Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Paired electrocatalysis enabled oxidative coupling of styrenes with alkyl radicals

Dong Li^{†a,c}, Ling Zhang^{†a}, Daixi Li^{†b}, Peng Yu^{*c}, Tao Shen^{*a}

^a Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhang jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

^b Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.

^c Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, P. R. China *Correspondence to: taoshen@sjtu.edu.cn; pyu@eitech.edu.cn

Supporting Information

Table of Contents

1. General Information	S2
2. Experimental Section	S3
3. Characterization Data	S17
4. References	S30
5. NMR Spectra of Products	S31

1.General Information

1.1 Analytic Methods

¹H NMR, ¹³C NMR data were obtained on Bruker Avance NEO 500 nuclear resonance spectrometers unless otherwise noted (¹H NMR 500 MHz, ¹³C NMR 126 MHz, ¹⁹F NMR 471 MHz) and Buker Avance NEO 400 MHz NMR spectrometer (¹H NMR 400 MHz, ¹³C NMR 101 MHz, ¹⁹F NMR 376 MHz). ¹H NMR chemical shifts (in ppm) were referenced to CHCl₃ (δ = 7.26 ppm) in CDCl₃, DMSO (δ = 2.50 ppm) in DMSO-d₆, MeOH ($\delta = 3.31$ ppm) in CD₃OD, or as an internal standard. The data of ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet and br = broad), coupling constant (J values) in Hz and integration. ¹³C-NMR spectra were obtained by the same NMR spectrometers and were calibrated with CDCl₃ (δ = 77.16 ppm), DMSO-d₆ (δ = 39.52 ppm), CD₃OD (49.00 ppm). Yields refer to products isolated after purification by preparative TLC (GF254, 10-50 µm, Yantai Xincheng Silicone Materials Co., LTD) unless otherwise stated. Flash chromatography was performed using 300-400 mesh silica gel with the indicated eluent according to standard techniques. Thin-layer chromatography (TLC) was conducted with silica gel 60 F₂₅₄ pre-coated plates (0.25 mm) and visualized with UV and phosphomolybdic acid unless otherwise noted. HR-MS analyses were performed with Waters G2-XS/APGC (ESI) and Thermo Orbitrap Exploris GA10097 Orbitrap Exploris GC 240 (EI). GC-MS analyses were performed with SHIMADZU GCMS-QP2010 SE (EI) system.

1.2 Reagents

All commercially available compounds were purchased from Energy Chemical, Innochem, TCI, Adamas, Alfa-Aesar. All the solvents and all the other reagents were directly used from purchased without any further purification unless otherwise specified.

2. Experimental Section

2.1 Electrolysis Set-up and Materials

Electrolysis experiments were performed using the MESTEK DC power supply. Platinum plate (99.99%, 25 mm \times 7.5 mm \times 0.2 mm, or 30 mm \times 30 mm \times 0.3 mm for gram scale reaction) were purchased from OMIK Ectrochemistry. The Nickel plate was cut into 25 mm \times 7.5 mm \times 0.3 mm pieces before use and was clamped between electrode clips. The Nickel plate as cathode (30 mm \times 30 mm \times 0.3 mm) for gram scale reaction setup.

General procedures of oxidative coupling products of styrenes and THF

An oven-dried undivided cell as described above was equipped with a stir bar (Fig. S1). The cell was equipped with Platinum plate ($25 \text{ mm} \times 7.5 \text{ mm} \times 0.2 \text{ mm}$) as the anode and Nickel plate ($25 \text{ mm} \times 7.5 \text{ mm} \times 0.3 \text{ mm}$) as the cathode. To the cell was added with LiClO₄ (31.9 mg, 0.3 mmol, 0.1 M), styrene (20.8 mg, 0.2 mmol), 4,4'-dimethoxybenzophenone (38.8 mg, 0.16 mmol), TBAI (14.8 mg, 0.04 mmol) in 3 mL of THF at room temperature. The cell was sealed using a rubber septum and insert a thin needle into the stopper to prevent it from bursting open. The solution was then stirred at room temperature and electrolyzed under a constant current of 10.0 mA from DC power for 8 h under air atmosphere. The reaction mixture was extracted with water (ca. 20 mL). The aqueous layer was separated and extracted with EtOAc ($3 \times 15 \text{ mL}$), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 30:1) to give the desired product.

General procedures of oxidative coupling products of styrenes and pmethylphenols

An oven-dried undivided cell as described above was equipped with a stir bar (Fig. S1). The cell was equipped with Platinum plate (25 mm \times 7.5 mm \times 0.2 mm) as the anode and Ni foam (25 mm \times 7.5 mm \times 3 mm) as the cathode. To the cell was added with LiClO₄ (31.9 mg, 0.3 mmol, 0.1 M), butylated Hydroxytoluene (44.1 mg, 0.2 mmol), styrene (31.2 mg, 0.3 mmol), 4,4'-dimethoxybenzophenone (38.8 mg, 0.16 mmol), TBAI (14.8 mg, 0.04 mmol) in 3 mL of THF at room temperature. The cell was sealed using a rubber septum and insert a thin needle into the stopper to prevent it from bursting open. The solution was then stirred at room temperature and electrolyzed under a constant current of 10.0 mA from DC power for 8 h under air atmosphere. The reaction mixture was extracted with water (ca. 20 mL). The aqueous layer was separated and extracted with EtOAc (3×15 mL), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether) to give the desired product.

Figure S1: Electrolysis setups and materials used for undivided cell.

General procedure for the scale-up synthesis

An oven-dried 100 mL undivided cell as described above (see Fig. S2) was equipped with a stir bar. The cell was equipped with Platinum plate (30 mm \times 30 mm \times 0.3 mm) as the anode and Ni foam (30 mm \times 30 mm \times 3 mm) as the cathode. To the cell was added with LiClO₄ (5.0 g), styrene (1.041 g, 10 mmol), 4,4'-dimethoxybenzophenone (1.45 g, 6 mmol), TBAI (0.74 g, 2 mmol) in 80 mL of THF at room temperature. The solution was then stirred at room temperature and electrolyzed under a constant current of 40.0 mA from DC power for 36 h under air atmosphere. The reaction mixture was extracted with water (ca. 60 mL). The aqueous layer was separated and extracted with EtOAc (3×25 mL), and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. And the reaction mixture was concentrated under vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether: ethyl acetate = 30:1) to give the desired product **4a** 0.8867 g (52% yield, yellow oil).

Figure S2: Gram scale-up setups

2.2 Optimization of Reaction Conditions

^aReaction conditions: undivided cell, Platinum plate (25 mm * 7.5 mm * 2 mm), Nickel plate (25 mm * 7.5 mm * 0.3 mm), constant current = 10 mA, LiClO₄(31.9 mg, 0.3 mmol, 0.1 M), Styrene (20.8 mg, 0.2 mmol), ketone (0.4 mmol) in THF (3.0 mL), r.t., 8 h. Isolated yield.

+	Sa (x equiv) LiClO ₄ i = 10 mA, Pt (+) Ni (8 h	
entry	3a (<i>x</i> equiv)	yield ^a
1	0.2	<5%
2	0.4	11%
3	0.6	47%
4	0.8	53%
5	1.0	38%
6	1.2	46%
7	1.5	45%

Table S2. Investigation of equivalents of $3a^{a,b}$

^aReaction conditions: undivided cell, Platinum plate (25 mm * 7.5 mm * 2 mm), Nickel plate (25 mm * 7.5 mm * 0.3 mm), constant current = 10 mA, LiClO₄(31.9 mg, 0.3 mmol, 0.1 M), Styrene (20.8 mg, 0.2 mmol), ketone in THF (3.0 mL), r.t., 8 h. ^bIsolated yield.

Table S3. Investigation of electrodes^{*a,b*}

+	A (0.8 equiv) LiClO₄ i = 10 mA, Pt (+) Ni (-) air, 8 h air, 8 h air, 8 h	
entry	deviation from the reaction conditions	yield ^a
1	Ni (+) Pt (-)	N. D.
2	C cloth (+) Ni (-)	N. D.
3	C felt (+) Ni (-)	N. D.
4	Mg (+) Ni (-)	N. D.
5	Ti (+) Ni (-)	N. D.
6	Zn (+) Ni (-)	N. D.
7	SS (+) Ni (-)	N. D.
8	Pt (+) Pt (-)	21%
9	Ni (+) Ni (-)	N. D.

^aReaction conditions: undivided cell, constant current = 10 mA, LiClO₄(31.9 mg, 0.3 mmol, 0.1 M), Styrene (20.8 mg, 0.2 mmol), **3a** (0.16 mmol) in THF (3.0 mL), r.t., 8 h. ^bIsolated yield.

Table S4. Investigation of electrolytes^{*a,b*}

+	A (0.8 equiv) electrolyte i = 10 mA, Pt (+) Ni (-) 8 h	
entry	electrolyte	yield
1	ⁿ Bu ₄ NClO ₄	N. D.
2	AgClO ₄	21%
3	NaClO ₄	9%
4	KCIO ₄	N. D.
5	Mg(ClO ₄) ₂	N. D.

^aReaction conditions: undivided cell, Platinum plate (25 mm * 7.5 mm * 2 mm), Nickel plate (25 mm * 7.5 mm * 0.3 mm), constant current = 10 mA, electrolyte(0.1 M), Styrene (20.8 mg, 0.2 mmol), **3a** (0.16 mmol) in THF (3.0 mL), r.t., 8 h. ^bIsolated yield.

+	3a (0.8 equiv) ∩Bu₄NI (x equiv) LiClO₄ i = 10 mA, Pt (+) Ni (-) air, 8 h	
entry	ⁿ Bu ₄ NI (<i>x</i> equiv)	yield
1	2.0	19%
2	1.5	40%
3	1.0	52%
4	0.5	65% (94%) ^c
5	3.5	N. D.
6	5	N. D.
7	0.4	63% (94%) ^c
8	0.3	63% (92%) ^c
9	0.2	70% (94%) ^c
10	0.1	65% (91%) ^c

Table S5. Investigation of equivalents of TBAI^{*a,b*}

^aReaction conditions: undivided cell, Platinum plate (25 mm * 7.5 mm * 2 mm), Nickel plate (25 mm * 7.5 mm * 0.3 mm), constant current = 10 mA, LiClO₄(31.9 mg, 0.3 mmol, 0.1 M), Styrene (20.8 mg, 0.2 mmol), 3a (0.16 mmol), TBAI in THF (3.0 mL), r.t., 8 h. ^bIsolated yield.

^cyield of **5a**

+	3a (0.8 equiv) → Pt (+) Ni (-) → LiClO ₄ , 10 mA, air, 8 h	
1a	2	4 a
entry	deviation from the reaction conditions	yield ^{a,b}
1	none	53%
2	i = 5 mA	20%
3	i = 12 mA	34%
4	C (+) Ni (-)	0%
5	ⁿ Bu ₄ NI (0.5 equiv)	65%
6	n Bu ₄ NI (0.5 equiv), under N ₂	59%
7	n Bu ₄ NI (0.5 equiv), under O ₂	24%
8	^{<i>n</i>} Bu ₄ NI (0.2 equiv)	70%
9	2.0 equiv. 3a	55%
10	2.0 equiv. 3b	31%
11	2.0 equiv. 3c	20%
12	no 3a	14%
13	no current	0%
MeO 3		$]$ $\overset{\circ}{\underset{3c}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$

Table S6. Variations from standard conditions

^aReaction conditions: undivided cell, Platinum plate (25 mm * 7.5 mm * 2 mm), Ni plate (25 mm * 7.5 mm * 0.3 mm), constant current = 10 mA, LiClO₄(31.9 mg, 0.3 mmol, 0.1 M), Styrene (20.8 mg, 0.2 mmol), **3a** (0.16 mmol), TBAI in THF (3.0 mL), r.t., 8 h. ^bIsolated yield.

2.3 Preparation of Starting Materials

The substrates were prepared according to reports in the literature^[1-10].

2.4 Mechanism Studies

2.5 Cyclic Voltammetry Studies

Figure S4 Cyclic voltammogram of substrates [3 mM] in [0.1 M] Et₄NBF₄ in CH₃CN. Scan rate: 100 mV/s.

Figure S5 Cyclic voltammogram of substrates [3 mM] in [0.1 M] Et₄NBF₄ in DMF. Scan rate: 100 mV/s.

2.6 Gas chromatography analysis of electrolysis headspace

We have detected H_2 evolution at the cathode in model reaction by gas chromatography (GC) with a TCD detector.

Figure S6: Gas chromatogram of the headspace of diamination reaction

2.7 Voltage monitoring of the reaction under standard conditions.

Figure S7: Voltage monitoring of the reaction under standard conditions

2.8 Anti-tumor Activity Test

Table S7 IC50 (μ M) values for compound 7g against cancer cell lines.

compound	A549	Huh7
7g	88.8±11.8	60.1±2.7

The 100 μ L cell suspensions (8000-9000 cells/mL) was seeded in 96-well plates and incubated for 24 h. **7g** was dissolved in the Phosphate Buffered Saline (PBS) with 0.1% DMSO to give various concentrations (2.5, 5, 10, 20, and 40 μ M respectively) to 96-well plates and control wells contained supplemented media with 0.1% DMSO. Continue incubating for 48 h at 37 °C in 5% CO₂ atmosphere and then the MTT solution (10 μ L, 5 mg/mL) was added into each well and the cultures were incubated further for 4~6 h. After removal of the supernatant, formazan solution (100 μ L) was added to dissolve the formazan crystals. The absorbance was read by enzyme labeling instrument with 570/630 nm double wavelength measurement. The cytotoxicity was estimated based on the percentage cell survival in a dose dependent manner relative to the negative control. The final IC50 (a drug concentration killing 50% cells) values were calculated by the Bliss method. All the tests were repeated in at least three independent experiments.

3. Characterization Data

(4a) 24.4mg, 70% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.42 - 7.35 (m, 2H), 7.34 - 7.28 (m, 2H), 7.25 - 7.19 (m, 1H), 6.58 (d, J = 15.9 Hz, 1H), 6.21 (dd, J = 15.9, 6.5 Hz, 1H), 4.58 - 4.35 (m, 1H), 4.11 - 3.91 (m, 1H), 3.89 - 3.79 (m, 1H), 2.21 - 2.06 (m, 1H), 2.02 - 1.90 (m, 2H), 1.77 - 1.67 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): δ (ppm) = 136.87, 130.53, 130.47, 128.53, 128.53, 127.51, 126.48, 79.70, 68.21, 32.42, 25.94. These data are in accordance with the literature.^[1]

(4b) 25.3mg, 55% yield, colorless oil. ¹H NMR (500 MHz, tBu Chloroform-*d*): δ (ppm) = 7.40 - 7.29 (m, 4H), 6.56 (d, *J* = 15.9 Hz, 1H), 6.16 (dd, *J* = 15.9, 6.6 Hz, 1H), 4.58 - 4.37 (m, 1H), 4.04 - 3.92 (m, 1H), 3.90 - 3.79 (m, 1H), 2.21 - 2.06 (m, 1H), 2.02 - 1.85 (m, 2H), 1.76 - 1.65 (m, 1H), 1.31 (s, 9H).. ¹³C NMR (126 MHz, Chloroform-*d*): δ (ppm) = 150.60, 134.09, 130.23, 129.75, 126.18, 125.45, 79.81, 68.16, 34.57, 32.46, 31.30, 25.91. These data are in accordance with the literature.^[3]

(4c) 36.5mg, 73% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.41 - 7.30 (m, 3H), 7.28 - 7.23 (m, 5H), 7.23 - 7.19 (m, 2H), 6.06 (d, J = 9.0 Hz, 1H), 4.36 - 4.20 (m, 1H), 4.05 - 3.88 (m, 1H), 3.84 - 3.67 (m, 1H), 2.12 - 1.94 (m, 2H), 1.92 - 1.82 (m, 1H), 1.82 - 1.69 (m, 1H)... ¹³C NMR (126 MHz, Chloroform-*d*): δ (ppm) = 143.71, 142.01, 139.44, 129.99,

129.74, 128.12, 128.11, 127.63, 127.46, 127.36, 76.68, 68.13, 33.11, 26.46. These data are in accordance with the literature.^[2]

(4d) 23.8mg, 45% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.39 - 7.29 (m, 1H), 7.28 - 7.22 (m, 3H), 7.23 - 7.05 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 3H), 7.23 - 7.05 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 5H), 6.08 - 5.99 (m, 1H), 4.40 - 4.17 (m, 5H), 6.08 - 5.99 (m, 1H), 5.08 (m, 1H), 5.08

1H), 4.02 - 3.88 (m, 1H), 3.79 - 3.68 (m, 1H), 2.38 (s, 3H), 2.32 (s, 1H), 2.09 - 1.95 (m, 2H), 1.90 - 1.81 (m, 1H), 1.79 - 1.69 (m, 1H). ¹³C NMR (126 MHz, Chloroformd): δ (ppm) = 143.75, 143.61, 142.26, 139.62, 139.20, 137.27, 137.05, 136.47, 129.98, 129.90, 129.51, 128.84, 128.79, 128.08, 128.06, 127.68, 127.52, 127.39, 127.28, 76.74, 68.09, 33.12, 26.46, 21.27, 21.11. These data are in accordance with the literature.^[4]

(4e) 28.6mg, 50% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.23 - 7.14 (m, 4H), 7.08 - 7.02 (m, 2H), 6.99 - 6.92 (m, 2H), 5.98 (d, J = 9.0 Hz, 1H), 4.43 - 4.14

(m, 1H), 4.07 – 3.88 (m, 1H), 3.78 – 3.70 (m, 1H), 2.10 – 1.96 (m, 2H), 1.94 – 1.83 (m, 1H), 1.78 – 1.66 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*) : δ (ppm) = 163.40, 163.23, 161.43, 161.27, 141.91, 138.00, 135.11, 131.60, 131.54, 129.92, 129.25, 129.19, 115.27, 115.14, 115.09, 114.97, 113.95, 76.52, 68.16, 33.06, 26.47. ¹⁹F NMR (471 MHz, Chloroform-*d*): -114.52, -114.83. These data are in accordance with the literature.^[4]

(4f) 28.8mg, 41% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.40 - 7.28 (m, 7H),
7.28 - 7.19 (m, 4H), 7.22 - 7.09 (m, 3H), 6.05 (dd, J = 9.0,

4.2 Hz, 1H), 5.59 – 5.30 (m, 2H), 4.43 – 4.22 (m, 1H), 4.05 – 3.89 (m, 1H), 3.77 – 3.68 (m, 1H), 2.17 – 1.82 (m, 3H), 1.79 – 1.62 (m, 1H).¹³C NMR (126 MHz, Chloroform*d*): δ (ppm) = 149.83, 143.33, 141.44, 139.24, 129.95, 129.93, 129.85, 129.40, 128.25, 128.17, 128.12, 128.09, 127.98, 127.75, 127.65, 127.47, 127.36, 127.20, 114.55, 113.87, 76.67, 68.13, 33.09, 33.05, 26.47. HRMS (ESI): [M + H]⁺ Calcd. for C₂₆H₂₄O 353.1900, Found: 353.1896.

(4g) 37.2mg, 62% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.91 - 7.59 (m, 4H), 7.54 - 7.35 (m, 4H), 7.32 - 7.26 (m, 4H), 6.23 - 6.11 (m, 1H), 4.39 - 4.29 (m, 4H), 7.32 - 7.26 (m, 4H), 6.23 - 6.11 (m, 1H), 4.39 - 4.29 (m, 4H), 7.32 - 7.26 (m, 4H), 6.23 - 6.11 (m, 1H), 4.39 - 4.29 (m, 4H), 7.32 - 7.26 (m, 4H), 6.23 - 6.11 (m, 1H), 4.39 - 4.29 (m, 4H), 7.32 - 7.26 (m, 4H), 6.23 - 6.11 (m, 1H), 4.39 - 4.29 (m, 4H), 7.32 - 7.26 (m, 7H), 7.32 - 7.26 (m, 7H)

1H), 4.04 – 3.89 (m, 1H), 3.83 – 3.65 (m, 1H), 2.18 – 1.97 (m, 2H), 1.93 – 1.74 (m, 2H). ¹³C NMR (126 MHz, Chloroform-*d*): δ (ppm) = 143.64, 141.86, 139.39, 136.94, 133.25, 133.11, 132.78, 132.65, 130.29, 130.15, 130.08, 128.84, 128.24, 128.18, 128.13, 127.71, 127.65, 127.54, 127.51, 127.47, 126.97, 126.18, 126.10, 126.07, 125.95, 125.54, 68.18, 68.13, 33.15, 26.50, 26.44. These data are in accordance with the literature.^[5]

(4h) 14.8mg, 37% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.17 - 7.05 (m, 3H), 7.03 (d, *J* = 7.1 Hz, 1H), 6.45 (d, *J* = 1.5 Hz, 1H), 4.45 (t, *J* = 7.3 Hz, 1H), 4.08 - 3.94 (m, 1H), 3.94 - 3.82 (m, 1H), 2.83 (t, *J* = 8.1 Hz, 2H), 2.55 - 2.20 (m, 2H), 2.17 - 2.05 (m, 1H), 1.99 - 1.84 (m, 2H), 1.77 - 1.68 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 141.72, 135.13, 134.30, 129.74, 127.22, 126.64, 126.48, 126.02, 121.95, 113.85, 81.63, 68.61, 30.78, 28.08, 26.00, 23.37. These data are in accordance with the literature.^[7] (4i) 23.1mg, 62% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.41 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 7.4

Hz, 1H), 7.28 – 7.20 (m, 1H), 7.17 – 7.10 (m, 1H), 6.71 (s, 1H), 4.94 – 4.65 (m, 1H), 4.12 – 3.93 (m, 1H), 3.93 – 3.83 (m, 1H), 3.40 (s, 2H), 2.25 – 2.12 (m, 1H), 2.07 – 1.93 (m, 2H), 1.93 – 1.79 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 150.47, 144.72, 143.26, 126.72, 126.35, 124.30, 123.70, 120.70, 77.78, 68.24, 38.14, 32.18, 26.05. These data are in accordance with the literature.^[6]

(4j) 13.2mg, 35% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.45 - 7.40 (m, 2H), 7.34 - 7.29 (m, 2H), 7.29 - 7.24 (m, 1H), 5.33 (d, J = 1.5 Hz, 1H), 5.15 (d, J = 1.4 Hz, 1H), 3.99 - 3.82 (m, 2H), 3.78 - 3.62 (m, 1H), 3.08 - 2.80 (m, 1H), 2.74 - 2.51 (m, 1H), 1.96 - 1.74 (m, 3H), 1.55 - 1.45 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 145.66, 141.08, 128.31, 127.46, 126.21, 114.27, 77.55, 67.84, 41.63, 31.14, 25.58. These data are in accordance with the literature.^[1]

(4k) 22.6mg, 56% yield, colorless oil. ¹H NMR (500 MHz, Me Chloroform-*d*): δ (ppm) = 7.32 (d, *J* = 8.1 Hz, 2H), 7.17 – 6.93 (m, 2H), 5.31 (d, *J* = 1.6 Hz, 1H), 5.10 (d, *J* = 1.4 Hz, 1H), 4.04 – 3.81 (m, 2H), 3.72 – 3.60 (m, 1H), 3.04 – 2.77 (m, 1H), 2.69 – 2.51 (m, 1H), 2.34 (s, 3H), 2.00 – 1.78 (m, 3H), 1.53 – 1.41 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 145.41, 138.11, 137.22, 129.02, 126.07, 113.49, 77.60, 67.83, 41.62, 31.13, 25.58, 21.12. These data are in accordance with the literature.^[7] (41) 23.9mg, 49% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.34 (d, *J* = 8.1 Hz, 2H), 7.16 - 7.09 (m, 2H), 5.31 (s, 1H), 5.10 (s, 1H), 4.07 - 3.83 (m, 2H), 3.79 - 3.65 (m, 1H), 2.87 (dd, *J* = 14.2, 6.3 Hz, 1H), 2.75 - 2.48 (m, 3H), 1.91 - 1.87 (m, 2H), 1.85 - 1.79 (m, 1H), 1.61 - 1.55 (m, 2H), 1.55 - 1.46 (m, 1H), 1.46 - 1.31 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H).¹³C NMR (126 MHz, Chloroform-*d*): 145.40, 142.27, 138.25, 128.35, 126.01, 113.44, 77.59, 67.83, 41.61, 35.30, 33.59, 31.13, 25.58, 22.41, 13.98. HRMS (ESI): $[M + H]^+$ Calcd. for C₁₇H₂₄O 245.1900, Found: 245.1905.

(4m) 21.5mg, 44% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.34 (d, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 5.33 (d, *J* = 1.6 Hz, 1H), 5.11 (d, *J* = 1.5 Hz, 1H), 4.18 - 3.80 (m, 2H), 3.80 - 3.62 (m, 1H), 3.09 - 2.82 (m, 1H), 2.70 - 2.55 (m, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 2.03 - 1.79 (m, 4H), 1.57 - 1.45 (m, 1H), 0.90 (d, *J* = 6.6 Hz, 6H).¹³C NMR (126 MHz, Chloroform-*d*): 145.39, 141.07, 138.26, 129.05, 125.85, 113.42, 77.61, 67.83, 45.08, 41.60, 31.13, 30.21, 25.58, 22.41. HRMS (ESI): [M + H]⁺, Calcd. for C₁₇H₂₄O 245.1900, Found: 245.1901.

(4n) 14.8mg, 36% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.52 - 7.32 (m, 2H), 7.10 - 6.79 (m, 2H), 5.28 (s, 1H), 5.14 (s, 1H), 4.08 - 3.83 (m, 2H), 3.77 - 3.56 (m, 1H), 2.83 (dd, J = 14.4, 6.6 Hz, 1H), 2.58 (dd, J = 14.4, 6.7 Hz, 1H), 1.97 - 1.69 (m, 3H), 1.53 - 1.43 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 163.29, 161.33, 144.68, 137.15, 137.13, 127.79 (d, J = 7.9 Hz), 115.20, 115.03, 114.22, 77.48, 67.86, 41.74, 31.16, 25.57.

¹⁹F NMR (471 MHz, Chloroform-*d*): -115.29. These data are in accordance with the literature.^[8]

(40) 33.7mg, 76% yield, colorless oil. ¹H NMR (500 MHz, Cl Chloroform-*d*): δ (ppm) = 7.35 (d, *J* = 8.5 Hz, 2H), 7.32 - 7.12 (m, 2H), 5.32 (s, 1H), 5.17 (s, 1H), 4.18 - 3.82 (m, 2H), 3.77 - 3.46 (m, 1H), 3.08 -2.67 (m, 1H), 2.67 - 2.46 (m, 1H), 2.01 - 1.85 (m, 2H), 1.85 - 1.76 (m, 1H), 1.61 -1.39 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 144.59, 139.54, 133.24, 128.45, 127.53, 114.80, 77.45, 67.87, 41.52, 31.18, 25.57. These data are in accordance with the literature.^[8]

(4p) 41.5mg, 78% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.63 - 7.38 (m, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 5.33 (d, *J* = 1.3 Hz, 1H), 5.17 (d, *J* = 1.4 Hz, 1H), 4.06 - 3.79 (m, 2H), 3.77 -3.58 (m, 1H), 3.03 - 2.74 (m, 1H), 2.65 - 2.42 (m, 1H), 2.01 - 1.79 (m, 2H), 1.84 -1.72 (m, 1H), 1.58 - 1.43 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 144.65, 140.02, 131.41, 127.88, 121.40, 114.88, 77.45, 67.87, 41.47, 31.17, 25.57. These data are in accordance with the literature.^[8]

(4q) 44.6mg, 71% yield, yellow oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.77 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 5.38 (d, J = 1.5 Hz, 1H),

5.18 (d, *J* = 1.5 Hz, 1H), 4.04 – 3.77 (m, 2H), 3.75 – 3.56 (m, 1H), 2.89 (dd, *J* = 14.3, 6.4 Hz, 1H), 2.60 (dd, *J* = 14.3, 7.0 Hz, 1H), 1.94 – 1.77 (m, 2H), 1.83 – 1.76 (m, 1H), 1.54 – 1.45 (m, 1H), 1.34 (s, 12H). ¹³C NMR (126 MHz, Chloroform-*d*): 145.63,

143.86, 134.83, 125.55, 114.98, 103.73, 100.68, 83.78, 77.53, 67.82, 41.45, 31.10, 25.56, 24.87, 24.26, 22.09. HRMS (ESI): [M + H]⁺, Calcd. for C₁₉H₂₇BO₃ 315.2126, Found: 315.2122.

(4r) 38.8mg, 61% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.10 (d, *J* = 8.6 Hz, 2H), 6.58 (d, *J* = 8.6 Hz, 2H), 5.07 (d, *J* = 1.6 Hz, 1H), 4.86 (d, *J* = 1.4 Hz, 1H), 3.83 - 3.64 (m, 2H), 3.59 - 3.39 (m, 1H), 2.64 (dd, *J* = 14.3, 6.3 Hz, 1H), 2.35 (dd, *J* = 14.3, 7.0 Hz, 1H), 1.77 - 1.57 (m, 2H), 1.64 - 1.55 (m, 1H), 1.37 (s, 6H), 1.35 - 1.26 (m, 1H), 0.78 (s, 9H).¹³C NMR (126 MHz, Chloroform-*d*): 155.23, 144.98, 133.97, 127.19, 119.78, 112.68, 77.64, 67.82, 41.65, 31.12, 25.69, 25.58, 18.22, -4.39. HRMS (ESI): [M + H]⁺, Calcd. for C₁₉H₃₀O₂Si 319.2088, Found: 319.2090.

(4s) 33.8mg, 71% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 8.08 - 7.73 (m, 4H), 7.59 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.57 - 7.38 (m, 2H), 5.49 (d, *J* = 1.4 Hz, 1H), 5.26 (d, *J* = 1.4 Hz, 1H), 4.13 - 3.96 (m, 1H), 3.96 - 3.83 (m, 1H), 3.83 - 3.58 (m, 1H), 3.01 (dd, *J* = 14.2, 6.4 Hz, 1H), 2.71 (dd, *J* = 14.5, 7.1 Hz, 1H), 2.12 - 1.74 (m, 2H), 1.84 - 1.71 (m, 1H), 1.56 - 1.51 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 145.45, 138.27, 133.36, 132.83, 128.19, 127.87, 127.54, 126.16, 125.87, 124.83, 124.70, 114.85, 77.61, 67.87, 41.64, 31.17, 25.59. These data are in accordance with the literature.^[7]

(4t) 29.6mg, 56% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.51 - 7.45 (m, 2H), 7.42 (d, J = 7.2 Hz, 2H), 7.39 - 7.33 (m, 4H), 7.32 - 7.21 (m, 2H), 6.77 (s, 1H), 3.93 -

3.85 (m, 1H), 3.84 – 3.76 (m, 1H), 3.71 – 3.60 (m, 1H), 3.11 (dd, *J* = 14.0, 6.9 Hz, 1H), 2.84 (dd, *J* = 14.0, 6.6 Hz, 1H), 1.91 – 1.72 (m, 3H), 1.42 – 1.34 (m, 1H)..¹³C NMR (126 MHz, Chloroform-*d*): 143.05, 139.97, 137.98, 130.39, 129.04, 128.40, 128.26, 127.26, 126.83, 126.67, 113.86, 77.74, 67.74, 36.08, 31.26, 25.69. These data are in accordance with the literature.^[9]

(4u) 31.6mg, 53% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.46 - 7.30 (m, 8H), 7.28 - 7.23 (m, 1H), 6.76 (s, 1H), 3.94 - 3.75 (m, 2H), 3.70 - 3.61 (m, 1H), 3.06 (dd, *J* = 14.1, 7.2 Hz, 1H), 2.81 (dd, *J* = 14.1, 6.3 Hz, 1H), 1.87 - 1.70 (m, 3H), 1.44 -1.32 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 141.51, 138.89, 137.64, 132.99, 130.79, 129.74, 129.00, 128.52, 128.29, 128.13, 126.85, 77.61, 67.76, 36.03, 31.31, 25.66. These data are in accordance with the literature.^[9]

(4v) 27.7mg, 45% yield, colorless oil. ¹H NMR (500 MHz,
Chloroform-*d*): δ (ppm) = 7.41 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 5.71 (t, J = 7.3 Hz, 1H), 3.90 - 3.73 (m, 2H),

3.73 - 3.60 (m, 1H), 2.85 (dd, *J* = 13.8, 6.1 Hz, 1H), 2.61 (dd, *J* = 13.8, 7.5 Hz, 1H), 2.20 (q, *J* = 7.4 Hz, 2H), 1.93 - 1.82 (m, 1H), 1.81 - 1.74 (m, 2H), 1.51 - 1.43 (m, 2H), 1.42 - 1.31 (m, 1H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*): 142.34, 136.05, 131.84, 131.26, 128.20, 120.39, 78.03, 67.70, 35.61, 31.01, 30.92, 25.62, 22.92, 13.96. HRMS (ESI): [M + H]⁺, Calcd. for C₁₆H₂₁BrO 309.0849, Found: 309.0856.

(4w) 14.6mg, 32% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.33 - 7.23 (m, 4H), 7.23 - 7.16 (m, 1H), 5.99 - 5.79 (m, 1H), 4.14 - 3.43 (m, 3H), 2.96 - 2.69 (m, 1H),

2.28 – 2.01 (m, 3H), 1.82 – 1.65 (m, 4H), 1.58 – 1.37 (m, 2H), 1.40 – 1.16 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 144.06, 143.25, 139.78, 139.63, 129.19, 128.78, 128.09, 128.08, 126.71, 126.40, 126.37, 126.31, 80.64, 80.55, 68.30, 67.42, 40.55, 39.44, 30.17, 26.20, 26.19, 26.14, 26.01, 24.45, 23.05, 20.60, 18.54. HRMS (ESI): [M + H]⁺ Calcd. for C₁₆H₂₀O 229.1587, Found: 229.1592.

(4x) 34.9mg, 72% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.36 - 7.25 (m, 2H), 7.23 - 7.12 (m, 3H), 3.88 - 3.79 (m, 1H), 3.76 - 3.70 (m, 1H), 3.68 - 3.58 (m, 1H),

2.88 - 2.70 (m, 1H), 2.56 - 2.32 (m, 3H), 2.24 - 2.08 (m, 2H), 1.92 - 1.77 (m, 3H), 1.74 - 1.67 (m, 2H), 1.60 - 1.51 (m, 2H), 1.42 - 1.35 (m, 1H).¹³C NMR (126 MHz, Chloroform-*d*): 143.57, 142.22, 128.71, 128.42, 127.95, 125.90, 78.09, 67.58, 41.05, 32.53, 31.04, 26.89, 26.41, 25.69. HRMS (ESI): [M + H]⁺, Calcd. for C₁₇H₂₂O 243.1743, Found: 243.1739.

(4y) 26.9mg, 63% yield, colorless oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.29 (d, J = 7.6 Hz, 1H), 7.21 - 7.16 (m, 1H), 7.18 - 7.03 (m, 2H), 5.94 (t, J = 4.5 Hz, 1H), 4.15 - 4.04 (m,

1H), 3.96 - 3.86 (m, 1H), 3.76 - 3.66 (m, 1H), 3.03 - 2.81 (m, 1H), 2.81 - 2.68 (m, 2H), 2.63 - 2.43 (m, 1H), 2.41 - 2.20 (m, 2H), 2.00 - 1.89 (m, 2H), 1.88 - 1.78 (m, 1H), 1.62 - 1.49 (m, 1H). ¹³C NMR (126 MHz, Chloroform-*d*): 136.70, 134.80, 133.70,

129.74, 127.62, 126.74, 126.70, 126.32, 122.74, 113.85, 77.69, 67.90, 38.98, 31.36, 28.36, 25.57, 23.16. These data are in accordance with the literature.^[10]

1H).¹³C NMR (126 MHz, Chloroform-*d*): 144.77, 144.68, 137.66, 137.30, 134.60, 134.48, 132.26, 132.19, 131.92, 130.35, 130.25, 130.20, 130.17, 129.56, 128.41, 128.16, 127.91, 127.77, 127.42, 127.33, 127.30, 127.14, 126.71, 126.61, 126.04, 125.98, 125.86, 124.42, 124.40, 123.41, 123.35, 113.63, 77.58, 77.56, 67.92, 43.41, 42.93, 39.21, 38.84, 31.54, 31.46, 31.36, 31.32, 31.26, 25.66, 25.60, 25.57. HRMS (ESI): $[M + H]^+$ Calcd. for C₂₀H₂₀Cl₂O 359.0964, Found: 359.0970.

(s, 18H).¹³C NMR (126 MHz, Chloroform-*d*): 152.17, 137.76, 135.95, 130.72, 130.41, 130.19, 128.48, 126.94, 126.14, 125.16, 39.42, 34.34, 30.33. HRMS (ESI): [M + H]⁺ Calcd. for C₂₃H₃₀O 323.2369, Found: 323.2375.

NMR (126 MHz, Chloroform-*d*): 150.11, 135.90, 135.01, 130.91, 130.16, 129.37, 125.84, 125.40, 125.15, 77.28, 77.03, 76.77, 39.44, 34.33, 31.32, 30.33. HRMS (ESI): [M + H]⁺ Calcd. for C₂₇H₃₈O 379.2995, Found: 379.3001.

(7c) 44.7mg, 55% yield, yellow oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.37 (d, J = 8.7 Hz, 2H), 7.18 - 7.10 (m, 2H), 7.02 (s, 2H), 6.44 (d, J = 15.8 Hz, 1H),
OF₃C 6.41 - 6.24 (m, 1H), 5.10 (s, 1H), 3.46 (dd, J = 6.8, 1.3

Hz, 2H), 1.44 (s, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) : 152.25, 136.53, 136.02, 131.36, 130.37, 128.94, 127.28, 125.15, 121.04, 39.38, 34.35, 30.31. ¹⁹F NMR (471 MHz, Chloroform-*d*): -57.88. HRMS (ESI): [M + H]⁺ Calcd. for C₂₄H₂₉F₃O₂ 407.2192, Found: 407.2197.

(7d) 35.6mg, 53% yield, yellow oil. ¹H
NMR (500 MHz, Chloroform-*d*): δ (ppm) =
7.45 - 7.38 (m, 4H), 7.37 - 7.18 (m, 7H), 7.04
(s, 2H), 6.97 (s, 2H), 6.05 - 5.86 (m, 1H), 5.30

(d, *J* = 1.4 Hz, 1H), 5.10 (d, *J* = 1.4 Hz, 1H), 5.06 (s, 1H), 5.04 (s, 1H), 3.52 - 3.42 (m, 2H), 2.86 - 2.75 (m, 2H), 2.74 - 2.66 (m, 2H), 2.18 - 2.05 (m, 3H), 1.43 (d, *J* = 2.7 Hz, 36H). ¹³C NMR (126 MHz, Chloroform-*d*): 152.01, 151.87, 148.36, 143.92, 141.38,

135.93, 135.71, 135.13, 132.55, 131.45, 128.32, 128.19, 127.70, 127.37, 126.62,
126.17, 125.77, 124.96, 124.87, 112.34, 37.49, 34.83, 34.67, 34.35, 34.33, 30.37, 30.34,
16.01. HRMS (ESI): [M + H]⁺, Calcd. for C₂₄H₃₂O 337.2526, Found: 337.2533.

127.14, 126.23, 125.37, 123.69, 123.48, 120.12, 40.95, 37.98, 34.33, 30.38. HRMS (ESI): [M + H]⁺, Calcd. for C₂₄H₃₀O 335.2369, Found: 335.2372.

(7f) 39.8mg, 51% yield, yellow oil. ¹H NMR (500 MHz, Chloroform-*d*): δ (ppm) = 7.35 - 7.26 (m, 2H), 7.23 - 7.17 (m, 3H), 6.93 (s, 2H), 5.00 (s, 1H), 2.65 (t, J = 7.8 Hz, 2H), 2.54 - 2.46 (m, 2H), 2.21 (t, J = 7.2 Hz, 2H), 2.13 (t, J = 7.0 Hz, 2H),

1.68 - 1.59 (m, 2H), 1.56 - 1.48 (m, 2H), 1.42 (s, 18H).¹³C NMR (126 MHz, Chloroform-*d*): 151.70, 143.72, 140.77, 135.52, 132.99, 131.14, 128.54, 128.23, 128.02, 127.92, 125.82, 124.94, 124.91, 123.80, 37.25, 34.28, 34.12, 32.50, 30.52, 30.39, 27.00, 26.45. HRMS (ESI): [M + H]⁺, Calcd. for C₂₈H₃₈O 391.2995, Found: 391.2997.

(7g) 42.8mg, 43% yield, yellow oil. ¹H
NMR (500 MHz, Chloroform-*d*): δ (ppm) =
7.23 (d, *J* = 8.1 Hz, 1H), 7.19 - 7.14 (m, 1H),

7.11 (s, 1H), 7.03 (s, 2H), 6.41 (d, J = 15.7 Hz, 1H), 6.36 - 6.24 (m, 1H), 5.08 (s, 1H),

3.98 - 3.79 (m, 1H), 3.74 - 3.69 (m, 2H), 3.45 (d, J = 6.8 Hz, 2H), 2.95 - 2.83 (m, 1H), 2.62 - 2.46 (m, 1H), 2.45 - 2.37 (m, 1H), 2.30 (d, J = 6.6 Hz, 1H), 2.01 - 1.94 (m, 2H), 1.86 (t, J = 5.7 Hz, 1H), 1.56 - 1.47 (m, 4H), 1.43 (s, 18H), 1.30 (d, J = 2.9 Hz, 1H), 0.91 (s, 3H).¹³C NMR (126 MHz, Chloroform-*d*): 152.15, 138.60, 136.50, 135.91, 135.39, 130.85, 130.04, 129.59, 126.78, 125.50, 125.17, 123.60, 77.29, 77.03, 76.78, 50.51, 48.02, 44.44, 39.46, 38.21, 35.89, 34.34, 31.61, 30.40, 30.33, 29.41, 26.54, 25.74, 21.61, 14.22, 13.86. HRMS (ESI): $[M + H]^+$, Calcd. for C₃₅H₄₆O₂ 499.3571, Found: 499.3574.

(7h) 33.2mg, 55% yield, yellow oil. ¹H NMR (500 MHz, Chloroform-
d):
$$\delta$$
 (ppm) = 7.39 - 7.33 (m, 2H), 7.33 - 7.27 (m, 2H), 7.25 - 7.18 (m, 1H), 7.16 (d, J = 2.1 Hz, 1H), 6.95 - 6.86 (m, 1H), 6.49 - 6.38 (m, 1H), 6.35 - 6.18 (m, 1H), 5.45 (s, 1H), 3.69 - 3.25 (m, 2H), 2.27 (s, 3H).¹³C

NMR (126 MHz, Chloroform-*d*): 148.77, 137.32, 133.10, 131.20, 130.76, 129.12, 128.90, 128.55, 127.24, 126.17, 125.74, 110.01, 38.19, 16.68. HRMS (ESI): [M + H]⁺, Calcd. for C₁₆H₁₅BrO 303.0379, Found: 303.0384.

(7i) 27.6mg, 46% yield, yellow oil. ¹H NMR (500 MHz, Chloroformd): δ (ppm) =7.53 - 7.42 (m, 4H), 7.40 - 7.34 (m, 3H), 7.32 - 7.27 (m, 2H), 7.23 - 7.11 (m, 1H), 7.02 (d, J = 2.3 Hz, 1H), 6.94 (d, J = 2.3 Hz, 1H), 6.57 - 6.42 (m, 1H), 6.42 - 6.31 (m, 1H), 5.17 (s, 1H), 3.48 (dd, J= 6.9, 1.3 Hz, 2H), 2.29 (s, 3H). ¹³C NMR (126 MHz, Chloroform-*d*): 148.99, 137.54,

137.43, 131.74, 130.73, 129.67, 129.33, 129.16, 128.50, 127.84, 127.77, 127.06,

126.15, 38.61, 16.23. HRMS (ESI): [M + H]⁺, Calcd. for C₂₂H₂₀O 301.1587, Found: 301.1591.

162.05, 157.89, 136.09, 133.55, 131.76, 130.19, 113.05, 112.82, 68.89, 55.28, 55.17. HRMS (ESI): [M + H]⁺, Calcd. for C₃₀H₂₈O₅ 469.2010, Found: 469.2013.

4. References

- [1] S. Paul and J. Guin, Green Chem., 2017, 19, 2530 2534.
- [2] L. Chen, K. Jiang, G. Zeng and B. Yin, Org. Lett., 2022, 24, 9071-9075.
- [3] Z.-Q. Song, Z. Liu, Q.-C. Gan, T. Lei, C.-H. Tung and L.-Z. Wu, Org. Lett., 2020, 22, 832–836.
- [4] C. Pan, H. Zhang, C. Zhu, Tetrahedron Letters 2016, 57, 595-598.
- [5] D.-L. Kong, Org. Biomol. Chem., 2016, 14, 2210-2217.
- [6] S. Xu, Y. Ping, W. Li, H. Guo, M. Wang, W. Kong, J. Am. Chem. Soc., 2023, 145,
 5231 5241.
- [7] D. Liu, C. Liu, H. Li and A. Lei, Chem. Commun., 2014, 50, 3623-3626.
- [8] M. S. Ahmad, Z. Shafiq, K. Meguellati, Tetrahedron 2022, 110, 132704.
- [9] Franz-Lucas et al., Angew. Chem., Int. Ed., 2023, 62, e202304084
- [10] C.-Y. Huang, J. Li, W. Liu, C.-J. Li, Chem. Sci., 2019, 10, 5018-5024.

5. NMR Spectra of Products

Compound 4a

Compound 4c

Compound 4d

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

Compound 4e

210 200 190

170 160 150 140 130 120 110

180

100 90

70

60

80

0

-10

40 30 20 10

Compound 4f

Compound 4g

Compound 4h

-10

Compound 4i

Compound 4j

-10

Compound 4k

Compound 4m

7,345 7,532 7,532 7,532 7,532 5,5325 5,5325 5,5325 5,5325 5,5325 5,5325 5,5325 5,5325 5,5325 5,5

S44

Compound 4n

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

Compound 40

Compound 4p

S48

Compound 4r

Compound 4s

Compound 4t

-10

Compound 4u

Compound 4v

Compound 4w

Compound 4x

Compound 4y

-10

Compound 4z

-10

Compound 7a

Compound 7b

Compound 7c

S61

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

Compounds 7d and 7d'

-10

Compound 7e

-10

Compound 7f

210 200 170 160 -10

Compound 7g

Compound 7h

Compound 7i

Compound 5a

