OCH<sub>3</sub>), 2.66 (m, 1H, H-5), 0.91 (d, J = 6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.2, 152.3, 148.2, 147.4, 147.0, 146.7, 133.7, 133.5, 133.4, 129.8, 125.0, 124.8, 123.4, 122.6, 121.4, 121.1, 117.0, 113.7, 109.4, 107.8, 107.6, 107.5, 101.2, 101.0, 65.0, 55.2, 47.4, 44.8, 18.1; HRMS (ESI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 519.1920, found 519.1931.

#### Cis-2,4-bis(benzo[d][1,3]dioxol-5-yl)-6-(4-methoxyphenyl)-8-methoxy-5-methyl-5,6-

**dihydro-4***H***-imidazo**[4,5,1-*ij*]**quinoline (5r).** Solid light brown (69.4 mg, 0.15 mmol, 57%);  $R_f$  [hexane-AcOEt 2:1] = 0.52; mp 199 - 201 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.17 (d, *J* = 1.3 Hz, 1H, H-Ar), 7.01 - 6.96 (m, 4H, H-Ar), 6.75 (d, *J* = 8.8 Hz, 2H, H-Ar), 6.66 (d, *J* = 8.1 Hz, 1H, H-Ar), 6.45 - 6.41 (m, 2H, H-Ar), 6.30 (dd, *J* = 8.1, 1.9 Hz, 1H, H-Ar), 6.21 (d, *J* = 1.8 Hz, 1H, H-Ar), 5.94 - 5.91 (d, *J* = 1.4 Hz, 1H, OCH<sub>2</sub>O), 5.78 (d, *J* = 1.4 Hz, 1H, OCH<sub>2</sub>O), 5.20 (d, *J* = 7.2 Hz, 1H, H-4), 4.01 (d, *J* = 8.0 Hz, 1H, H-6), 3.82 (s, 3H, OCH<sub>3</sub>), 3.77 (s, 3H, OCH<sub>3</sub>), 2.68 -

2.61 (m, 1H, H-5), 0.90 (d, *J* = 6.8 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>) δ (ppm): 158.2, 156.9, 152.3, 148.1, 147.4, 147.0, 146.6, 141.2, 133.5, 133.1, 129.7, 128.5, 125.5, 124.9, 123.3, 121.4, 113.7, 111.4, 109.3, 107.8, 107.6, 107.5, 101.2, 101.0, 99.4, 64.9, 55.9, 55.2, 47.4, 44.8, 18.1; HRMS (ESI-Q-TOF) m/z calc. for C<sub>33</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup>: 549.2025, found 549.2029.

#### Cis-4-(2-chlorophenyl)-6-(4-methoxyphenyl)-5-methyl-2-(thiophen-2-yl)-5,6-dihydro-4H-

imidazo[4,5,1-*ij*]quinoline (5s). Light yellow solid (62.3 mg, 0.14 mmol, 60 %);  $R_f$  [hexane-AcOEt 2:1] = 0.55; mp 228 - 230 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.79 (d, *J*=8.0 Hz, 1H, H-Ar), 7.37 – 7.33 (m, 1H, H-Ar), 7.31 (dd, *J*=5.1, 1.1 Hz, 1H, H-Ar), 7.17 (dd, *J*=8.0, 1.3 Hz, 1H, H-Ar), 7.06 (d, *J*=7.3 Hz, 1H, H-Ar), 7.00 (dd, *J*=3.8, 1.2 Hz, 1H, H-Ar), 6.91 (dd, *J*=5.1, 3.7 Hz, 1H, H-Ar), 6.89 – 6.85 (m, 1H, H-Ar), 6.81 (d, *J*=9.0 Hz, 2H, H-Ar), 6.59 (td, *J*=7.6, 1.3 Hz, 1H, H-Ar), 6.51 (d, *J*=8.8 Hz, 2H, H-Ar), 6.09 (dd, *J*=7.9, 1.7 Hz, 1H, H-Ar), 5.86 (d, *J*=3.4 Hz, 1H, H-4), 4.20 (d, *J*=4.0 Hz, 1H, H-6), 3.66 (s, 3H, OCH<sub>3</sub>), 3.32 (m, 1H, H-5), 1.15 (d, *J*=7.0 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 157.8, 146.9, 141.5, 136.8, 133.8, 133.1, 132.4, 131.7, 129.2, 128.9, 128.4, 128.3, 127.8, 127.2, 126.7, 123.2, 123.1, 122.4, 117.6, 113.4, 60.6, 55.3, 45.4, 41.0, 20.5; HRMS (APCI-Q-TOF) m/z calc. for C<sub>28</sub>H<sub>24</sub>ClN<sub>2</sub>OS [M+H]<sup>+</sup>: 471,1298, found 471,1301.

## *Cis*-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1*ij*]quinolin-2-yl)-*N*,*N*-dimethylaniline (5t). Yellowish white solid (66 mg, 0.14 mmol, 57%); $R_f$ [hexane-AcOEt 2:1] = 0.42; mp 210 - 212 °C; IR (ATR) $v_{max}$ = 2927. 1609. 1508. 1235. 1133. 1035. 811 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) $\delta$ (ppm): 7.43 (d, *J* = 8.9 Hz, 2H, H-Ar), 7.22 (d, *J* = 2.3 Hz, 1H, H-Ar), 6.95 – 6.87 (m, 5H, H-Ar), 6.74 (dd, *J* = 7.5, 2.2 Hz, 2H, H-Ar), 6.62 (d, *J* =

8.7 Hz, 2H, H-Ar), 6.50 (d, J = 8.9 Hz, 2H, H-Ar), 6.46 (bs, 1H, H-Ar), 5.40 (d, J = 5.9 Hz, 1H, H-4), 4.03 (d, J = 6.5 Hz, 1H, H-6), 3.84 (s, 3H, OCH<sub>3</sub>), 3.72 (s, 3H, OCH<sub>3</sub>), 2.90 (s, 6H, N-(CH<sub>3</sub>)<sub>2</sub>), 2.83 (m, 1H, H-5), 0.99 (d, J = 6.8 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm157.9, 156.8, 153.7, 150.7, 141.6, 140.0, 133.6, 129.7, 129.7, 128.5, 128.0, 127.1, 127.1, 114.0, 124.6, 118.1, 113.5, 111.4, 110.9, 99.4, 64.6, 55.9, 55.3, 47.0, 44.8, 40.2, 19.2; HRMS (APCI-Q-TOF) m/z calc. for C<sub>33</sub>H<sub>34</sub>N<sub>3</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 504.2651, found 504.2660.

*Cis*-8-methoxy-2-(3-methoxyphenyl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5u). Solid light brown (80.3 mg, 0.16 mmol, 66%); R<sub>f</sub> [hexane-AcOEt 1:1] = 0.41; mp 144 - 146 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>): 7.22 (d, J = 3.0 Hz, 1H, H-Ar), 7.06 – 7.05 (m, 1H, H-Ar), 7.01 (d, J = 8.6 Hz, 2H, H-Ar), 6.95 (m, 5H, H-Ar), 6.84 – 6.77 (m, 3H, H-Ar), 6.74 (d, J = 8.7 Hz, 3H, H-Ar), 6.44 (bs, 1H, H-Ar), 5.31 (d, J = 7.4 Hz, 1H, H-4), 4.04 (d, J = 8.3 Hz, 1H, H-6), 3.83 (s, 3H, OCH<sub>3</sub>), 3.76 (s, 3H, OCH<sub>3</sub>), 3.65 (s, 3H, OCH<sub>3</sub>), 2.72 – 2.64 (m, 1H, H-5), 0.90 (d, J = 6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.9, 158.3, 157.1, 152.5, 141.0, 139.7, 132.9, 132.0, 129.8, 129.0, 128.7, 128.1, 127.5, 127.4, 126.0, 121.5, 115.5, 113.8, 113.7, 111.7, 99.4, 65.4, 56.0, 55.3, 55.2, 47.6, 45.0, 18.1; HRMS (APCI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 491.2334, found 491.2354.

*Cis*-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-2-(3-etoxy-4-hydroxyphenyl)-5,6dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5v). Yellowish white solid (65.8mg, 0.12 mmol, 51%);  $R_f$ [hexane-AcOEt 2:1] = 0.42; mp 182 - 184 °C; IR (ATR) v<sub>max</sub> = 2991. 1604. 1501. 1430. 1252. 1135. 1035. 823 cm<sup>-1</sup>; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.26 (s, 1H, H-Ar), 7.21 (d, *J* = 2.2 Hz, 1H, H-Ar), 6.98 (m, 2H, H-Ar), 6.97 – 6.93 (m, 5H, H-Ar), 6.79 – 6.75 (m, 2H, H-Ar), 6.72 (d, J = 8.8 Hz, 1H, H-Ar), 6.68 (d, J = 8.8 Hz, 2H, H-Ar), 6.47 (bs, 1H, H-Ar), 5.32 (d, J = 6.6 Hz, 1H, H-4), 4.04 (d, J = 7.2 Hz, 1H, H-6), 3.87 (q. J = 7.0 Hz, 2H, CH<sub>2</sub>), 3.84 (s, 3H, OCH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 2.77 (m, 1H, H-5), 1.31 (t, J = 7.0 Hz, 3H, CH<sub>3</sub>), 0.94 (d, J = 6.8 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.1, 157.0, 152.9, 146.7, 145.3, 140.0, 133.2, 129.7, 128.5, 128.0, 127.2, 125.2, 122.5, 113.9, 113.7, 112.2, 111.5, 99.5, 64.9, 64.3, 56.0, 55.3, 47.2, 44.8, 18.8, 14.7; HRMS (APCI-Q-TOF) m/z calc. for C<sub>33</sub>H<sub>33</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup>: 521.2440, found 521.2440.

#### Cis-2-(hexyl)-6-(4-methoxyphenyl)-2-(chlorophenyl)-4-phenyl-5-methyl-5,6-dihydro-4H-

imidazo[4,5,1-*ij*]quinoline (5w). yellowish white solid (60.3 mg, 0.14 mmol, 52%);  $R_f$  [hexane-AcOEt 2:1] = 0.52; mp 145- 146 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.63 (d, *J*=8.1 Hz 1H, H-Ar), 7.41 (dd, *J*=8.1, 1.3 Hz, 1H, H-Ar), 7.19 (d, *J*=7.6 Hz, 2H, H-Ar), 7.11 – 7.08 (m, 1H, H-Ar), 7.06 (d, *J*=8.7, Hz, 2H, H-Ar), 6.81 (d, *J*=1.7 Hz, 1H, H-Ar), 6.78 (d, *J*=8.8 Hz, 2H, H-Ar), 6.72 (dt, *J*=7.4, 1.0 Hz 1H, H-Ar), 5.67 (d, *J*=7.5 Hz, 1H, H-4), 4.07 (d, *J*=8.5 Hz, 1H, H-6), 3.79 (s, 3H, OCH<sub>3</sub>), 2.85 – 2.76 (m, 1H, H-5), 2.32 – 2.22 (m, 1H), 2.16 – 2.07 (m, 1H), 1.70 – 1.55 (m, 2H), 1.28 – 1.23 (m, 2H), 1.20 – 1.14 (m, 4H), 0.95 (d, *J*=6.7 Hz, 3H, 5-CH<sub>3</sub>), 0.84 (t, *J*=7.2 Hz, 3H, CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm158.4, 154.9, 140.4, 137.5, 133.7, 133.4, 129.8, 129.6, 129.2, 128.4, 127.5, 124.3, 122.1, 120.5, 116.6, 113.8, 59.6, 55.3, 47.6, 44.1, 31.3, 29.1, 28.5, 27.3, 22.5, 17.1, 14.0; HRMS (APCI-Q-TOF) m/z calc. for C<sub>30</sub>H<sub>34</sub>ClN<sub>2</sub>O[M+H]<sup>+</sup>: 473.2359, found 473.2349

*Cis*-4-(2-chlorophenyl)-6-(4-methoxyphenyl)-2-(2-methylphenyl)-5-methyl-5,6-dihydro-4*H*imidazo[4,5,1-*ij*/quinoline (5x). yellowish white solid (60.3 mg, 0.12 mmol, 51%);  $R_f$  [hexaneAcOEt 2:1] = 0.52; mp 180- 182 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.70 (d, *J*=8.1 Hz, 1H, H-Ar), 7.22 (d, *J*=7.3 Hz, 1H, H-Ar), 7.18 (d, *J*=8.9 Hz, 2H, H-Ar), 7.06 (ddd, *J*=6.9, 4.8, 1.8 Hz, 2H, H-Ar), 7.00 – 6.95 (m, 3H), 6.92 – 6.87 (m, 5H), 6.68 (dt, *J*=7.4, 1.1 Hz, 1H), 5.75 (d, *J*=9.3 Hz, 1H, H-4), 4.11 (d, *J*=10.3 Hz, 1H, H6), 3.82 (s, 3H, OCH<sub>3</sub>), 2.59 (m, 1H, H-5), 2.20 (s, 3H, CH<sub>3</sub>), 0.82 (d, *J*=6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.6, 151.8, 140.5, 137.9, 136.9, 134.3, 133.6, 132.9, 130.6, 130.2, 129.8, 129.5, 129.0, 128.9, 128.7, 127.6, 126.9, 126.0, 125.0, 122.5, 122.3, 120.4, 117.2, 114.1, 60.3, 55.3, 48.5, 45.4, 20.0, 15.8; HRMS (APCI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>28</sub>CIN<sub>2</sub>O [M+H]<sup>+</sup>: 479.1890, found 479.1888.

*Cis*-4-(2-chlorophenyl)-6-(4-methoxyphenyl)-2-(4-methylphenyl)-5-methyl-5,6-dihydro-4*H*imidazo[4,5,1-*ij*]quinoline (5y). yellowish white solid (63.4 mg, 0.15 mmol, 54%);  $R_f$  [hexane-AcOEt 2:1] = 0.6; mp 222 - 224 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.75 (d, *J*=8.1 Hz, 1H, H-Ar), 7.39 (d, *J*=8.3 Hz, 2H, H-Ar), 7.24 (d, *J*=8.1 Hz, 1H, H-Ar), 7.08 – 7.01 (m, 5H, H-Ar), 6.87 (td, *J*=7.7, 1.7 HZ, 1H, H-Ar), 6.80 – 6.73 (m, 4H, H-Ar), 6.50 (dd, *J*=7.8, 1.7 Hz, 1H, H-Ar), 5.89 (d, *J*=7.1 Hz, 1H, H-4), 4.14 (d, *J*=7.9 Hz, 1H, H-6), 3.76 (s, 3H, OCH<sub>3</sub>), 2.80 (m, 1H, H-5), 2.27 (s, 3H, CH<sub>3</sub>), 0.95 (d, *J*=6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.3, 152.5, 140.8, 139.2, 137.8, 133.9, 133.4, 133.1, 130.0, 129.7, 129.0, 128.7, 128.6, 128.4, 128.2, 127.8, 127.0, 124.9, 122.7, 121.3, 117.2, 113.8, 60.9, 55.3, 47.3, 44.2, 21.3, 17.5; HRMS (APCI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>28</sub>ClN<sub>2</sub>O [M+H]<sup>+</sup>: 479.1890, found 479.1878.

*Cis*-6-(4-methoxyphenyl)-5-methyl-2-(2-methylphenyl)-4-(4-methylphenyl)-5,6-dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5z). Light yellow solid (64.8 mg, 0.14 mmol, 55%);  $R_f$  [hexane-AcOEt 2:1] = 0.52; mp 168 - 170 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm):7.66 (dt, *J*=8.1, 1.0 Hz, 1H, H-Ar), 7.20 – 7.15 (m, 3H, H-Ar), 7.07 – 7.03 (m, 1H, H-Ar), 6.99 – 6.96 (m, 1H, H-Ar), 6.94 – 6.88 (m, 4H, H-Ar), 6.74 (s, 4H, H-Ar), 6.64 (dt, *J*=7.4, 1.0 Hz, 1H, H-Ar), 4.98 (d, *J*=9.4 Hz, 1H, H-4), 4.04 (d, *J*=10.4 Hz, 1H, H-6), 3.82 (s, 3H, OCH<sub>3</sub>), 2.60 – 2.52 (m, 1H, H-5), 2.15 (s, 3H, CH<sub>3</sub>), 2.13 (s, 3H, CH<sub>3</sub>), 0.75 (d, *J*=6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 158.6, 152.4, 140.4, 137.2, 136.9, 136.3, 133.6, 133.2, 131.3, 130.2, 130.0, 129.5, 128.6, 128.6, 127.5, 124.7, 122.2, 120.1, 117.0, 114.0, 65.5, 55.3, 48.7, 44.6, 20.9, 20.0, 16.7; HRMS (APCI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>31</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 459.2436, found 459.2425.

*Cis*-6-(4-hydroxy-3-methoxyphenyl)-4-(4-chlorophenyl)-2-(thiophen-2-yl)-5-methyl-5,6dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5aa). White solid (12.4 mg, 0.03 mmol, 11%); R<sub>f</sub> [hexane-AcOEt 2:1] = 0.35; mp > 250 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.76 (d, *J*=8.1 Hz, 1H, H-Ar), 7.34 (dd, *J*=5.1 Hz, 1.2. 1H, H-Ar), 7.33 – 7.28 (m, 2H, H-Ar), 7.03 (dd, *J*=3.7, 1.1 Hz, 1H, H-Ar), 6.97 (d, *J*=7.3 Hz, 1H, H-Ar), 6.94 – 6.90 (m, 3H, H-Ar), 6.63 (t, *J*=8.4 Hz, 3H, H-Ar), 6.42 (dd, *J*=8.3, 2.7 Hz, 1H, H-Ar), 6.23 (d, *J*=2.2 Hz, 1H, OH), 5.51 (d, *J*=4.4 Hz, 1H, H-4), 4.13 (d, *J*=4.5 Hz, 1H, H-6), 3.64 (s, 3H, OCH<sub>3</sub>), 3.02 (m, 1H, H-5), 1.10 (d, *J*=7.0 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 147.2, 145.9, 144.1, 141.4, 138.0, 133.7, 133.0, 132.9, 132.2, 128.4, 128.2, 127.8, 127.6, 123.3, 122.9, 122.6, 121.5, 117.6, 113.8, 110.6, 63.2, 55.7, 46.5, 44.3, 20.3; HRMS (APCI-Q-TOF) m/z calc. for C<sub>28</sub>H<sub>24</sub>ClN<sub>2</sub>OS [M+H]<sup>+</sup>: 487.1247, found 487.1259.

*Cis*-6-(4-hydroxy-3-methoxyphenyl)-2-(4-methoxyphenyl)-4-phenyl-5-methyl-5,6-dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5ab). Light yellow solid (29 mg, 0.06 mmol, 23%); R<sub>f</sub>[hexaneAcOEt 1:1] = 0.37; mp > 250 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.70 (d, *J*=8.2 Hz, 1H, H-Ar), 7.42 (d, *J*=8.9 Hz, 2H, H-Ar), 7.24 – 7.20 (m, 1H, H-Ar), 6.98 – 6.95 (m, 3H, H-Ar), 6.83 – 6.74 (m, 4H, H-Ar), 6.70 (d, *J*=9.0 Hz, 2H, H-Ar), 6.66 (dd, *J*=8.2, 2.0 Hz, 1H, H-Ar), 6.51 (d, *J*=2.1 Hz, 1H, H-Ar), 5.57 (d, *J*=4.7 Hz, 1H, OH), 5.34 (d, *J*=7.4 Hz, 1H, H-4), 4.06 (d, *J*=8.1 Hz, 1H, H-6), 3.75 (s, 3H, OCH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 2.69 (m 1H, H-5), 0.93 (d, *J*=6.6 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 160.7, 160.1, 152.8, 146.3, 144.2, 139.9, 133.9, 133.3, 130.3, 128.1, 127.5, 127.4, 125.0, 123.4, 122.5, 122.2, 120.9, 120.8, 117.1, 114.1, 113.4, 110.8, 65.3, 55.9, 55.3, 48.0, 45.0, 18.2; HRMS (APCI-Q-TOF) m/z calc. for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 477.2178, found 477.2188.

*Cis*-6-(4-hydroxy-3-methoxyphenyl)-2-(4-methylphenyl)-4-phenyl-5-methyl-8-methoxy-5,6dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5ac). Solid light brown (25.6 mg, 0.06 mmol, 22%);  $R_f$  [hexane-AcOEt 1:1] = 0.4; mp > 250 °C; NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.36 (d, *J*=8.3 Hz, 2H, H-Ar), 7.21 (d, *J*=2.4 Hz, 1H, H-Ar), 6.99 – 6.94 (m, 5H, H-Ar), 6.82 – 6.78 (m, 2H, H-Ar), 6.76 (d, *J*=8.1 Hz, 1H, H-Ar), 6.64 (dd, *J*=8.2, 2.0 Hz, 1H, H-Ar), 6.49 (d, *J*=2.2 Hz, 1H, H-Ar), 6.45 (bs, 1H, H-Ar), 5.51 (s, 1H, H-Ar), 5.34 (d, *J*=7.3 Hz, 1H, OH), 4.02 (d, *J*=8.3 Hz, 1H, H-6), 3.84 (s, 3H, OCH<sub>3</sub>), 3.74 (s, 3H, OCH<sub>3</sub>), 2.69 (m, 1H, H-5), 2.25 (s, 3H, CH<sub>3</sub>), 0.93 (d, *J*=6.7 Hz, 3H, 5-CH<sub>3</sub>); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 156.9, 153.0, 146.3, 144.2, 139.8, 138.9, 132.9, 128.7, 128.6, 128.0, 127.4, 127.3, 125.6, 122.1, 114.1, 111.3, 110.7, 99.5, 65.2, 56.0, 55.9, 48.0, 45.0, 21.3, 18.3; HRMS (APCI-Q-TOF) m/z calc. for C<sub>32</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 491.2334, found 491.2347. Copies of IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, APT, HMBC, HSQC and HRMS of 8nitrotetrahydroquinolines 4a-4p.

Figure 1. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, HMBC, HSQC and HRMS spectra of *Cis*-4-(4-methoxyphenyl)-3-methyl-8-nitro-2-phenyl-1,2,3,4-tetrahydroquinoline (4a)









Figure 2. IR, <sup>1</sup>H NMR, APT, and HRMS spectra of *Cis*-2,4-bis(4-methoxyphenyl)-3-methyl-8-

nitro-1,2,3,4-tetrahydroquinoline (4b).







Figure 3. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-4-(4-

methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4c).







Figure 4. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(4-chlorophenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4d).






Figure 5. IR, <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-2-(4-methylphenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4e).







Figure 6. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(2-methylphenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4f).







Figure 7. IR spectra, <sup>1</sup>H NMR spectra, <sup>13</sup>C spectra and HRMS spectra of *Cis*-2-(2-chlorophenyl)-

4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4g).







Figure 8. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(3-methoxyphenyl)-4-(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4h).







Figure 9. IR, <sup>1</sup>H NMR, APT, HSQC and HRMS spectra of *Cis*-4-(4-methoxyphenyl)-3-methyl-

6-methoxy-2-phenyl-8-nitro-1,2,3,4-tetrahydroquinoline (4i).





S47



Figure 10. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-6-methoxy-2,4-bis(4-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (4j).













Figure 12. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-4-(4-methoxyphenyl)-3-methyl-6methoxy-8-nitro-2-(thiophen-2-yl)-1,2,3,4-tetrahydroquinoline (4l).





Figure 13. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-

2-phenyl-8-nitro-1,2,3,4-tetrahydroquinoline (4m).









**Figure 14.** <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-6-methoxy-2-phenyl-8-nitro-1,2,3,4-tetrahydroquinoline (4n).





Figure 15. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-2-(4-chlorophenyl)-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-8-nitro-1,2,3,4-tetrahydroquinoline (40).





Figure 16. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-2-(4-chlorophenyl)-4-(4-hydroxy-3-methoxyphenyl)-3-methyl-6-methoxy-8-nitro-1,2,3,4-tetrahydroquinoline(4p).





Copies of IR, 1H NMR, <sup>13</sup>C NMR , HSQC and HRMS of imidazo[4,5,1-*ij*]quinolines 5a-5ac

Figure 17. IR, <sup>1</sup>H NMR, APT, HSQC and HRMS spectra of *Cis*-6-(4-methoxyphenyl)-5-methyl-2,4-diphenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5a).







<sup>7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60</sup> f2 (ppm)



Figure 18. IR, <sup>1</sup>H NMR, APT, HSQC and HRMS spectra of *Cis*-8-methoxy-6-(4-methoxyphenyl)-5-methyl-2.4-diphenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5b).











Figure 19. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5c).



Figure 20. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-8methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1*ij*]quinoline (5d).





Figure 21. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(hexyl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5e).







Figure 22. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(hexyl)-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5f).






Figure 23. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2.6-bis(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5g).







Figure 24. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-8-methoxy-2,6-bis(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5h).

10.0 9.5 9.0 8.5 8.0









Figure 25. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(4-chlorophenyl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5i).











Figure 27. <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2,4,6-tris(4-methoxyphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5k).





Figure 28. <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-8-methoxy-2,4,6-tris(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5l).







Figure 29. <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-4,6-bis(4-methoxyphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5m).





Figure 30. <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-2-(benzo[*d*][1,3]dioxol-5-yl)-8-methoxy-4,6-bis(4-methoxyphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5n).





Figure 31. <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-4-(benzo[*d*][1,3]dioxol-5-yl)-2,6-bis(4-methoxyphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (50).





Figure 32. <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-4-(benzo[*d*][1,3]dioxol-5-yl)-8-methoxy-2,6-bis(4-methoxyphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5p).



## $\begin{array}{c} -1.60.13 \\ -1.52.67 \\ -1.52.67 \\ -1.52.67 \\ -1.52.67 \\ -1.52.67 \\ -1.52.67 \\ -1.52.57 \\ -1.47.36 \\ -1.13.365 \\ -1.13.365 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -1.11.34 \\ -$



Figure 33. <sup>1</sup>H NMR spectra, APT spectra and HRMS spectra of *Cis*-2,4-bis(benzo[*d*][1,3]dioxol-5-yl)-6-(4-methoxyphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5q).





Figure 34. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-2,4-bis(benzo[*d*][1,3]dioxol-5-yl)-6-(4-methoxyphenyl)-8-methoxy-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5r).





Figure 35. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-4-(2-chlorophenyl)-6-(4-methoxyphenyl)-5-methyl-2-(thiophen-2-yl)-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5s).





Figure 36. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinolin-2-yl)-*N*,*N*-dimethylaniline (5t).







Figure 37. <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-8-methoxy-2-(3-methoxyphenyl)-6-(4-methoxyphenyl)-5-methyl-4-phenyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5u).





S98

Figure 38. IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and HRMS spectra of *Cis*-8-methoxy-6-(4-methoxyphenyl)-5-methyl-4-phenyl-2-(3-etoxy-4-hydroxyphenyl)-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5v).





Figure 39. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-2-(hexyl)-6-(4-methoxyphenyl)-2-(chlorophenyl)-4-phenyl-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*]quinoline (5w).





Figure 40. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-4-(2-chlorophenyl)-6-(4-methoxyphenyl)-2-(2-methylphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*/quinoline (5x).







Figure 41. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-4-(2-chlorophenyl)-6-(4-methoxyphenyl)-2-(4-methylphenyl)-5-methyl-5,6-dihydro-4*H*-imidazo[4,5,1-*ij*/quinoline (5y).





Figure 42. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-6-(4-methoxyphenyl)-5-methyl-2-(2-methylphenyl)-4-(4-methylphenyl)-5,6-dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5z).





Figure 43. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-6-(4-hydroxy-3-methoxyphenyl)-4-(4-chlorophenyl)-2-(thiophen-2-yl)-5-methyl-5,6-dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5aa).





Figure 44. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-6-(4-hydroxy-3-methoxyphenyl)-2-(4-methoxyphenyl)-4-phenyl-5-methyl-5,6-dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5ab).






Figure 45. <sup>1</sup>H NMR, APT and HRMS spectra of *Cis*-6-(4-hydroxy-3-methoxyphenyl)-2-(4-methylphenyl)-4-phenyl-5-methyl-8-methoxy-5,6-dihydro-4*H* imidazo[4,5,1-*ij*]quinoline (5ac).





*Cis*-2-(4-methylphenyl)-4-(4-methoxyphenyl)-3-methyl-8-amine-1,2,3,4-tetrahydroquinoline (6). Dark green solid. (212.4 mg, 0.59 mmol, 72%); NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.46 (d, *J*=8.1 Hz, 2H), 7.29 (d, *J*=7.9 Hz, 2H), 7.24 (d, *J*=8.8 Hz, 2H), 6.64 – 6.56 (m, 2H), 6.31 (d, *J*=7.4 Hz, 1H), 4.14 (d, *J*=10.1 Hz, 1H), 3.89 (s, 3H), 3.86 (d, *J*=9.5 Hz, 1H), 2.48 (s, 3H), 2.36 – 2.28 (m, 1H), 0.68 (d, *J*=6.6 Hz, 3H); NMR <sup>13</sup>C (100 MHz, CDCl<sub>3</sub>) δ (ppm): 158.2, 140.2, 137.6, 137.2, 135.2, 132.1, 130.5, 129.4, 128.1, 127.0, 122.2, 117.9, 114.8, 113.9, 63.8, 55.3, 52.0, 41.4, 21.4, 16.8.

Figure 46. <sup>1</sup>H y APT NMR of *Cis*-2-(4-methylphenyl)-4-(4-methoxyphenyl)-3-methyl-8amine-1,2,3,4-tetrahydroquinoline (6).



Microplate DPPH scavenging assay: 195  $\mu$ L of DPPH radical solution in methanol (0.1 M) were added to 5  $\mu$ L of solutions (200  $\mu$ M) of the selected tetrahydroquinolines. The absorbance was measured at 517 nm at 0, 10 and 30 min. Ascorbic acid (200  $\mu$ M) and gallic acid (200  $\mu$ M) were used as positive controls. Each measurement was made at least in triplicate, and the radical scavenging activity (%) was calculated in comparison with ascorbic acid as follow:

## Radical scavenging activity (RSA (%))

 $Rsa~(\%) = \frac{Absorbance of control - absorbance of test sample}{Absorbance of control} x100$