Supporting Information

Halide-free ion pair organocatalyst from biobased α -hydroxy acid for cycloaddition

of CO₂ to epoxide

Ning Li¹, Min Zhang ¹, Zhenjiang Li^{1*}, Yongzhu Hu ¹, Na Shi¹, Yujia Wang¹, Yanqi Shi¹, Xin Yuan¹, Ziqi Liu¹, Kai Guo^{1*}

1. State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

* Corresponding authors.

E-mail: zjli@njtech.edu.cn (Z. Li); guok@njtech.edu.cn (K. Guo).

Table of Contents

1.	General information	S3
2.	Preparation of the different ion pair catalysts	S3
3.	Copies of ¹ H NMR and ¹³ C NMR spectra of the ion pair catalysts	S6
4.	General procedure for the cycloaddition of CO ₂ into epoxide (CCE)	S14
5.	Copies of ¹ H NMR and ¹³ C NMR spectra of cyclic carbonates	S13
6.	C spectrum of intermediate	S25
7.	Supplementary data	S26

1. General information

Materials. O₂ was supplied by Nanjing Shangyuan Industrial Gas Factory with a purity of 99.99%. Epoxides were purchased from Alfa Aesar. DL-Mandelic acid, Glycolic acid, Lactic acid, DL-b-Phenyllactic acid, 1,8-Diazabicyclo[5.4.0]-undec-7-ene (DBU, GC, >98 %, TCI), 7-methyl-1,5,7triazabicyclo[4.4.0]dec-5 ene (MTBD, GC, >95 %, TCI), 1, 5-diazabicyclo [4,3,0]non-5-ene (DBN, GC, >98 %, TCI), and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, GC, >97 %, TCI) were purchased commercially. All reagents were used without any further purification.

Characterizations. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 and 100 MHz NMR spectrometer in CDCl₃ or DMSO-d₆ as stated deuterated solvents. Chemical shifts δ are reported in parts per million (ppm) relative to a residual undeuterated solvent as an internal reference (¹ H δ 7.26 for CDCl₃, δ 2.50 for DMSO-d₆; ¹³C δ 77.16 for CDCl₃, δ 39.52 for DMSO-d₆). Conversions and selectivities of epoxides were determined by ¹H NMR spectroscopy.

2. Preparation of the different ion pair catalysts

2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium 2-hydroxyacetate ([DBUH][GAc]). Glycolic acid (1.901g, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL round-bottled flask and 1, 8-diazadicyclic [5.4.0] undeca-7-ene (3.732mL, 25mmol, 1eq) was placed in the flask. Slowly add glycolate-methanol solution while stirring, stirring at room temperature for 5 h, the solution gradually turned into a light yellow liquid, the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times, purified by column chromatography (DCM:MeOH=1:1), and vacuum dried to constant weight to obtain catalyst **[DBUH][GAc]** as a light yellow viscous liquid. Yield 87%.

2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium 2-hydroxypropanoate ([DBUH][LAc]). Lactic acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL round-bottled flask, and 1, 8-diazadicyclic [5.4.0] undecan-7-ene (3.732mL, 25mmol, 1eq) was placed in the flask. Under the condition of ice bath, the lactate-methanol solution was slowly added while stirring. Stirring at room temperature for 5 h, the solution gradually turned into a light yellow liquid, the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times, purified by column chromatography (DCM:MeOH=1:1), and the catalyst [DBUH][LAc] was obtained by vacuum drying to constant weight as a yellow viscous liquid. Yield 90%.

2,3,4,6,7,8,9,10-octahydropyrimido[**1,2-a**]**azepin-1-ium 2-hydroxy-2-phenylacetate ([DBUH][MAc]).** DI-mandelic acid (3.804g, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL round-bottled flask and 1, 8-diazadicyclic [5.4.0] undecan-7-ene (3.732mL, 25mmol, 1eq) was taken into the flask. The solution of DL-mandelic acid and methanol was slowly added while stirring. After stirring at room temperature for 5 h, the solution gradually turned into a light yellow liquid. The reaction liquid was concentrated under vacuum, precipitated by ether and washed three times, purified by column chromatography (DCM:MeOH=1:1), and then dried under vacuum to constant weight, catalyst [DBUH][MAc] was obtained as a yellow viscous liquid. Yield 95%.

2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium2-hydroxy-3-phenylpropanoate

([DBUH][PLAc]). D-3-phenyllactic acid (4.154g, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL round-bottled flask and 1, 8-diazadicyclic [5.4.0] undecan-7-ene (3.732mL, 25mmol, 1eq) was taken into the flask. Slowly add D-3-phenyllactic acid-methanol solution while stirring, stirring at room temperature for 5 h, the solution gradually turned into a light yellow liquid, the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times, purified by column chromatography (DCM:MeOH=1:1), and the catalyst [DBUH][PLAc] was obtained by vacuum drying to constant weight. Yield 85%.

2,3,4,6,7,8-hexahydropyrrolo[1,2-a]pyrimidin-1-ium 2-hydroxypropanoate ([DBNH][LAC]). Lactic acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL round-bottled flask, and 1, 5-diazazobicyclic [4.3.0] nona-5-ene (3.09mL, 25mmol, 1eq) was placed in the flask. Under the condition of ice bath, mandelate-methanol solution was slowly added while stirring. Stirring at room temperature for 5 h, the solution gradually turned into yellow liquid, the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times, purified by column chromatography (DCM:MeOH=1:1), and the catalyst **[DBNH][LAC]** was obtained by vacuum drying to constant weight. Yield 80%.

9-methyl-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium2-hydroxypropanoate

([MTBDH][LAc]). Lactic acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL round-bottled flask and 7-methyl-1,5, 7-triazadicyclic [4.4.0] dece-5-ene (3.69mL, 25mmol, 1eq) was placed in the flask. Slowly add mandelic acid-methanol solution while stirring, stirring at room temperature for 5 h, the solution gradually turned into yellow liquid, the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times, purified by column chromatography (DCM:MeOH=1:1), and the catalyst **[MTBDH][LAc]** was obtained by vacuum drying to constant weight. Yield 87%.

3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium 2-hydroxypropanoate ([TBDH][LAc]). Lactic acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL round-bottled flask and 1,5, 7-triazadicyclodecene-5-ene (3.48g, 25mmol, 1eq) was taken and placed in the flask under ice bath conditions. Slowly add mandelic acid-methanol solution while stirring, stirring at room temperature for 5 h, the solution gradually becomes yellow liquid, the reaction liquid is concentrated in vacuum, the ether precipitation and washing three times, purification by column chromatography (DCM:MeOH=1:1), vacuum drying to constant weight to obtain catalyst **[TBDH][LAC]** as a white solid. Yield 86%.

3. Copies of ¹H NMR and ¹³C NMR spectra of the ion pair catalysts

Figure S1. ¹H NMR Spectrum of [DBUH][GAc] (400 MHz, DMSO-*d*₆)

Figure S3. ¹H NMR Spectrum of [DBUH][LAc] (400 MHz, DMSO-*d*₆)

Figure S5. ¹H NMR Spectrum of [DBUH][MAc] (400 MHz, DMSO-d₆)

Figure S7. ¹H NMR Spectrum of [DBUH][PLAc] (400 MHz, DMSO-*d*₆)

Figure S9. ¹H NMR Spectrum of [DBNH][MAc] (400 MHz, DMSO-d₆)

Figure S11. ¹H NMR Spectrum of [MTBDH][MAc] (400 MHz, DMSO-*d*₆)

Figure S14. ¹³C NMR Spectrum of [TBDH][MAc] (101 MHz, DMSO-d₆)

4. General procedure for the cycloaddition of CO₂ into epoxide (CCE)

The internal epoxide (10.0 mmol) and catalyst [DBUH][MAc] (76 mg, 0.25 mmol, 2.5mol%) were placed in a dry 10 mL stainless steel reactor containing a magnetic stir bar, the reactor was constantly purged with 1 MPa CO2 to remove air and finally maintain the pressure at 1.0 MPa. The reaction mixture was heated to 120 °C and stirred for 12 h. Then the reactor was cooled down to room temperature and slowly depressurized to \leq 0.1 MPa. The conversions of epoxides were determined by 1H NMR spectra with CDCl3 as a solvent, and the selectivity of cyclic carbonates were determined with 1,3,5-Trimethoxybenzene as the internal standard. before it was sampled for 1H NMR spectra measurements. The reaction mixture was filtered over silica gel (SiO2) with petroleum ether: ethyl acetate = 10:1–1:1 to afford the corresponding cyclic carbonate.

5. Copies of ¹H NMR and ¹³C NMR spectra of cyclic carbonates

Figure S15. ¹H NMR Spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one (400 MHz, CDCl₃)

Figure S16. ¹³C NMR Spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one (101 MHz, CDCl₃)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S18. ¹³C NMR Spectrum of 4-(bromomethyl)-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S20. ¹³C NMR Spectrum of 4-butyl-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S22. ¹³C NMR Spectrum of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S24. ¹³C NMR Spectrum of 4-butyl-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S25. ¹H NMR Spectrum of 4-(methoxymethyl)-1,3-dioxolan-2-one (400 MHz, CDCl₃)

Figure S26. ¹³C NMR Spectrum of 4-(methoxymethyl)-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S27. ¹H NMR Spectrum of 4-((allyloxy)methyl)-1,3-dioxolan-2-one (400 MHz, CDCl₃)

Figure S28. ¹³C NMR Spectrum of 4-((allyloxy)methyl)-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S29. ¹H NMR Spectrum of 4-(*tert*-butoxymethyl)-1,3-dioxolan-2-one (400 MHz, CDCl₃)

Figure S30. ¹³C NMR Spectrum of 4-(*tert*-butoxymethyl)-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S31. ¹H NMR Spectrum of 4-(phenoxymethyl)-1,3-dioxolan-2-one (400 MHz, CDCl₃)

Figure S32. ¹³C NMR Spectrum of 4-(phenoxymethyl)-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S33. ¹H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃)

Figure S34. ¹³C NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S35. ¹H NMR Spectrum of hexahydrobenzo[d]-1,3-dioxolan-2-one (400 MHz, CDCl₃)

Figure S36. ¹³C NMR Spectrum of hexahydrobenzo[d]-1,3-dioxolan-2-one (101 MHz, CDCl₃)

Figure S37. ¹H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃) catalyst:[DBUH][Pac]

6. C spectrum of intermediate

Figure S38. 13 C spectra (DMSO-d6) of [DBUH][MAc] during the absorption of CO₂ (b), Pure [DBUH][MAc] (a),

CO₂ (1 Mpa), Catalyst[DBUH][MAc]

7. Supplementary data

Figure S39. ¹H NMR Spectrum of [DBUH][PAc] (400 MHz, DMSO-d₆)

Figure S40.¹H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃) [DBUH][PAc]

Figure S41.¹H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃) [DBU]

Figure S42.¹H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃) [MAc]

Figure S44.¹H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃) [DBUH][ALc]

Amplification experiment:

In order to verify the possibility of industrial application of catalyst [DBUH][MAc] in catalyzing the synthesis of five-member cyclic carbonates from epoxides and CO₂, we carried out scale-up experiments with 100 g oxidized styrene as epoxy substrate under optimal reaction conditions. As shown in Figure S45, 23% SC nuclear magnetic yield was obtained with [DBUH][MAc] as catalyst at laboratory scale. Therefore, it is not suitable for industrialization.

Figure S45.¹H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl₃) [DBUH][MAc]