Electronic Supplementary Information (ESI)

Continuous-Flow Synthesis of Carboxylic Acids from Alcohols via Platinum and Silicon Dioxide-Catalyzed Hydrogen Peroxide Oxidation

Yoshihiro Kon,^{*,a} Takuya Nakashima,^a Yoshiki Makino,^b Shun-ya Onozawa,^a

Hiroyuki Miyamura,^a Shū Kobayashi, *,a,c and Kazuhiko Sato, *,a

^aInterdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

^bEnvironmental Management Research Institute, National Institute of Advanced Industrial Science and

Technology (AIST), AIST Tsukuba West, 16-1, Onogawa, Tsukuba, Ibaraki 305-8569, Japan.

^eDepartment of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Contents

1.	Screening of WHSVs by changing the flow rate	S2
2.	Optimization of the reaction conditions	S3
3.	H ₂ O ₂ oxidation of 1a using a batch reactor	S4
4.	Continuous flow oxidation of 1a for 210 hours	S5
5.	Continuous flow oxidation of furfuryl alcohol	S6
6.	XRD and SEM data of the spent Pt + SiO ₂ catalyst	S7
7.	LA-ICP-MS analyses	S8
8.	Optimization of the amounts of H ₂ O ₂	S10
9.	XPS analyses of Pt black catalyst	S11
10.	NMR Spectra	S12

1. Screening of WHSVs by changing the flow rate

Table S1. WHSVs and the yields of octanoic acid (2a) and octyl aldehyde (3a) by screening of flow rate

Fig. S1. Plots of WHSVs and the yields of octanoic acid (2a) and octyl aldehyde (3a) by screening of flow rate

2. Optimization of the reaction conditions

Table S2. Screening of 1-octanol (1a) concentration based on the oxidation of 1a

Table S3. Screening of reaction temperature based on the oxidation of 1a

Table S4. Use of 100 mm or 50 mm column length based on the oxidation of 1a

3. H_2O_2 oxidation of 1a using a batch reactor

4. Continuous flow oxidation of 1a for 210 hours

Table S5. Continuous-flow H₂O₂ oxidation of 1a for 210 hours

															OH					
		\bigcap	<u>~</u>	`он	P 0.20	ump ml/n	nin	Back	c pres	ssure	(0.6	MPa) →[\frown	\checkmark	ò				
		in <i>t-4</i> (0.1 H ₂ (6	1a Amyl(mol/ O ₂ ac wt%	DH ′L) q)	Pur —(0.25	np ♪	nin		Cata Pt bla SiO ₂ D = 5 100 n 90 °C	lyst c ack (1 (880 5 mm nm le	olum 20 m mg) ngth	n — ıg) +] (+ + ~	2a	Õ				
Time (h)	0.25	0.5	1	2	3	4	5	6	8	10	12	14	16	18	20	22	24	26	28	30
Conv. of 1a (%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Yieldof 3a	0	0	0	0	0	0	0	0	0	0	0.4	0.5	0.6	0.7	0.7	0.9	0.9	0.9	1	1
Yield of 2a	97	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	97	98
Time (h)	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130
Conv. of 1a (%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Yieldof 3a	1	1	1	2	0.4	0.8	1	1	1	1	1	1	2	0.3	0.5	0.6	0.9	1	1	1
Yield of 2a	97	97	96	96	97	97	97	97	97	97	98	98	97	98	98	98	98	98	98	98
Time (h)	135	140	145	150	155	160	165	170	175	180	185	190	195	200	205	210	205	210		
Conv. of 1a (%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		
Yieldof 3a	1	1	1	0	0.3	0.4	0.5	1	1	0.7	0.6	0.7	0.8	0.7	0.4	0.4	0.7	1		
Yield of 2a	97	97	96	98	98	98	98	97	97	98	98	98	98	98	98	98	98	98		

Fig. S2. Long-term recyclability of Pt and SiO₂ catalyst column for the continuous-flow H₂O₂ oxidation of 1a

5. Continuous-flow H_2O_2 oxidation of furfuryl alcohol

Table S6. Continuous-flow H_2O_2 oxidation of furfuryl alcohol

$\begin{array}{c c} 0 & Pt \\ \hline 0 & 0.20 \\ \hline 10d \\ \text{in } t\text{-AmylOH} \\ (0.1 \text{ mol/L}) & Pun \\ H_2O_2 \text{ aq.} & \hline 0.20 \\ (6 \text{ wt\%}) & 0.20 \end{array}$	mp Back p ml/min Ca Pt SiC ID 100 ml/min 40	ressure (0.8 MPa) talyst column black (120 mg) + O_2 (80 mg) = 5 mm 0 mm length °C	12	+ , , , , , , , , , , , , , , , , , , ,		
Time (h)	Conv. of 10d (%)	Yield of 12 (%)	Yield of 11d (%)	Yield of 13 (%)		
0.25	>99	16	0	69		
0.5	>99	16	0	78		
1	>99	19	0	79		
Average	>99	17	0	75		

6. XRD and SEM data of the spent Pt + SiO₂ catalyst

Fig. S3. X-ray diffraction (XRD) data of Pt black (blue line), SiO_2 (green line) and the spent catalyst (red line) after the continuous-flow H_2O_2 oxidation of **1a** for 1 h

SEM-EDS mappings

Fig. S4. Scanning electron microscope (SEM) image and the SEM-Energy dispersive X-ray spectroscopy (SEM-EDS) mappings of Pt black with SiO₂ in the catalyst column before the oxidation.

7. LA-ICP-MS analyses

Table S7. Continuous-flow H₂O₂ oxidation of 1a at WHSV 15.6 used for LA-ICP-MS analyses

Reaction conditions: 40 mg of Pt black, 860 mg of SiO₂, 0.4 mol/L alcohol in *t*-AmylOH solution, 6wt% aq. H₂O₂, 90 °C, 0.20 ml/min for organic phase and 0.25 ml/min for water phase. ^{*a*}Determined by GC analysis based on alcohol.

Fig. S5. Correlation between the leaching amounts of Pt and the yields of 2a and 3a.

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) combined with a dried spot method was used for the determination of leaching amount of platinum from the platinum catalyst. The details of the analytical method were described in our previous paper (ref 16 in the manuscript). The LA system (Jupiter -solid nebulizer-, STJapan, Japan) and ICP-MS (iCAP Q, Thermo Fisher Scientific, Germany) were connected using PFA tubing with an inner diameter of 4 mm. Platinum stock solution (Platinum Standard

Solution (Pt 1000), FUJIFILM Wako Chemicals, Japan) and guaranteed hydrochloric acid (Ultrapure HCl, Kanto Chemicals, Japan) were used for the preparation of the calibration solutions. The HCl solution was diluted to 1 mol/L by ultra-pure water (18.2 M Ω cm) generated from Milli-Q element module (Merck Millipore, Germany). The 0.2 µl sample and calibration solutions were spotted onto pure cellulose paper (Whatman cellulose chromatography paper 1 Chr, cytiva, USA) by micropipette. The cellulose paper was heated and completely evaporate the solvent by dryer and analyzed by LA-ICP-MS. The operating parameters for LA-ICP-MS are shown in Table S8.

Table S8. Operating parameters for LA-ICP-MS

Laser ablation (Jupiter -solid nebulizer-, STJapan, Japan)						
Wavelength	257	nm				
Pulse width	290	fs				
Spot size	10	μm				
Laser power	100	mW				
Repetition rate	60	kHz				
Ablation area	5	mm (square)				
Pitch	5	μm				
Raster speed	80	mm/s				
Ablation time	68	S				

ICP-MS (iCAP Q, Thermo Fisher Scientific, Germany)

RF power	1550	W				
Cooling gas	14	l/min				
Auxiliary gas	0.75	l/min				
Sampling depth	5	mm				
He carrier gas	0.6	l/min				
Ar make up gas	0.6	l/min				
Mode		no gas				
Data acquisition		TRA				
Dwell time	0.1	s/isotope				
Integration time	120	S				
Isotopes	¹³ C (Internal standard), ¹⁹⁵ Pt					
Cone		Ni				

8. Optimization of the amounts of H_2O_2

Table S9. Screening of the amounts of H_2O_2 at the continuous-flow H_2O_2 oxidation of 1a

Table S10. Screening of the amounts of $\mathrm{H_2O_2}$ at the continuous-flow $\mathrm{H_2O_2}$ oxidation of 1a

9. XPS analyses of Pt black catalyst

Fig. S6. XPS analyses of Pt black in the catalyst column before (red line) and after (blue line) the reaction.

10. NMR Spectra

The NMR spectroscopic data of the synthesized compounds 2a-11c agreed well with the ¹H NMR and ¹³C NMR data reported by the production through another methods.

1-Octanoic acid (**2a**):^(a) 93% yield (0.63 g, 4.40 mmol, pale yellow oil), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 2.35 (t, J = 7.4 Hz, 2H), 1.67-1.60 (m, 2H), 1.33-1.28 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 180.4, 34.1, 31.1, 29.0, 28.9, 24.7, 22.6, 14.0.

1-Hexanoic acid (**2b**):^(a) 91% yield (0.50 g, 4.28 mmol, colorless oil), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 2.35 (t, *J* = 7.4 Hz, 2H), 1.68-1.61 (m, 2H), 1.34-1.31 (m, 4H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 180.5, 34.1, 31.2, 24.3, 22.3, 13.8.

1-Decanoic acid (**2c**):^(b) 97% yield (0.79 g, 4.57 mmol, colorless oil), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 2.35 (t, J = 7.5 Hz, 2H), 1.67-1.60 (m, 2H), 1.35-1.27 (m, 12H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 180.4, 34.1, 31.8, 29.4, 29.2, 29.0, 24.7, 22.6, 14.1.

4-Methoxybenzoic acid (**5a**):^(a) 95% yield (0.08 g, 0.55 mmol, colorless solid), ¹H NMR (400 MHz, DMSO, 25 °C, TMS): δ 12.61 (s, 1H), 7.92-7.88 (m, 2H), 7.04-7.00 (m, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, DMSO, 25 °C, TMS): δ 166.9, 162.8, 131.3, 122.9, 113.8, 55.4.

4-Methylbenzoic acid (**5b**):^(a) 95% yield (0.08 g, 0.56 mmol, colorless solid), ¹H NMR (400 MHz, DMSO, 25 °C, TMS): δ 12.77 (s, 1H), 7.85-7.83 (m, 2H), 7.31-7.29 (m, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, DMSO, 25 °C, TMS): δ 167.3, 143.0, 129.3, 129.1, 128.0, 21.1.

Benzoic acid (**5c**):^(a) 98% yield (0.14 g, 1.18 mmol, colorless solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 8.14-8.12 (m, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 172.3, 133.8, 130.2, 129.3, 128.5.

4-Chlorobenzoic acid (**5d**):^(a) 96% yield (0.09 g, 0.57 mmol, colorless solid), ¹H NMR (400 MHz, DMSO, 25 °C, TMS): δ 13.16 (s, 1H), 7.96-7.94 (m, 2H), 7.58-7.56 (m, 2H); ¹³C NMR (100 MHz, DMSO, 25 °C, TMS): δ 166.4, 137.8, 131.1, 129.6, 128.7.

4-Bromobenzoic acid (**5e**):^(a) 86% yield (0.10 g, 0.51 mmol, colorless solid), ¹H NMR (400 MHz, DMSO, 25 °C, TMS): δ 13.17 (s, 1H), 7.88-7.86 (m, 2H), 7.73-7.70 (m, 2H); ¹³C NMR (100 MHz, DMSO, 25 °C, TMS): δ 166.6, 131.7, 131.2, 130.0, 126.8.

4-(Trifluoromethyl)benzoic acid (**5f**):^(a) 89% yield (0.10 g, 0.51 mmol, colorless solid), ¹H NMR (400 MHz, DMSO, 25 °C, TMS): δ 13.48 (s, 1H), 8.16-8.13 (m, 2H), 7.89-7.87 (m, 2H); ¹³C NMR (100 MHz, DMSO, 25 °C, TMS): δ 166.2, 134.6, 132.6, 132.3, 130.1, 125.6, 125.5, 125.1, 122.4.

3-Methoxybenzoic acid (**5g**):^(a) 95% yield (0.08 g, 0.55 mmol, colorless solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 7.74-7.71 (m, 1H), 7.64-7.63 (m, 1H), 7.38 (t, *J* = 7.9 Hz, 1H), 7.18-7.15 (m, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 172.1, 159.6, 130.6, 129.5, 122.7, 120.5, 114.4, 55.5.

2-Methoxybenzoic acid (**5h**):^(a) 44% yield (0.04 g, 0.26 mmol, colorless solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 8.18 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.60-7.56 (m, 1H), 7.16-7.12 (m, 1H), 7.08-7.06 (m, 1H), 4.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 165.4, 158.1, 135.0, 133.8, 122.2, 117.6, 111.7, 56.7.

3,4-Dimethoxybenzoic acid (**5i**):^(a) 95% yield (0.10 g, 0.56 mmol, colorless solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 7.78 (dd, J = 8.4, 2.0 Hz, 1H), 7.61 (d, J = 2.0 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 3.96 (s, 3H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 172.9, 153.8, 148.7, 124.6, 121.7, 112.3, 110.3, 56.1, 56.0.

(E)-Cinnamic acid (**7a**):^(a) 89% yield (0.15 g, 1.03 mmol, pale yellow solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 7.80 (d, *J* =16.0 Hz, 1H), 7.57-7.55 (m, 2H), 7.42-7.40 (m, 3H), 6.47 (d, *J* =16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 172.4, 147.1, 134.0, 130.7, 129.0, 128.4, 117.3.

2-Methyl-3-phenyl-2-propenoic acid (**7b**):^(a) 67% yield (0.06 g, 0.38 mmol, colorless solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 7.84 (d, *J* =1.2 Hz, 1H), 7.45-7.32 (m, 5H), 2.15 (d, *J* =1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 174.3, 141.1, 135.6, 129.8, 128.7, 128.4, 127.6, 13.7.

(*E*)-2-Octenoic acid (7c):^(c) 60% yield (0.05 g, 0.35 mmol, colorless oil), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 7.13-7.05 (m, 1H), 5.82 (d, *J* = 15.6 Hz, 1H), 2.26-2.20 (m, 2H), 1.51-1.44 (m, 2H), 1.35-1.28 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 172.1, 152.5, 120.6, 32.3, 31.3, 27.5, 22.4, 13.9.

Phenoxyacetic acid (**9**):^(a) 91% yield (0.33 g, 2.15 mmol, colorless solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 8.28 (br, 1H), 7.33-7.29 (m, 2H), 7.03-7.00 (m, 1H), 6.94-6.91 (m, 1H), 4.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 174.2, 157.4, 129.7, 122.1, 114.6, 64.8.

2-Pyridinecarboxylic acid (**11a**):^(a) 98% yield (0.07 g, 0.57 mmol, colorless solid), ¹H NMR (400 MHz, DMSO, 25 °C, TMS): δ 13.08 (br, 1H), 8.72-8.70 (m, 1H), 8.07-8.04 (m, 1H), 8.01-7.97 (m, 1H), 7.65-7.61 (m, 1H); ¹³C NMR (100 MHz, DMSO, 25 °C, TMS): δ 166.1, 149.4, 148.3, 137.5, 127.0, 124.6.

4-Pyridinecarboxylic acid (**11b**):^(a) 98% yield (0.07 g, 0.56 mmol, colorless solid), ¹H NMR (400 MHz, DMSO, 25 °C, TMS): δ 13.63 (br, 1H), 8.78 (dd, J = 4.4, 2.0 Hz, 2H), 7.82 (dd, J = 4.4, 1.6 Hz, 2H); ¹³C NMR (100 MHz, DMSO, 25 °C, TMS): δ 166.2, 150.6, 138.1, 122.7.

2-Thiophenecarboxylic Acid (**11c**):^(d) 18% yield (0.03 g, 0.22 mmol, colorless solid), ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ 7.91-7.89 (m, 1H), 7.66-7.64 (m, 1H), 7.14 (dd, J = 5.0, 3.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ 167.5, 135.0, 134.0, 132.8, 128.1.

Ref). (a) SDBSWeb: https://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, Dec. 14, 2021); (b) C. J. Pouchert and J. Behnke, *The Aldrich Library of*¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 1, Aldrich Chemical, Milwaukee, 1993, 754-B; (c) C. J. Pouchert and J. Behnke, *The Aldrich Library of*¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 1, Aldrich Chemical, Milwaukee, 1993, 780-B; (d) C. J. Pouchert and J. Behnke, *The Aldrich Library of*¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 1, Aldrich Chemical, Milwaukee, 1993, 780-B; (d) C. J. Pouchert and J. Behnke, *The Aldrich Library of*¹³C and ¹H FT NMR Spectra, 1st ed. Vol. 3, Aldrich Chemical, Milwaukee, 1993, 59-A.

1-Octanoic acid (2a)

¹H NMR (400MHz, CDCl₃, 25 °C)

4-Methoxybenzoic acid (5a)

4-Methylbenzoic acid (5b) ¹H NMR (400MHz, DMSO, 25 °C)

Benzoic acid (5c)

-S20-

4-(Trifluoromethyl)benzoic acid (5f)

(E)-cinnamic acid (7a)

¹H NMR (400MHz, CDCl₃, 25 °C)

2-Methyl-3-phenyl-2-propenoic acid (7b)

¹H NMR (400MHz, CDCl₃, 25 °C)

-S28-

2-Pyridinecarboxylic acid (11a)

¹H NMR (400MHz, DMSO, 25 °C)

