Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Photocatalytic $E \rightarrow Z$ isomerization of *gem*-bromofluoroalkenes: Stereoselective synthesis of β -fluorostyrene derivatives

Hayato Kato,^a Yoshihito Kayaki,^b and Takashi Koike^{*a}

^aDepartment of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology,

4-1 Gakuendai, Miyashiro-machi, Minamisaitama-gun, Saitama 345-8501 Japan.

^bDepartment of Chemical Science and Engineering, School of Materials and Chemical Technology,

Institute of Science Tokyo,

2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.

E-mail: koike.takashi@nit.ac.jp

Table of Contents

Materials and methods S2
Apparatus for photoreactions S3
Preparation of <i>gem</i> -bromofluoroalkene 1 ······S4
General procedures for NMR experiment (Table 1) ······S10
Procedures for isomerization reactions of 1 (Table 2) ······S11
Gram-scale photocatalytic flow isomerization of 1i (Figure 2)······S14
Synthetic procedures and characterization for fluorinated 5 <i>H</i> -dibenz[<i>b</i> , <i>f</i>]azepine (4) (Figure 2)······S15
Pot-economical procedures and characterization for monofluoroalkenes (3b–e) (Scheme 2) ······· S17
DFT calculation studies (Figure 1)······S21
References S27
NMR spectra······S28

Materials and methods

All the chemicals for synthesis of the substrates and catalysts and the coupling reactions were commercially available (Aldrich or Tokyo Chemical Industry Co., Ltd. (TCI), FUJIFILM Wako Pure Co., Lt, Kanto Chemical Co., Inc.) unless otherwise noted. All *gem*-bromofluoroalkenes and photocatalysts were prepared according to the reported procedures.¹ All the reactions were carried out by standard Schlenk techniques unless otherwise noted. Anhydrous organic solvents and deuterated solvents were purchased from Kanto Chemical Co., Inc. Thin-layer chromatography was performed on TLC plates with 60 F₂₅₄ (Merck).

The following apparatuses were used for experiments and measurements.

Photoreactor: EvoluChem PhotoRedOx Box (425 nm). Flow reactor: DFC (56 mL in 15 borosilica-glass tubes (2.7 mm in diameter, 65 cm in length) around 405 nm LEDs). Automated column chromatography: Biotage Isolera Prime (Biotage SNAP Ultra cartrideges, particle size 25 μ m). Recycling preparative HPLC (GPC): Japan Analytical Industry Co., Ltd. (JAI) LC-9201 (columns: JAIGEL-1H and JAIGEL-2H, eluent: CHCl₃). NMR spectra: JEOL JNM-ECX400 spectrometer (400 MHz for ¹H, 376 MHz for ¹⁹F, 101 MHz for ¹³C) and Magritek Spinsolve 60 Ultra (62 MHz for ¹H, 58 MHz for ¹⁹F). The chemical shifts were referenced to an external tetramethylsilane signal (0.0 ppm) by using the solvent resonance for ¹H and ¹³C{¹H} NMR and referenced to an external CF₃COOH (-76.5 ppm) or an internal C₆H₅CF₃ (-63.7 ppm) signals for ¹⁹F NMR. The coupling constants were quoted in Hz (J). The splitting patterns were designated as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). The splitting patterns that could not be interpreted or easily visualized were designated as apparent patterns or broad (br). High-resolution mass spectra (HRMS) (ESI/APCI/APPI Mass spectra): Thermo Fisher Exactive at Center for Analytical Instrumentation, Chiba University. Elemental analyses: PerkinElmer PE2400II at Center for Analytical Instrumentation, Chiba University. DFT calculations: Gaussian 16, Revision C.02 program package.

Apparatus for photoreaction

NMR-scale experiments

Preparative-scale experiments

Flow experiments

Preparation of gem-bromofluoroalkene 1

General procedures A

According to the reported procedures,^{1a} gem-bromofluoroalkenes **1a–d**, **g–j** were prepared.

To a THF solution (24-60 mL) of PPh₃ (2 equiv.) in a two-necked flask, CFBr₃ (1 equiv.) was added under Ar atmosphere. The reaction mixture was stirred at 70 or 80 °C (Al block) for 4–24 h. Then, the slurry mixture was allowed to cool down to room temperature. The corresponding aldehyde (1 equiv.) was slowly added to the reaction mixture and was stirred at 70 or 80 °C (Al block) for 20 h–3 days. After the reaction, the mixture was filtered, washed with diethyl ether, and concentrated under reduced pressure. The product was obtained after purification by automated column chromatography.

General procedures B

According to the reported procedures,^{1b} gem-bromofluoroalkenes **1e** and **f** were prepared.

To a THF solution (30 mL) of PPh₃ (1.2 equiv.) in a two-neck flask, CFBr₃ (1.2 equiv.) and the corresponding aldehyde (1 equiv.) were added under Ar atmosphere. After that a hexane solution of Et₂Zn (1.09 mol/L, 1.2 equiv.) was added dropwise over 30 min. at room temperature. The reaction mixture was stirred at room temperature for 1 h. After the reaction, the mixture was quenched with MeOH (10 mL), stirred for 1 h, and concentrated under reduced pressure. The product was obtained after purification by automated column chromatography.

1-Bromo-2-(2-bromo-2-fluoroethenyl)benzene (1a)

According to the general procedures A, the use of PPh₃ (2.99 g, 11.4 mmol), CFBr₃ (1.54 g, 5.69 mmol), THF (20.0 mL), and 2-bromobenzaldehyde (1.08 g, 5.84 mmol) under conditions A (80 °C, 24 h) and conditions B (80 °C, 3 days) afforded **1a** as a colorless liquid (0.803 g, 2.87 mmol, 50% yield, E/Z = 60:40). Column eluent: hexane/EtOAc = 99:1.

The data are in agreement with those reported in the literature.²

¹**H NMR** (62 MHz, CDCl₃, rt): δ 7.66-7.20 (Ar-*H*), 6.66 (d, ³*J*_{HF} = 15 Hz; *H*C=CBrF in *Z* isomer), 6.32 (d, ³*J*_{HF}=32 Hz; *H*C=CBrF in *E* isomer). ¹⁹**F NMR** (58 MHz, CD₃CN): δ –68.9 (d, ³*J*_{HF} = 16 Hz; *Z* isomer), –71.6 (d, ³*J*_{HF} = 32 Hz; *E* isomer).

1-(2-Bromo-2-fluoroethenyl)-4-methoxybenzene (1b)

According to the general procedures A, the use of PPh₃ (2.96 g, 11.3 mmol), CFBr₃ (1.76 g, 6.49 mmol), THF (60.0 mL), and *p*-anisaldehyde (0.863 g, 6.34 mmol) under conditions A (70 °C, 4 h) and conditions B (70 °C, 20 h) afforded **1b** as a colorless liquid (0.303 g, 1.31 mmol, 22% yield, E/Z = 51:49). Column eluent: hexane/EtOAc = 8:2.

The data are in agreement with those reported in the literature.³

¹**H NMR** (62 MHz, CDCl₃, rt): δ 7.53-7.6.81 (Ar-*H*), 6.63 (d, ³*J*_{HF} = 15 Hz; *H*C=CBrF in *Z* isomer), 5.93 (d, ³*J*_{HF}=32 Hz; *H*C=CBrF in *E* isomer), 3.84 (s; OC*H*₃). ¹⁹**F NMR** (58 MHz, CD₃CN): δ –64.7 (d, ³*J*_{HF} = 15 Hz; *Z* isomer), -67.3 (d, ³*J*_{HF} = 33 Hz; *E* isomer).

1-(2-Bromo-2-fluoroethenyl)-4-(trifluoromethyl)benzene (1c)

According to the general procedures A, the use of PPh₃ (2.99 g, 11.4 mmol), CFBr₃ (1.50 g, 5.54 mmol), THF (60.0 mL), and 4-(trifluoromethyl) benzaldehyde (0.761 g, 4.36 mmol) under conditions A (70 °C, 4 h) and conditions B (70 °C, 20 h) afforded **1c** as a colorless liquid (0.472 g, 1.76 mmol, 31% yield, E/Z = 53:47). Column eluent: hexane/EtOAc = 99:1.

The data are in agreement with those reported in the literature.⁴

¹**H NMR** (62 MHz, CDCl₃, rt): δ 7.60-7.45 (Ar-*H*), 6.59 (d, ³*J*_{HF} = 15 Hz; *H*C=CBrF in *Z* isomer), 5.94 (d, ³*J*_{HF} = 32 Hz; *H*C=CBrF in *E* isomer). ¹⁹**F NMR** (58 MHz, CD₃CN): δ –60.7 (d, ³*J*_{HF} = 15 Hz; *Z* isomer), –62.7 (s, CF₃), –65.2 (d, ³*J*_{HF} = 32 Hz; *E* isomer).

4-(2-Bromo-2-fluoroethenyl)-1,1'-biphenyl (1d)

According to the general procedures A, the use of PPh₃ (2.98 g, 11.4 mmol), CFBr₃ (1.78 g, 6.13 mmol), THF (60.0 mL), and biphenyl-4-carboxaldehyde (0.810 g, 4.71 mmol) under conditions A (70 °C, 4 h) and conditions B (70 °C, 20 h) afforded **1d** as a white solid (0.351 g, 1.26 mmol, 31% yield, E/Z = 60:40). Column eluent: hexane/EtOAc = 9:1.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.65-7.37 (Ar-*H*), 6.73 (d, ³*J*_{HF} = 16 Hz; *H*C=CBrF in *Z* isomer), 6.05 (d, ³*J*_{HF} = 32 Hz; *H*C=CBrF in *E* isomer). ¹⁹**F NMR** (376 MHz, CD₃CN): δ –64.6 (d, ³*J*_{HF} = 15 Hz; *Z* isomer), – 67.3 (d, ³*J*_{HF} = 34 Hz; *E* isomer). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 140.9 (d, *J*_{CF} = 2 Hz), 140.7 (d, ¹*J*_{CF} = 3 Hz), 140.52, 140.47, 135.0 (d, ¹*J*_{CF} = 317 Hz), 134.1 (d, ¹*J*_{CF} = 332 Hz), 131.6 (d, *J*_{CF} = 5 Hz), 130.5 (d, *J*_{CF} = 9 Hz), 129.0, 128.91, 128.88, 128.62, 128.55, 127.6, 127.4, 127.3, 127.2, 127.1, 112.9 (apparent dd), 111.5 (d, *J*_{CF} = 24 Hz). **HRMS** (APCI) calcd m/z for [C₁₄H₁₀BrF]⁺ 275.9944, found 275.9947 [M]⁺.

1-(2-Bromo-2-fluoroethenyl)-3-methoxybenzene (1e)

According to the general procedures B, use of PPh₃ (0.629 g, 2.40 mmol), CFBr₃ (0.651 g, 2.41 mmol), THF (30.0 mL), *m*-anisaldehyde (0.284 g, 2.08 mmol) and Et₂Zn (2.30 mL, 2.51 mmol) afforded **1e** as a colorless liquid (0.241 g, 1.04 mmol, 50% yield, E/Z =42/58). Column eluent: hexane/EtOAc = 95:5. The data are in accordance with the reported literature.⁵

¹**H NMR** (62 MHz, CDCl₃, rt): δ 7.32-6.88 (Ar-*H*), 6.59 (d, ³*J*_{HF} = 16 Hz; *H*C=CBrF in *Z* isomer), 6.15 (d, ³*J*_{HF} = 33 Hz; *H*C=CBrF in *E* isomer), 3.76 (s; OCH3). ¹⁹**F NMR** (58 MHz, CD₃CN): δ –63.0 (d, ³*J*_{HF} = 15 Hz; *Z* isomer), -65.1 (d, ³*J*_{HF} = 32 Hz; *E* isomer).

2-(2-Bromo-2-fluoroethenyl)naphthalene (1f)

According to the general procedures B, use of PPh₃ (0.629 g, 2.40 mmol), CFBr₃ (0.651 g, 2.41 mmol), THF (30.0 mL), 2-naphtalaldehyde (0.312 g, 2.00 mmol) and Et₂Zn (2.30 mL, 2.51 mmol) afforded **1f** as a white solid (0.269 g, 1.07 mmol, 54% yield, E/Z = 45:55). Column eluent: hexane.

The data are in accordance with the reported literature.^{1b}

¹**H NMR** (62 MHz, CDCl₃, rt): δ 7.95-7.43 (Ar-*H*), 6.84 (d, ³*J*_{HF} = 15 Hz; *H*C=CBrF in *Z* isomer), 6.15 (d, ³*J*_{HF} = 33 Hz; *H*C=CBrF in *E* isomer). ¹⁹**F NMR** (58 MHz, CD₃CN): δ –62.7 (d, ³*J*_{HF} = 15 Hz; *Z* isomer), – 65.5 (d, ³*J*_{HF} = 33 Hz; *E* isomer).

1-(2-Bromo-2-fluoroethenyl)-2-methylbenzene (1g)

According to the general procedures A, the use of PPh₃ (5.98 g, 22.8 mmol), CFBr₃ (2.93 g, 11.5 mmol), THF (48.0 mL), and 2-methylbenzaldehyde (1.37 g, 11.4 mmol) under conditions A (80 °C, 24 h) and conditions B (80 °C, 3 days) afforded **1g** as a colorless liquid (0.773 g, 3.59 mmol, 31% yield, E/Z = 64:36). Column eluent: hexane. Further purification by recycling preparative HPLC (GPC) afforded the analytically pure product.

The data are in agreement with those reported in the literature.⁶

¹**H NMR** (62 MHz, CDCl₃, rt): δ 8.43-7.32 (Ar-*H*), 7.05 (d, ³*J*_{HF} = 13 Hz; *H*C=CBrF in *Z* isomer), 6.51 (d, ³*J*_{HF}=26 Hz; *H*C=CBrF in *E* isomer). ¹⁹**F NMR** (58 MHz, CD₃CN): δ –69.5 (d, ³*J*_{HF} = 13 Hz; *Z* isomer), –72.5 (d, ³*J*_{HF} = 26 Hz; *E* isomer).

1-(2-Bromo-2-fluoroethenyl)-2-iodobenzene (1h)

According to the general procedures A, use of PPh₃ (2.09 g, 7.96 mmol), CFBr₃ (1.25 g, 4.61 mmol), THF (60.0 mL), and 2-iodobenzaldehyde (1.05 g, 4.53 mmol) under conditions A (80 °C, 24 h) and conditions B (80 °C, 24 h) afforded **1h** as a colorless liquid (0.501 g, 1.53 mmol, 33% yield, E/Z = 44:56). Column eluent: hexane/EtOAc = 99:1.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.89–7.85 (Ar-*H*), 7.61 (m; Ar-*H*), 7.51 (m; Ar-*H*), 7.39–7.32 (Ar-*H*), 7.02 (m; Ar-*H*), 6.97 (m; Ar-*H*), 6.66 (d, ³*J*_{HF} = 12 Hz; *H*C=CBrF in *Z* isomer), 6.27 (d, ³*J*_{HF} = 28 Hz; *H*C=CBrF in *E* isomer). ¹⁹**F NMR** (376 MHz, CDCl₃): δ –65.4 (d, ³*J*_{HF} = 11 Hz; *Z* isomer), -68.5 (d, ³*J*_{HF} = 30 Hz; *E* isomer). ¹³**C**{¹**H**}**NMR** (101 MHz, CDCl₃): δ 139.6, 139.2, 137.6 (d, ¹*J*_{CF} = 320 Hz), 136.4 (d, ³*J*_{CF} = 9 Hz), 135.8 (d, ³*J*_{CF} = 5 Hz), 135.4 (d, ¹*J*_{CF} = 334 Hz), 130.2 (d, ⁴*J*_{CF} = 2 Hz), 129.7, 129.6, 129.5, 128.5, 128.2, 116.8 (²*J*_{CF} = 5 Hz), 115.9 (²*J*_{CF} = 25 Hz), 100.3 (⁴*J*_{CF} = 4 Hz), 98.8. **EA** calcd for C₈H₅BrFI: C 29.39; H 1.54, found: C 29.47; H 1.52.

2-(2-Bromo-2-fluoroethenyl)phenyl trifluoromethanesulfonate (1i)

The title compound was prepared from the reaction of 2-formylphenyl trifluoromethanesulfonate, which was obtained from the following method.

A 50 mL two-necked flask under argon was charged with salicylaldehyde (1.02 g, 8.35 mmol), CH₂Cl₂ (20 mL), Et₃N (1.71 g, 0.0169 mol) and the solution was stirred at room temperature for 10 min. The reaction mixture was cooled to 0 °C. Then, Tf₂O (1.71 mL, 11.9 mmol) was added dropwise over 10 min. The reaction mixture was stirred for 10 min at 0 °C while being monitored by TLC (hexane/EtOAc = 9:1). Then, the reaction was quenched by NaHCO₃ aq. (20 mL). The aqueous layer was extracted with CH₂Cl₂ (20 mL). The organic layer was washed with 1 M HCl (25 mL), and the aqueous layer was again extracted with CH₂Cl₂ (20 mL). The combined organic layer was washed with brine (20 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. Automated column chromatography (hexane/EtOAc = 9:1) afforded 2-formylphenyl trifluoromethanesulfonate (1.55 g, 6.11 mmol, 75% yield) as yellow oil.

The data are in agreement with those reported in the literature.⁷

¹**H NMR** (62 MHz, CDCl₃, rt): δ 10.3 (s, 1H; CO*H*), 8.08-7.43 (4H; Ar-*H*). ¹⁹**F NMR** (58 MHz, CDCl₃): δ − 70.9 (s; OSO₂C*F*₃).

According to the general procedures A, the use of PPh₃ (3.09 g, 11.7 mmol), CFBr₃ (1.60 g, 5.91 mmol), THF (24.0 mL), and 2-formylphenyl trifluoromethanesulfonate (1.42 g, 5.59 mmol) under conditions A (80 °C, 24 h) and conditions B (80 °C, 3 days) afforded **1i** as a colorless liquid (0.245 g, 1.14 mmol, 27% yield, E/Z = 61:39). Column eluent: hexane.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.75-7.68 (Ar-*H*), 7.43–7.30 (Ar–*H*), 6.70 (d, ³*J*_{HF} = 12 Hz; *H*C=CBrF in *Z* isomer), 6.21 (d, ³*J*_{HF} = 32 Hz; *H*C=CBrF in *E* isomer). ¹⁹**F NMR** (376 MHz, CDCl₃): δ –60.4 (d, ³*J*_{HF} = 11 Hz; HC=CBrF in *Z* isomer), -64.0 (d, ³*J*_{HF} = 30 Hz; HC=CBrF in *E* isomer), -73.3 (s; C*F*₃SO₂O in *E* isomer), -73.4 (s; C*F*₃SO₂O in *Z* isomer). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 147.2 (d, ⁴*J*_{CF} = 3 Hz), 145.9, 138.8 (d, ¹*J*_{CF} = 321 Hz), 136.8 (d, ¹*J*_{CF} = 335 Hz), 130.9 (d, ⁴*J*_{CF} = 2 Hz), 130.5 (d, ⁴*J*_{CF} = 11 Hz), 130.1, 129.7, 128.7, 128.5, 126.1 (d, ³*J*_{CF} = 8 Hz), 125.9 (d, ³*J*_{CF} = 5 Hz), 121.90, 121.88, 118.7 (q, ¹*J*_{CF} = 304 Hz; 2C), 105.7 (d, ²*J*_{CF} = 27 Hz), 105.4 (d, ²*J*_{CF} = 6 Hz). **EA** calcd for C₉H₅BrF₄SO₃: C 30.97; H 1.44, found: C 30.66; H 1.34.

2-(2-Bromo-2-fluoroethenyl)-1,3-dimethylbenzene (1j)

According to the general procedures A, the use of PPh₃ (5.98 g, 22.8 mmol), CFBr₃ (2.89 g, 11.7 mmol), THF (48.0 mL), and 2,6-dimethylbenzaldehyde (1.57 g, 11.7 mmol) under conditions A (80 °C, 24 h) and conditions B (80 °C, 3 days) afforded **1j** as a colorless liquid (1.11 g, 4.83 mmol, 42% yield, E/Z = 57:43). Column eluent: hexane. Further purification by recycling preparative HPLC (GPC) afforded the analytically pure product.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.19–7.06 (Ar–*H*), 6.54 (d, ³*J*_{HF} = 12 Hz; *H*C=CBrF in *Z* isomer), 6.05 (d, ³*J*_{HF} = 36 Hz; *H*C=CBrF in *E* isomer), 2.30 (s; *CH*₃ in *E* isomer), 2.28 (s; *CH*₃ in *Z* isomer). ¹⁹**F NMR** (376 MHz, CDCl₃): δ –66.1 (d, ³*J*_{HF} = 34 Hz; *E* isomer), -68.5 (d, ³*J*_{HF} = 11 Hz; *Z* isomer). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 137.5 (d, ¹*J*_{CF} = 321 Hz), 137.0 (d, ⁴*J*_{CF} = 3 Hz), 136.8, 132.1 (d, ¹*J*_{CF} = 326 Hz), 131.1 (d, ³*J*_{CF} = 7 Hz), 131.0, 128.2, 128.1, 127.6 (2C), 111.1 (d, ²*J*_{CF} = 12 Hz), 109.7 (d, ²*J*_{CF} = 20 Hz), 20.5 (d, *J*_{CF} = 2 Hz), 20.3. **HRMS** (APPI) calcd m/z for [C₁₀H₁₀BrF]⁺ 227.9944, found 227.9946 [M]⁺.

General procedures for NMR experiment (Table 1)

An NMR tube was charged with photocatalyst (0.0120 mmol). Then, **1a** (72.1 mg, 0.224 mmol), deuterated solvent (0.50 mL in total), and an internal standard, $C_6H_5CF_3$ (0.00300 mmol) or dimethyl sulfone (0.00300 mmol) were added under Ar atmosphere and the mixture was degassed by three freeze-pump-thaw cycles. The tube was placed at a distance of -1 cm away from LED lamps (λ = 425 nm) under wind blowing. The reaction was carried out under visible light irradiation at room temperature (25 – 27°C) and monitored by NMR spectroscopy.

Figure S1. ¹⁹F NMR spectra (58 MHz) of the photocatalytic isomerization of **1a** using Ir-1 in CD₃CN.

Procedures for isomerization reactions of 1 (Table 2)

Photocatalytic isomerization of **1a** (R^1 , $R^2 = H$, $R^3 = Br$, $R^4 = H$)

Reaction mixture of Ir-1 (0.0122 g, 0.0122 mmol), **1a** (E/Z = 60:40) (0.0753 g, 0.269 mmol), benzotrifluoride (0.00741 g, 0.00507 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (26 – 27 °C) attained to E/Z = 16:84 in 2 h in 93% NMR yield.

For preparative-scale spectral data of Z-1a, see page S27.

Photocatalytic isomerization of **1b** ($R^1 = MeO, R^2, R^3, R^4 = H$)

Reaction mixture of Ir-1 (0.0210 g, 0.0210 mmol), **1b** (E/Z = 51:49) (0.0610 g, 0.260 mmol), dimethyl sulfone (0.00388 g, 0.00412 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (26– 27 °C) attained to E/Z = 29:71 in 2 h in 95% NMR yield.

Photocatalytic isomerization of **1c** ($R^1 = CF_3$, R^2 , R^3 , $R^4 = H$)

Reaction mixture of Ir-1 (0.0250 g, 0.0250 mmol), **1c** (E/Z = 53:47) (0.0601 g, 0.220 mmol), dimethyl sulfone (0.00357 g, 0.00379 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (26 – 27 °C) attained to E/Z = 30:70 in 2 h in 91% NMR yield.

Photocatalytic isomerization of **1d** ($R^1 = Ph$, R^2 , R^3 , $R^4 = H$)

Reaction mixture of Ir-1 (0.0120 g, 0.0120 mmol), **1d** (E/Z = 60:40) (0.0604 g, 0.217 mmol), dimethyl sulfone (0.00387 g, 0.00411 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (26 – 27 °C) attained to E/Z = 36:64 in 2 h in 94% NMR yield.

Photocatalytic isomerization of **1e** ($R^1 = H$, $R^2 = MeO$, R^3 , $R^4 = H$)

Reaction mixture of Ir-1 (0.0120 g, 0.0120 mmol), **1e** (E/Z = 47:53) (0.0550 g, 0.238 mmol), benzotrifluoride (0.00640 g, 0.00438 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (26 – 27 °C) attained to E/Z = 35:65 in 2 h in 91% NMR yield.

Photocatalytic isomerization of 1f

Reaction mixture of Ir-1 (0.0121 g, 0.0121 mmol), **1f** (E/Z = 50:50) (0.0617 g, 0.246 mmol), benzotrifluoride (0.00820 g, 0.00561 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (26 – 27 °C) attained to E/Z = 40:60 in 2 h in 94% NMR yield.

Photocatalytic isomerization of **1g** (R^1 , $R^2 = H$, $R^3 = Me$, $R^4 = H$)

Reaction mixture of Ir-1 (0.0130 g, 0.0130 mmol), **1g** (E/Z = 64:36) (0.0530 g, 0.246 mmol), benzotrifluoride (0.00251 g, 0.00172 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (25 – 26 °C) attained to E/Z =17:83 in 2 h in 92% NMR yield.

Photocatalytic isomerization of **1h** (R^1 , $R^2 = H$, $R^3 = I$, $R^4 = H$)

Reaction mixture of Ir-1 (0.0250 g, 0.0250 mmol), **1h** (E/Z = 44:56) (0.0754 g, 0.234 mmol), benzotrifluoride (0.00632 g, 0.00433 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (26–27 °C) attained to E/Z =10:90 in 2 h in 95% NMR yield.

For preparative-scale spectral data of *Z*-1h, see page S36.

Photocatalytic isomerization of **1i** (R^1 , $R^2 = H$, $R^3 = TfO$, $R^4 = H$)

Reaction mixture of Ir-1 (0.0130 g, 0.0130 mmol), **1i** (E/Z = 61:39) (0.0871 g, 0.249 mmol), benzotrifluoride (0.00255 g, 0.00176 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (25 – 26 °C) attained to E/Z = 14:86 in 2 h in 94% NMR yield.

For preparative-scale spectral data of Z-1i, see page S42.

Photocatalytic isomerization of **1**j (R^1 , $R^2 = H$, R^3 , $R^4 = Me$)

Reaction mixture of Ir-1 (0.0160 g, 0.0160 mmol), **1j** (E/Z = 57:43) (0.0581 g, 0.254 mmol), benzotrifluoride (0.00250 g, 0.00170 mmol), and CD₃CN (0.5 mL) under visible light irradiation at room temperature (25 – 26 °C) attained to E/Z = <5:>99 in 22 h in 94% NMR yield.

For preparative-scale spectral data of Z-1j, see page S48.

Figure S2. ¹⁹F NMR spectra (58 MHz) of the photocatalytic isomerization of 1j.

A 100 mL-Schlenk tube was charged with [Ir{dF(CF₃)ppy}₂(dtbbpy)](PF₆) (11 mg, 9.8 µmol), **1i** (1.47 g, 4.20 mmol), C₆H₅CF₃ (internal standard) (0.155 g) and dry MeCN (25.0 mL) under Ar. The reaction mixture was evacuated and refilled with Ar three times. The flow reactor was purged with N₂. Then, the reaction mixture was placed in a disposal syringe (50 mL), and pumped into the flow reactor (DFC: 2.7 mm in diameter, 65 cm in length x 15 \rightarrow volume 56 mL). The flow reactor was irradiated with blue LED lamps (h_V = 405 nm) at 10 °C. Monitoring the reaction by in-line ¹⁹F NMR spectroscopy confirmed the photostationary state. The product mixture was concentrated *in vacuo*. Without further purification, the residue was applied to the next reaction (see S15).

Figure S3. In-line ¹⁹F NMR spectra (58 MHz) of the photocatalytic isomerization of **1i**.

Synthetic procedures and characterization for fluorinated 5*H*-dibenz[*b*,*f*]azepine (4) (Figure 2)

The title compound was prepared from the reaction of (*E*)-2-(2-(2-aminophenyl)-2-fluorovinyl)phenyl trifluoromethanesulfonate (*E*-**3a**), which was obtained from the following method.

A 50 mL two-necked flask was charged with Pd(PPh₃)₄ (0.177 g, 0.153 mmol), K₂CO₃ (0.594 g, 4.30 mmol), 1i (0.508 g, 1.45 mmol), which was obtained by the photocatalytic isomerization (see S14), toluene (15 mL), nitrogen bubbled EtOH/H₂O = 1:1 (6 mL), 2a (0.174 g, 1.27 mmol) under Ar. The solution was refluxed for 22 h. Then, the reaction was guenched by H₂O (10 mL). The agueous layer was extracted with Et₂O (10 m L \times 3). The organic layer was washed with H₂O (10 mL \times 3) and brine (10 mL × 3), dried over MgSO₄, filtered, and concentrated *in vacuo*. Automated column chromatography (hexane/EtOAc = 8:2) afforded **3a** (0.345 g, 0.955 mmol, 58% yield, *E*/*Z* = 64:36) as yellow oil. ¹**H NMR** (400 MHz, CDCl₃, rt): δ 8.02 (apparent dd; Ar–*H*), 7.42–6.66 (Ar–*H*), 6.58 (d, ³*J*_{HF} = 20 Hz; *H*C=CF in *E* isomer), 6.31(d, ${}^{3}J_{HF}$ = 40 Hz; *H*C=CF in *Z* isomer), 4.04 (br. s; N–*H*). ¹⁹**F NMR** (376 MHz, CDCl₃): δ −73.3 (CF₃SO₂O in *E* isomer), −73.4 (CF₃SO₂O in *Z* isomer), −84.2 (d, ³J_{HF} = 19 Hz), −98.2 (d, ${}^{3}J_{HF}$ = 38 Hz). ${}^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃): 160.1 (d, ${}^{1}J_{CF}$ = 266 Hz), 160.0 (d, ${}^{1}J_{CF}$ = 257 Hz), 147.2 $(d, J_{CF} = 4 Hz), 146.6, 145.2, 145.0, 131.8 (d, J_{CF} = 3 Hz), 131.4, 131.1 (d, J_{CF} = 13 Hz), 130.9 (d, J_{CF} = 3 Hz), 130.9 (d, J_{CF} =$ Hz), 130.3, 129.1 (d, J_{CF} = 6 Hz), 129.0, 128.8, 129.6, 128.3, 127.7 (d, J_{CF} = 13 Hz), 127.5 (d, J_{CF} = 3 Hz), 121.7, 121.6, 118.80 (q, ${}^{1}J_{CF}$ = 321 Hz), 118.75 (q, ${}^{1}J_{CF}$ = 321 Hz), 118.5, 118.2, 117.5 (d, J_{CF} = 25 Hz), 116.9, 116.3, 115.8 (d, $J_{CF} = 25$ Hz), 103.9 (d, ${}^{2}J_{CF} = 37$ Hz), 100.8 (d, ${}^{2}J_{CF} = 10$ Hz). HRMS (APCI) calcd m/z for [C14H10FN+H]⁺ 212.0870, found 212.0871 [M+H]⁺.

A 30 mL two-necked flask was charged with **3a** (0.255 g, 0.706 mmol), $Pd(OAc)_2$ (0.00670 g, 0.0298 mmol), XPhos (0.0207 g, 0.0434 mmol), NaO*t*Bu (0.111 g, 1.14 mmol), toluene (0.5 mL) under Ar. The solution was stirred at 100 °C for 24 h. Then, the reaction was diluted with ethyl acetate (5 mL). The organic layer was washed with NaHCO₃ (10 mL × 3), dried over MgSO₄, filtered, and concentrated *in vacuo*. Automated column chromatography (hexane/EtOAc = 85:15) afforded **4** (0.0212 g, 0.100 mmol, 14% yield) as a yellow solid.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.27 (d, *J*_{HH} = 8 Hz, 1H; Ar–*H*), 7.17 (apparent td, 1H; Ar–*H*), 7.06 (m, 1H; Ar–*H*), 6.93 (apparent br. t, 1H; Ar–*H*), 6.90 (d, *J*_{HH} = 4 Hz, 2H; Ar–*H*), 6.59 (apparent br. t, 2H; Ar–*H*), 6.27 (d, ³*J*_{HF} = 20 Hz, 1H; *H*C=CF), 5.10 (br. s, 1H; N–*H*). ¹⁹**F NMR** (376 MHz, CDCl₃): δ –102.5 (d, ³*J*_{HF} = 19 Hz). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): 158.0 (d, ¹*J*_{CF} = 248 Hz), 148.7 (d, *J*_{CF} = 7 Hz), 146.4, 131.5, 130.2 (d, *J*_{CF} = 4 Hz), 129.1, 126.24, 126.17 (d, *J*_{CF} = 7 Hz), 124.7 (d, ²*J*_{CF} = 29 Hz), 123.8, 123.0, 119.7, 119.68 (d, *J*_{CF} = 3 Hz), 111.5 (d, ²*J*_{CF} = 31 Hz). **HRMS** (APCI) calcd m/z for [C₁₄H₁₀FN+H]⁺ 212.0870, found 212.0871 [M+H]⁺.

Pot-economical procedures and characterization for monofluoroalkenes (3b-e) (Scheme 2)

General procedures for photocatalytic isomerization: A Schlenk tube was charged with Ir-1 (5.0 mol%). To the tube, **1j** (1.0 equiv.) and CH₃CN were added under Ar atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The tube was placed at a distance of -1 cm away from LED lamps (λ = 425 nm) under wind blowing. The reaction was carried out under light irradiation for 24 h at room temperature (25 – 27°C). After then, the solution was concentrated *in vacuo*. The isomer ratio was confirmed by ¹⁹F NMR spectroscopy. The residue was applied to the following transition-metal-catalyzed reactions without any purification.

2-((Z)-2-Bromo-2-fluoroethenyl)-1,3-dimethylbenzene (Z-1j)

A reaction mixture of Ir-1 (0.0213 g 0.0211 mmol), **1j** (0.0721 g, 0.315 mmol), CH₃CN (1.50 mL) in a 10 mL Schlenk tube afforded *Z*-enriched **1j** (E/Z = 5:95).

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.2-7.1 (3H; Ar–*H*), 6.52 (d, ³*J*_{HF} = 8 Hz, 1H; *H*C=CBrF), 2.26 (s, 6H; C*H*₃). ¹⁹**F NMR** (376 MHz, CDCl₃): δ –68.6 (d, ³*J*_{HF} = 11 Hz). ¹³C{¹H} NMR (101 MHz, CDCl₃): 137.5 (d, ¹*J*_{CF} = 322 Hz), 137.1 (d, *J*_{CF} = 3 Hz), 131.2 (d, *J*_{CF} = 6 Hz), 128.2, 127.6, 126.1 (d, ²*J*_{CF} = 19 Hz), 20.3.

2-((*E*)-2-Fluoro-2-phenylethenyl)-1,3-dimethylbenzene (**3b**)

A reaction mixture of Ir-1 (0.0213 g 0.0211 mmol), **1**j (0.0721 g, 0.315 mmol), CH₃CN (1.50 mL) in a 10 mL Schlenk tube afforded *Z*-enriched **1**j (E/Z = 5:95), which was confirmed by ¹⁹F NMR spectroscopy (58 MHz).

The tube was charged with $Pd(PPh_3)_4$ (0.0562 g, 0.0486 mmol), K_2CO_3 (0.119 g, 0.861 mmol), toluene (4.00 mL), N₂-bubbled mixed solvent (EtOH:H₂O = 1:1, 2.00 mL), phenylboronic acid (**2b**) (0.0776 g,

0.636 mmol) under Ar. The reaction mixture was stirred for 22 h at reflux. Then, the reaction was quenched by H₂O (10 mL). The aqueous layer was extracted with Et₂O (10 mL × 3). The organic layer was washed with H₂O (10 mL × 3) and brine (10 mL × 3), dried over MgSO₄, filtered, and concentrated *in vacuo*. Automated column chromatography afforded **3b** as a white solid (0.0430 g, 0.191 mmol, 61% yield, E/Z = 96:4). Column eluent: hexane.

¹**H** NMR (400 MHz, CDCl₃, rt): δ 7.3-7.1 (8H; Ar–*H*), 6.42 (d, ³*J*_{HF} = 20 Hz, 1H; *H*C=CF), 2.24 (s, 6H; C*H*₃). ¹⁹**F** NMR (376 MHz, CDCl₃): δ –105.8 (d, ³*J*_{HF} = 23 Hz). ¹³C{¹H} NMR (101 MHz, CDCl₃): 156.6 (d, ¹*J*_{CF} = 245 Hz), 136.9 (d, *J*_{CF} = 2 Hz), 132.4, 132.36 (d, ²*J*_{CF} = 41 Hz), 129.1, 128.4 (d, *J*_{CF} = 2 Hz), 127.9, 127.6, 126.1 (d, *J*_{CF} = 7 Hz), 106.8 (d, ²*J*_{CF} = 29 Hz), 20.5. HRMS (APPI) calcd m/z for [C₁₆H₁₅F]⁺ 226.1152, found 226.1151 [M]⁺.

2-((1E,3E)-2-Fluoro-4-phenylbuta-1,3-dien-1-yl)-1,3-dimethylbenzene (3c)

A reaction mixture of Ir-1 (0.0221 g 0.0219 mmol), **1j** (0.0801 g, 0.349 mmol), CH₃CN (1.45 mL) in a 10 mL Schlenk tube afforded *Z*-enriched **1j** (E/Z = 5:95), which was confirmed by ¹⁹F NMR spectroscopy (58 MHz).

The tube was charged with $Pd(PPh_3)_4$ (0.0542 g, 0.0469 mmol), Cs_2CO_3 (0.259 g, 1.34 mmol), potassium *trans*-styryltrifluoroborate (**2c**) (0.105 g, 0.499 mmol), toluene (3 mL), N₂-bubbled H₂O (1 mL) under Ar. The reaction mixture was stirred for 23 h at 80 °C. Then, the reaction was quenched by H₂O (5 mL). The aqueous layer was extracted with Et₂O (5 mL × 3). The organic layer was washed with H₂O (5 mL × 3) and brine (5 mL × 3), dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Automated column chromatography afforded **3c** as a white solid (0.0565 g, 0.224 mmol, 64% yield, *EE/other stereoisomers* = 95:5). Column eluent: hexane/EtOAc = 99:1.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.5–7.2 (8H; Ar–*H*), 7.11 (d, ³*J*_{HH} = 20 Hz, 1H; HC=C*H*Ph), 6.38 (dd, ³*J*_{HF} = 24 Hz, ³*J*_{HH} = 16 Hz; CF-*H*C=CHPh), 6.32 (br. d, ³*J*_{HF} = 20 Hz, 1H; *H*C=CF), 2.40 (s, 6H; C*H*₃). ¹⁹**F NMR** (376 MHz, CDCl₃): δ –117.5 (dd, ³*J*_{HF} = 19 Hz, ³*J*_{HF} = 26 Hz). ¹³**C**{¹**H**} **NMR** (101 MHz, CDCl₃): 157.1 (d, ¹*J*_{CF} = 248 Hz), 137.5 (d, *J*_{CF} = 3 Hz),136.2, 132.0 (d, *J*_{CF} = 12 Hz), 131.0 (d, *J*_{CF} = 4 Hz), 128.8, 128.6, 127.7, 127.6, 127.1, 117.1 (d, ²*J*_{CF} = 23 Hz),, 108.5 (d, ²*J*_{CF} = 27 Hz), 20.9. **HRMS** (APPI) calcd m/z for [C₁₈H₁₇F]⁺ 252.1309, found 252.1306 [M]⁺.

2-((*E*)-2-Fluoro-4-(4-methoxyphenyl)but-1-en-3-yn-1-yl)-1,3-dimethylbenzene (**3d**)

A reaction mixture of Ir-1 (0.0231 g 0.0229 mmol), **1j** (0.104 g, 0.453 mmol), CH₃CN (1.45 mL) in a 10 mL Schlenk tube afforded *Z*-enriched **1j** (E/Z = 5:95), which was confirmed by ¹⁹F NMR spectroscopy (58 MHz).

The tube was charged with $PdCl_2(PPh_3)_2$ (0.0161 g, 0.00229 mmol), CuI (0.00780 g, 0.0410 mmol), 4ethynylanisole (**2d**) (0.0881 g, 0.661 mmol), Et₃N (0.500 mL) under Ar. The reaction mixture was stirred for 48 h at room temperature. Then, the reaction was quenched by H₂O (5 mL). The aqueous layer was extracted with Et₂O (10 mL). The organic layer was washed with brine (10 mL × 3), dried over MgSO₄, filtered, and concentrated *in vacuo*. Automated column chromatography afforded **3d** as a clear green solid (0.0731 g, 0.292 mmol, 64% yield, *E/Z* = 88:12). Column eluent: hexane/EtOAc = 9/1.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.5-6.8 (Ar-*H*), 6.57 (d, ${}^{3}J_{HF}$ = 12 Hz; *H*C=CF in *E* isomer), 6.22 (d, ${}^{3}J_{HF}$ = 36 Hz; *H*C=CF in *Z* isomer), 3.84 (s; OCH₃ in *Z* isomer), 3.79 (s; OCH₃ in *E* isomer), 2.35 (s; CH₃ in *E* isomer), 2.32 (br. s; CH₃ in *Z* isomer). ¹⁹**F NMR** (376 MHz, CD₃CN): δ -99.7 (d, ${}^{3}J_{HF}$ = 38 Hz; in *Z* isomer), -102.3 (d, ${}^{3}J_{HF}$ = 11 Hz; in *E* isomer). ¹³**C**{¹**H**} **NMR** (101 MHz, CDCl₃): δ 160.5, 143.1 (d, ${}^{1}J_{CF}$ = 237 Hz), 137. 4 (d, J_{CF} = 2 Hz), 133.4 (d, J_{CF} = 2 Hz), 131.1 (d, J_{CF} = 8 Hz), 127.7, 127.5, 114.8 (d, ${}^{2}J_{CF}$ = 30 Hz), 114.2, 113. 5 (d, J_{CF} = 2 Hz), 95.7 (d, ${}^{3}J_{CF}$ = 7 Hz), 79.3 (d, ${}^{2}J_{CF}$ = 43 Hz), 55.5, 20.7. **HRMS** (APCI) calcd m/z for [C₁₉H₁₇FO+H]⁺ 281.1336, found 281.1334 [M+H]⁺.

Methyl (2E,4Z)-5-(2,6-dimethylphenyl)-4-fluoropenta-2,4-dienoate (3e)

A reaction mixture of Ir-1 (0.0221 g 0.0219 mmol), **1j** (0.104 g, 0.454 mmol), CH₃CN (1.45 mL) in a 10 mL Schlenk tube afforded *Z*-enriched **1j** (E/Z = 5:95), which was confirmed by ¹⁹F NMR spectroscopy (58 MHz).

The tube was charged with PdOAc₂ (0.00210 g, 0.0102mmol) and DMF (5 mL) under Ar. The mixture was stirred for 15 min at room temperature. Then, to the mixture, K_2CO_3 (0.167 g, 1.21 mmol), Bu_4NCI

(0.121 g, 0.437 mmol), and methyl acrylate (**2e**) (0.227 g, 3.78 mmol) were added under Ar. The reaction mixture was stirred for 24 h at room temperature. After then, the mixture was concentrated *in vacuo*. Automated column chromatography afforded **3e** as a light brown liquid (0.0098 g, 0.0418 mmol, 9% yield, *EZ/other isomers* = 98:2). Stereochemistry was determined by coupling constants and NOESY. Column eluent: hexane/EtOAc = 9/1.

¹**H NMR** (400 MHz, CDCl₃, rt): δ 7.26 (dd, ³*J*_{HH} = 16 Hz, ³*J*_{HF} = 24 Hz, 1H; CFC*H*), 7.14 (m, 1H; Ar-*H*), 7.06 (d, ³*J*_{HH} = 8 Hz, 2H; Ar-*H*), 6.24 (apparent dt, ³*J*_{HH} = 16 Hz; HC=C*H*CO), 6.16 (d, ³*J*_{HF} = 40 Hz; *H*C=CF), 3.81 (s, 3H; OC*H*₃), 2.26 (apparent d, 6H; C*H*₃). ¹⁹**F NMR** (376 MHz, CD₃CN): δ –115.3 (dd, ³*J*_{HF} = 38 Hz, 26 Hz). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 167.0, 154.4 (d, ¹*J*_{CF} = 258 Hz), 137.0, 136.0 (d, *J*_{CF} = 24 Hz), 130.7, 128.2, 127.6, 119.1, 115.8 (d, *J*_{CF} = 16 Hz), 52.1, 20.6 (d, *J*_{CF} = 2 Hz). **HRMS** (APCI) calcd m/z for [C₁₄H₁₅FO₂+H]⁺ 235.1129, found 235.1129 [M+H]⁺.

DFT calculation studies (Figure 1)

Quantum chemical calculations were performed by using Gaussian 16, Revision C.02 program package.⁸ The geometry optimizations were carried out at the BLYP/def2-TZVP^{9,10} level of theory. Gibbs free energies were calculated as a sum of the single-point electronic energy and thermal correction to the Gibbs free energy. Singlet and triplet excitation energies were calculated with TD-DFT using the BLYP functional.

(1) Optimized structure of E-1j

С	-3.99140	-0.20040	0.17050
С	-3.17380	-1.31060	-0.04060
С	-1.78880	-1.17370	-0.23720
С	-1.22320	0.12870	-0.21090
С	-2.05700	1.26590	-0.01840
С	-3.43210	1.08030	0.17580
Н	-5.06250	-0.33030	0.32100
Н	-3.61300	-2.30780	-0.06720
Н	-4.06850	1.95080	0.33510
С	1.24630	-0.16790	0.23630
С	-1.47900	2.66800	-0.00220
Н	-0.68960	2.77450	0.75480
Н	-1.02860	2.93640	-0.97010
Н	-2.25950	3.40660	0.21370
С	-0.96290	-2.41770	-0.50130
Н	-0.18950	-2.24110	-1.25930
Н	-0.44960	-2.76400	0.40650
Н	-1.60460	-3.23520	-0.85090
Br	3.09810	0.18630	-0.11080
F	1.09400	-1.02900	1.26710

Table S1. Cartesian coordinates and electronic energies after geometry optimization of E-1j

С	0.22520	0.36900	-0.44020
Н	0.50470	1.09940	-1.19840

Sum of electronic and zero-point Energies=	-3060.919544 hartree
Sum of electronic and thermal Energies=	-3060.907238 hartree
Sum of electronic and thermal Enthalpies=	-3060.906294 hartree
Sum of electronic and thermal Free Energies=	-3060.959344 hartree

Table S2 TDDFT-calculated vertical excitation energies of *E*-1j (BLYP/def2-TZVP).

First triplet excitation

Excited State	1:	3.3565 eV (323.86 kJ/mol)	369.39 nm	f=0.0000	<s**2>=2.000</s**2>
55 -> 61		-0.11330			
56 -> 60		-0.16662			
57 -> 58		0.66399			
57 -> 59		-0.12539			

First singlet excitation

Excited State 4:	4.3283 eV (417.62 kJ/mol)	286.45 nm	f=0.0117	<s**2>=0.000</s**2>
56 -> 58	0.60170			
56 -> 59	0.12622			
57 -> 58	0.12955			
57 -> 59	0.16968			
57 -> 60	0.26027			

(2) Optimized structure of Z-1j

Table S3. Cartesian coordinates and electronic e	energies after geometry o	ptimization of Z-1j
--	---------------------------	---------------------

С	3.41520	0.42200	-0.70930
С	2.65160	1.45060	-0.15400
С	1.42860	1.18400	0.48310
С	0.97230	-0.15630	0.54730
С	1.75060	-1.20840	0.00110
С	2.96650	-0.89820	-0.62710
Н	4.36170	0.64780	-1.19930
Н	3.00810	2.47930	-0.20660
Н	3.56430	-1.70310	-1.05460
С	1.28500	-2.64950	0.08060
Н	2.01820	-3.32090	-0.38120
Н	1.14120	-2.97420	1.12160
Н	0.32300	-2.79320	-0.43050
С	0.63510	2.32540	1.09030
Н	-0.28850	2.52150	0.52790
Н	0.33820	2.10950	2.12540
Н	1.22680	3.24840	1.09140
С	-0.30140	-0.49070	1.24760
Н	-0.24520	-0.91150	2.25690
С	-1.54000	-0.36700	0.76940
F	-2.62830	-0.70890	1.50310
Br	-2.03930	0.26870	-0.96440

Sum of electronic and zero-point Energies=	-3060.918090 hartree
Sum of electronic and thermal Energies=	-3060.905602 hartree
Sum of electronic and thermal Enthalpies=	-3060.904658 hartree

Sum of electronic and thermal Free Energies= -3060.958956 hartree

Table S4 TDDFT-calculated vertical excitation energies of Z-1j (BLYP/def2-TZVP).

First triplet excitation

Excited State	1:	3.7499 eV (361.81 kJ/mol)	330.63 nm	f=0.0000	<s**2>=2.000</s**2>
55 -> 58		-0.11776			
55 -> 61		-0.16352			
56 -> 58		0.48655			
56 -> 59		-0.20833			
56 -> 60		-0.13693			
57 -> 58		-0.13744			
57 -> 59		0.10065			
57 -> 60		-0.33136			
57 -> 61		-0.10758			

First singlet excitation

Excited State	4:	4.5345 eV (437.52 kJ/n	nol)	273.42 nm	f=0.0039	<s**2>=0.000</s**2>
56 -> 58		0.11594				
56 -> 60		0.14338				
57 -> 58		0.56168				
57 -> 59		0.36777				
57 -> 61		-0.10765				

(3) Optimized structure of the biradical intermediate

Table S5. Cartesian coordinates and electronic energies after geometry optimization of the biradical intermediate

С	3.63640	0.95620	-0.46300
С	2.50580	1.75620	-0.26430
С	1.25980	1.21490	0.05880
С	1.13050	-0.22350	0.19420
С	2.31430	-1.04210	-0.02520
С	3.52680	-0.43500	-0.34130
Н	4.59350	1.41180	-0.71260
Н	2.59380	2.83780	-0.36360
Н	4.40560	-1.05940	-0.50010
С	2.27360	-2.55370	0.08270
Н	3.26470	-2.97330	-0.12290
Н	1.97250	-2.88950	1.08580
Н	1.56890	-3.00110	-0.63330
С	0.10560	2.17380	0.25180
Н	-0.72360	1.96780	-0.43690
Н	-0.30250	2.12710	1.26870
Н	0.44050	3.20160	0.07150
С	-0.06800	-0.91130	0.54600
Н	0.00690	-1.99840	0.57460
С	-1.42820	-0.48110	0.82190
F	-1.68760	0.33070	1.88750
Br	-2.69060	-0.15220	-0.63970

Sum of electronic and zero-point Energies=

-3060.840031 hartree

Sum of electronic and thermal Energies=	-3060.827494 hartree
Sum of electronic and thermal Enthalpies=	-3060.826549 hartree
Sum of electronic and thermal Free Energies=	-3060.881199 hartree

References

1. (a) D. J. Burton, *J. Fluorine Chem.*, 1983, **23**, 339-357. (b) X. Lei, G. Dutheuil, X. Pannecoucke and J.-C. Quirion, *Org. Lett.*, 2004, **6**, 2101-2104.

2. A. V. Shastin, V. M. Muzalevsky, E. S. Balenkova and V. G. Nenajdenko, *Mendeleev Commun.*, 2006, **16**, 178-180.

3. X. Lei, G. Dutheuil, X. Pannecoucke and J.-C. Quirion, Org. Lett., 2004, 6, 2101-2104.

4. S, Morand, W. Lecroq, P. Jubault, S. Lakhdar and J. P. Bouillon, Org. Lett., 2022, 24, 8343-8347.

5. S. Morand, W. Lecroq, P. Jubault, S. Lakhdar, J.-P. Bouillon and S. C. Bonnaire, *Org. Lett.*, 2022, **24**, 8343-8347.

6. G. Hirai, E. Nishizawa, D. Kakumoto, M. Morita, M. Okada, D. Hashizume, S. Nagashima and M. Sodeoka, *Chem. Lett.*, 2015, **44**, 1389-1391.

7. A. T. Krasley, W. P. Malachhoeski, H. M. Trtz and S. T. Tien, Org. Lett., 2018, 20, 1740-1743.

Gaussian 16, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
(a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100. (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.

10. L. Goerigk and S. Grimme. J. Chem. Theory Comput., 2011, 7, 291-309.

NMR spectra

Z-enriched 1-bromo-2-(2-bromo-2-fluoroethenyl)benzene (1a) (Z-1a) ¹H NMR (400 MHz, CDCl₃, rt)

4-(2-Bromo-2-fluoroethenyl)-1,1'-biphenyl (1d) ¹H NMR (400 MHz, CDCl₃, rt)

4-(2-Bromo-2-fluoroethenyl)-1,1'-biphenyl (**1d**) ¹⁹F NMR (376 MHz, CDCl₃, rt)

2979-----

2829--

6279--

-68.2 -68.0 -67.8 -67.6 -67.4 -67.2 -67.0 -66.8 -66.6 -66.4 -66.2 -66.0 -65.8 -65.6 -65.4 -65.2 -65.0 -64.8 -64.6 -64.4 -64.2 -64.0 -63.8 -63.6

4-(2-Bromo-2-fluoroethenyl)-1,1'-biphenyl (1d) ^{13}C {¹H} (101 MHz, CDCl₃, rt)

- 2

8

8

- Q

8

8

2

8

8

-<mark>8</mark>

-₽

120

- 130

-6

- 12

- 8

-<u></u>2

1-(2-Bromo-2-fluoroethenyl)-2-iodobenzene (1h) ¹H NMR (400 MHz, CDCl₃, rt)

1-(2-Bromo-2-fluoroethenyl)-2-iodobenzene (1h) ¹⁹F NMR (376 MHz, CDCl₃, rt)

2

ล

8

Ş

8

8

Z-enriched 1-(2-bromo-2-fluoroethenyl)-2-iodobenzene (Z-1h) 19 F NMR (376 MHz, CDCl₃, rt)

-2

8-

8

\$

2-(2-Bromo-2-fluoroethenyl)phenyl trifluoromethanesulfonate (1i) 1 H NMR (400 MHz, CDCl₃, rt)

2

ล

8

Z-enriched 2-(2-bromo-2-fluoroethenyl)phenyl trifluoromethanesulfonate (Z-1i) ¹H NMR (400 MHz, CDCl₃, rt)

Z-enriched 2-(2-bromo-2-fluoroethenyl)phenyl trifluoromethanesulfonate (Z-1i) $^{19}{\rm F}$ NMR (376 MHz, CDCl₃, rt)

Z-enriched 2-(2-bromo-2-fluoroethenyl)phenyl trifluoromethanesulfonate (Z-1i) ^{13}C {¹H} (101 MHz, CDCl₃, rt)

-2

8

8

-9

2-(2-Bromo-2-fluoroethenyl)-1,3-dimethylbenzene (**1**j) ¹H NMR (400 MHz, CDCl₃, rt)

2-(2-Bromo-2-fluoroethenyl)-1,3-dimethylbenzene (**1**j) 19 F NMR (376 MHz, CDCl₃, rt)

2-(2-Bromo-2-fluoroethenyl)-1,3-dimethylbenzene (1j) ^{13}C { ^{1}H } (101 MHz, CDCl3, rt)

2-((*Z*)-2-Bromo-2-fluoroethenyl)-1,3-dimethylbenzene (*Z*-1j) 1 H NMR (400 MHz, CDCl₃, rt)

2-((*Z*)-2-Bromo-2-fluoroethenyl)-1,3-dimethylbenzene (*Z*-1j) ^{13}C {¹H} (101 MHz, CDCl₃, rt)

2-(2-(2-Aminophenyl)-2-fluorovinyl)phenyl trifluoromethanesulfonate (3a) 1 H NMR (400 MHz, CDCl₃, rt)

2-(2-(2-Aminophenyl)-2-fluorovinyl)phenyl trifluoromethanesulfonate (**3a**) ^{19}F NMR (376 MHz, CDCl₃, rt)

2-(2-(2-Aminophenyl)-2-fluorovinyl)phenyl trifluoromethanesulfonate (3a) ^{13}C {^1H} (101 MHz, CDCl_3, rt)

2

ิล

8

ş

8

8

2

8

8

-8

8

8

-8

-9

2

-9

2

_ 2

2-((*E*)-2-Fluoro-2-phenylethenyl)-1,3-dimethylbenzene (**3b**) ¹H NMR (400 MHz, CDCl₃, rt)

2-((*E*)-2-Fluoro-2-phenylethenyl)-1,3-dimethylbenzene (**3b**) 19 F NMR (376 MHz, CDCl₃, rt)

08111----

08301->

0.0 -100.5 -101.0 -101.5 -102.0 -102.5 -104.0 -104.5 -105.0 -105.5 -106.0 -106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5

2-((1*E*,3*E*)-2-Fluoro-4-phenylbuta-1,3-dien-1-yl)-1,3-dimethylbenzene (**3c**) 1 H NMR (400 MHz, CDCl₃, rt)

2-((1*E*,3*E*)-2-Fluoro-4-phenylbuta-1,3-dien-1-yl)-1,3-dimethylbenzene (**3c**) ^{13}C {¹H} (101 MHz, CDCl₃, rt)

2-((*E*)-2-Fluoro-4-(4-methoxyphenyl)but-1-en-3-yn-1-yl)-1,3-dimethylbenzene (**3d**) 1 H NMR (400 MHz, CDCl₃, rt)

2-((*E*)-2-Fluoro-4-(4-methoxyphenyl)but-1-en-3-yn-1-yl)-1,3-dimethylbenzene (**3d**)

2-((*E*)-2-Fluoro-4-(4-methoxyphenyl)but-1-en-3-yn-1-yl)-1,3-dimethylbenzene (**3d**) ^{13}C {¹H} (101 MHz, CDCl₃, rt)

Methyl (2*E*,4*Z*)-5-(2,6-dimethylphenyl)-4-fluoropenta-2,4-dienoate (**3e**) 1 H NMR (400 MHz, CDCl₃, rt)

Methyl (2*E*,4*Z*)-5-(2,6-dimethylphenyl)-4-fluoropenta-2,4-dienoate (**3e**) ^{13}C {¹H} (101 MHz, CDCl₃, rt)

Methyl (2*E*,4*Z*)-5-(2,6-dimethylphenyl)-4-fluoropenta-2,4-dienoate (**3e**) NOESY

Fluorinated 5*H*-dibenz[*b*,*f*]azepine (**4**) ¹H NMR (400 MHz, CDCl₃, rt)

Fluorinated 5*H*-dibenz[*b*,*f*]azepine (**4**) ¹⁹F NMR (376 MHz, CDCl₃, rt)

> -105'20T-99'20T->

-120 -115 -110 -105 -100 -95 -6 -% -8--75 -2--<u>S</u> -9 -52 -50 Fluorinated 5*H*-dibenz[*b*,*f*]azepine (4) $^{13}C {^{1}H} (101 \text{ MHz}, \text{CDCI}_3, \text{ rt})$

.2

8

.8