Supporting information

Se–S dynamic exchange reaction: a strategy of highly efficient S–S bond cleavage for synthesizing benzothiazole derivatives

Tian-Xing Zhang,*‡ Er-Wei Zhang,‡ Wen-Yue Zhang, Zihao Zhao, Qingxiang Guo and Ning Zhu*

College of Chemical Engineering, Inner Mongolia University of Technology Inner Mongolia Engineering Research Center for CO₂ Capture and Utilization Key Laboratory of CO₂ Resource Utilization at Universities of Inner Mongolia Autonomous Region Hohhot 010051, China

E-mail: txzhang@imut.edu.cn E-mail: zhuning@imut.edu.cn

[‡]These authors contributed equally to this work.

Table of Contents

1. General remarks	2
2. MS spectrometry of Na ₂ Se-disulfide interchange reaction	3
3. The exchange efficiency of selenium or sulfur to facilitate the cleavage of	f S–S
bonds	5
4. General procedure for the synthesis of benzothiazole derivatives	7
5. Characterization data for all products	8
6. ¹ H, ¹³ C, and ¹⁹ F-NMR spectra of compounds 2a-m , 4a-4q	14
7. Reference	51

1. General remarks

All reagents were used without further purification, which were purchased from Aladdin and Energy Chemical. All reactions were performed in clean glassware with magnetic stirring. Chromatographic purification was carried out on silica gel ($200 \sim 300$ mesh) and analytical thin layer chromatography (TLC). Melting points were measured with an SGC X-4 microscopic melting point meter. The ¹H, ¹³C, and ¹⁹F-NMR spectra were obtained on an Agilent 500 MHz DD2 spectrometer. The NMR results were processed using MestReNova software. All ESI-MS experiments were carried out on a 6545 QTOF mass spectrometer (Agilent Technologies).

Fig. S1 (a) MS spectra of a) intermediate A (2-aminobenzenethiolate), b) intermediate B, c) intermediate C, d) intermediate E. Reaction conditions: 2,2'-disulfanediyldianiline 1a (0.2 mmol), Na₂Se (0.2 mmol) were added in EtOH (2.5 ml), stirred under an Ar atmosphere at room temperature for 20 min and the reaction mixture was analyzed by ESI-MS.

3. The exchange efficiency of selenium or sulfur to facilitate the cleavage of S–S bonds

The ¹H NMR spectrum of a mixture containing 2,2'-disulfanediyldianiline (1a, 0.1 mmol, 25 mg) and sodium selenite (Na₂Se, 0.05 mmol, 6.3 mg) in deuterated methanol (0.5 mL) was recorded after the mixture was introduced into the NMR tube, as depicted in Fig. S2a. Similarly, the ¹H NMR spectrum of a mixture solution composed of 1a (0.1 mmol, 25 mg) and potassium sulfide (K₂S, 0.05 mmol, 5.5 mg) in deuterated methanol (0.5 mL) was also acquired and was illustrated in Fig. S2b. 1a, 2-aminobenzenethiolate and several intermediates were found in the dynamic interchange reaction between disulfide and Na₂Se or K₂S. Notably, the total aromatic hydrogen on the benzene ring remained unchange during the dynamic interchange reaction between disulfide and Na₂Se or K₂S. Given that all the hydrogens on the benzene ring originate from disulfides, the total count of benzene ring hydrogens can be correlated with the molar amount of disulfides involved in the reaction. According to Scheme 2, it is clear that the peak labeled "a" corresponds to one hydrogen of 2-aminobenzenethiolate. To determine the relative amount of 2-aminobenzenethiolate, we set the integral area of the "a" peak to 1.00 and then multiplied this value by 4 to represent the equivalent molar amount of 2-aminobenzenethiolate. Therefore, the relative amount of 2aminobenzenethiolate can be calculated as four divided by the total integral area of all aromatic hydrogen signals.

According to this calculation method, we could calculate the relative amount of 2aminobenzenethiolate in the reaction solution of 1a and Na_2Se from Fig. S2a.

(1.00*4)/(2.13+1.14+2.04+2.32+1.00)*100%=46.3%

According to this calculation method, we could calculate the relative amount of 2aminobenzenethiolate in the reaction solution of **1a** and K_2S from **Fig. S2b**.

(1.00*4)/(2.74+11.23+6.75+10.78+5.04+7.82+1)*100% = 8.8%

Fig. S2a The integral area of the aromatic hydrogen signals in ¹H NMR spectra about the reaction solution of 1a and Na_2Se in deuterated methanol.

Fig. S2b The integral area of the aromatic hydrogen signals in ¹H NMR spectra about the reaction solution of 1a and K_2S in deuterated methanol.

4. General procedure for the synthesis of benzothiazole derivatives

2,2'-Disulfanediyldianiline or its corresponding derivatives **1** (0.4 mmol), CS₂ (1.6 mmol), and Na₂Se (0.04 mmol) were added in EtOH (2.5 mL), and stirred under an Ar atmosphere at 60 °C for 10 h. The reaction mixture was acidified by dilute hydrochloric acid (3 mol L⁻¹) and extracted with CH₂Cl₂, or EtOAc. The organic layers were dried over anhydrous MgSO₄. After filtering to remove the MgSO₄, the solvent was removed under reduced pressure. The residue was then purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the pure products **2**.

2,2'-Disulfanediyldianiline or its corresponding derivatives 1 (0.4 mmol), 3 (0.8 mmol), and Na₂Se (0.04 mmol) were added in DMF (2.5 mL), and stirred under an Ar atmosphere at 100 °C for 10 h. The reaction mixture was then washed with aqueous sodium bisulfite solution to remove the excess aldehyde and extracted with CH_2Cl_2 . The organic layers were dried over anhydrous MgSO₄. After filtering to remove the MgSO₄, the solvent was removed under reduced pressure. The residue was then purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the pure products **4**.

5. Characterization data for all products

2-Mercaptobenzothiazole 2a¹

Solution Isolated as a white solid (132 mg, 99% yield). Mp: 182–183 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 13.74 (brs, 1H), 7.77 (d, 1H, J =10.0 Hz), 7.38 (t, 1H, J = 5.0 Hz), 7.31-7.24 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 190.3, 141.7, 129.8, 127.6, 124.6, 122.2, 112.9.

6-Chlorobenzo[d]thiazole-2-thiol 2b¹

^{CI} S S Isolated as a white solid (147 mg, 91% yield). Mp: 239–241 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 14.04 (brs, 1H), 7.46-7.40 (m, 2H), 7.28 (d, 1H, J = 5.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 190.6, 140.7,

131.5, 129.0, 127.7, 121.9, 114.0.

6-Fluorobenzo[d]thiazole-2-thiol 2c²

Final Soluted as a white solid (144 mg, 97% yield). Mp: 205–209 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 13.80 (brs, 1H), 7.67 (dd, 1H, $J_I = 10.0$ Hz, $J_2 = 5.0$ Hz), 7.31–7.24 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 190.4, 159.6 (d, 1C, J = 239.4 Hz), 138.5, 131.3 (d, 1C, J = 12.6 Hz), 115.2 (d, 1C, J = 25.2 Hz), 113.9 (d, 1C, J = 12.6 Hz), 109.4, (d, 1C, J = 37.8 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ (ppm) -116.34 ~ -116.38 (m, 1F).

6-Methylbenzo[d]thiazole-2-thiol 2d¹

S S H I Isolated as a white solid (139 mg, 96% yield). Mp: 179–181 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 13.67 (brs, 1H), 7.49 (s, 1H), 7.20 (s, 2H), 2.34 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 189.6, 139.7, 134.2, 129.9, 128.5, 122.0, 112.6, 21.2.

6-Methoxybenzo[d]thiazole-2-thiol 2e¹

4-Chlorobenzo[d]thiazole-2-thiol 2f²

Isolated as a white solid (157 mg, 97% yield). Mp: 207 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 13.97 (brs, 1H), 7.66 (d, 1H, J = 5.0 Hz), 7.46 (d, 1H, J = 10.0 Hz), 7.28 (t, 1H, J = 5.0 Hz). ¹³C NMR (126

MHz, DMSO-d₆): δ (ppm) 188.3, 157.2, 127.5, 125.5, 125.4, 113.5, 120.8.

4-Fluorobenzo[*d*]thiazole-2-thiol 2g¹

Isolated as a white solid (145 mg, 98% yield). Mp: 205–209 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 13.75 (brs, 1H),7.66 (d, 1H, *J* = 5.0 Hz), 7.31-7.23 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm)

190.3, 159.6 (d, 1C, J = 239.4 Hz), 138.8, 131.4 (d, 1C, J = 12.6 Hz), 115.1 (d, 1C, J = 25.2 Hz), 114.0 (d, 1C, J = 12.6 Hz), 109.3 (d, 1C, J = 37.8 Hz). ¹⁹F NMR (470 MHz, DMSO-d₆): δ (ppm) -118.25 (s, 1F).

6-Bromobenzo[d]thiazole-2-thiol 2h¹

Br S H Isolated as a white solid (177 mg, 90% yield). Mp: 265–266 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 13.85 (brs, 1H), 7.98 (s, 1H), 7.56 (d, 1H, J = 5.0 Hz), 7.22 (d, 1H, J = 10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 190.5, 141.1, 131.9, 130.4, 124.6, 116.8, 114.3.

5,6-Dimethylbenzo[d]thiazole-2-thiol 2i

SHIsolated as a primrose yellow solid (141 mg, 90% yield). Mp: 109–
110 °C. HRMS (ESI): m/z, Calcd for $C_9H_9NS_2$ [M-H]- 194.0104,
Found 194.0104. ¹H NMR (500 MHz, DMSO-d_6): δ (ppm) 13.61 (brs, 1H), 7.44 (s,
1H), 7.10 (s, 1H), 2.26 (d, 6H, J = 15.0 Hz). ¹³C NMR (126 MHz, DMSO-d_6): δ (ppm)
189.6, 140.0, 136.4, 133.5, 126.9, 122.2, 113.3, 20.0, 19.8.

Naphtho[2,3-d] thiazole-2-thiol 2j³

Isolated as a primrose yellow solid (147 mg, 92% yield). Mp: 240 °C. HRMS (ESI): m/z, Calcd for $C_{11}H_7NS_2$ [M-H]⁻ 215.9947, Found 215.9949. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 14.40 (brs, 1H), 8.59 (d, 2H, J = 10.0 Hz), 8.05 (d, 1H, J = 10.0 Hz), 7.69-7.62 (m, 3H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 174.7, 153.4, 140.9, 132.2, 130.1, 128.9, 127.9 (2C), 127.1 (2C), 110.0.

5-(Trifluoromethyl) benzo[d]thiazole-2-thiol 2k¹

CF₃ **SH** Isolated as a white solid (173mg, 92% yield). Mp: 248–250 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 14.05 (brs, 1H), 7.95 (d, 1H, J = 5.0 Hz), 7.64 (d, 1H, J = 5.0 Hz), 7.49 (s, 1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 191.5, 142.0, 134.6, 128.1 (d, 1C, J=37.8 Hz), 124.4 (d, 1C, J=277.2 Hz), 121.0 (d, 1C, J=12.6 Hz), 109.1 (dd, 1C, $J_1=8.8$ Hz, $J_2=5.0$ Hz). ¹⁹F NMR (470 MHz, DMSO-d₆): δ (ppm) -60.68 (s, 3F).

6-(Methylsulfonyl) benzo[d]thiazole-2-thiol 2l¹

Solute as a white solid (177 mg, 90% yield). Mp: 243–244 °C. ¹H **NMR** (500 MHz, DMSO-d₆): δ (ppm) 14.12 (brs, 1H), 8.32 (s, 1H), 7.91 (d, 1H, *J*= 10.0 Hz), 7.46 (d, 1H, *J*= 10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 192.6, 136.7, 136.6, 130.7, 126.8, 121.9, 113.1, 44.4.

5-(Nitro) benzo[d]thiazole-2-thiol 2m

Isolated as a white solid (246 mg, 91% yield). Mp: 155–157 °C. O_2N MS (ESI): m/z, Calcd for $C_7H_3N_2S_2O_2$ [M-H]⁻ 210.9641, Found 210.9645 ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 14.16 (brs, 1H), 8.13 (d, 1H, J= 10.0 Hz), 7.97 (d, 2H, J= 10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 192.0, 147.0, 142.1, 137.7, 123.2, 119.2, 107.3.

2-Phenylbenzo[d]thiazole 4a⁴

S N Isolated as a primrose yellow solid (160 mg, 95% yield). Mp: 107-108 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.16 (d, 1H, *J* = 5.0 Hz), 8.11-8.07 (m, 3H), 7.59-7.54 (m, 4H), 7.48 (t, 1H, *J* = 10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 167.8, 154.0, 134.9, 133.3, 131.9, 129.9(2C), 127.7(2C), 127.1, 126.0, 123.4, 122.8.

6-Chloro-2-phenylbenzo[d]thiazole 4b⁵

^{CI} Isolated as a primrose yellow solid (153 mg, 78% yield). Mp: 160–161 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.16-8.1 (m, 3H), 7.67-7.65 (m, 1H), 7.62-7.59 (m, 3H), 7.47 (t, 1H, J = 5.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 169.0, 150.7, 136.6, 132.9, 132.3, 130.0(2C), 127.9 (2C), 127.2, 127.0, 126.9, 122.0.

6-Fluoro-2-phenylbenzo[*d*]thiazole 4c⁶

Isolated as a white solid (147 mg, 80% yield). Mp: 137–138 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.10-8.05 (m, 4H), 7.59

(d, 3H, J = 5.0 Hz), 7.42 (t, 1H, J = 10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 167.9, 160.3 (d, 1C, J = 252.0 Hz), 150.9, 136.1 (d, 1C, J = 12.6 Hz), 133.1, 131.9, 129.9, 127.6, 124.7 (d, 1C, J = 12.6 Hz), 115.6 (d, 1C, J = 25.2 Hz), 109.3 (d, 1C, J = 37.8 Hz). ¹⁹F NMR (470 MHz, DMSO-d₆): δ (ppm) -115.63 ~ -115.68 (m, 1F).

6-Methyl-2-phenylbenzo[d]thiazole 4d⁶

Isolated as a white solid (155 mg, 86% yield). Mp: 126–127 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.08-8.07 (m, 2H), 7.95-7.94 (m, 3H), 7.58-7.56 (m, 2H), 7.37 (d, 1H, J = 10.0 Hz), 2.47 (s, 1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 166.6, 152.2, 135.8, 135.1, 133.4, 131.7, 129.8 (2C), 128.6, 127.5 (2C), 122.9, 122.3, 21.5.

6-Methoxy-2-phenylbenzo[d]thiazole 4e⁵

Isolated as a primrose yellow solid (158 mg, 82% yield). Mp: 116–117 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.05-8.03 (m, 2H), 7.95 (d, 1H), 7.72 (d, 1H), 7.57-7.55 (m, 3H), 7.14 (d, 1H, J = 10.0 Hz), 3.85 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 165.1, 158.0, 148.5, 136.5, 133.5, 131.4, 129.8 (2C), 127.3 (2C), 123.9, 116.4, 105.3, 56.2.

2-(4-Clorophenyl)benzo[d]thiazole 4f⁴

2-(4-Bromophenyl)benzo[d]thiazole 4g⁴

Isolated as a white solid (186 mg, 80% yield). Mp: 126–128 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.17 (d, 1H, J = 5.0Hz), 8.09-8.04 (m, 3H), 7.80-7.78 (m, 2H), 7.57 (t, 1H, J = 5.0 Hz), 7.50 (t, 1H, J =10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 166.6, 153.9, 135.0, 132.9 (2C),

132.5, 129.5 (2C), 127.3, 126.2, 125.3, 123.4, 122.9.

2-(4-Fluorophenyl)benzo[d]thiazole 4h⁴

Isolated as a white solid (158mg, 86% yield). Mp: 102–105 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.18-8.15 (m, 3H), 8.07 (d, 1H, J = 5.0 Hz), 7.56 (t, 1H, J = 5.0 Hz), 7.49-7.41 (m, 3H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 166.5, 164.3 (d, 1C, J = 252.0 Hz), 154.0, 135.0, 130.1 (d, 2C, J = 12.6 Hz), 130.0 (d, 1C, J = 3.3 Hz), 127.2, 126.0, 123.3, 122.9, 117.0 (d, 2C, J = 12.6Hz). ¹⁹F NMR (470 MHz, DMSO-d₆): δ (ppm) -108.84 ~ -108.90 (m, 1F).

4-(Benzo[d]thiazol-2-yl)benzonitrile 4i⁴

Isolated as a white solid (174 mg, 92% yield). Mp: 169–171 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.29 (d, 2H, J = 5.0Hz), 8.22 (d, 1H, J = 10.0 Hz), 8.14 (d, 1H, J = 5.0 Hz), 8.05 (d, 2H, J = 10.0 Hz), 7.50 (t, 1H, J = 10.0 Hz), 7.53 (t, 1H, J = 10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 165.8, 153.9, 137.9, 135.4, 133.8 (2C), 128.3 (2C), 127.5, 126.7, 123.1, 118.8, 113.8. **2-(4-Nitrophenyl)benzo**[*d*]thiazole 4j⁷

 $\begin{array}{l} \textbf{S} \\ \textbf{N} \\ \textbf$

3-(4-Methoxyphenyl)benzo[d]thiazole 4k4

Isolated as a white solid (174 mg, 90% yield). Mp: 121–122 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.10 (d, 1H, J = 5.0Hz), 8.04-7.99 (m, 3H), 7.51 (t, 1H, J = 5.0 Hz), 7.42 (t, 1H, J = 5.0 Hz), 7.11 (d, 2H, J = 10.0 Hz), 3.84 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 167.5, 162.2, 154.1, 134.7, 129.3 (2C), 127.0, 126.0, 125.6, 122.9, 122.7, 115.2 (2C), 56.0.

4-(Benzo[d]thiazol-2-yl)phenol 4l⁴

Hz), 7.40 (t, 1H, *J* = 10.0 Hz), 6.93 (d, 2H, *J* = 10.0 Hz). ¹³C NMR (126 MHz, DMSOd₆): δ (ppm) 167.9, 161.0, 154.2, 134.5, 129.5 (2C), 126.9, 125.4, 124.5, 122.7, 122.6, 116.5 (2C).

2-(p-Tolyl)benzo[d]thiazole 4m⁴

Isolated as a white solid (175 mg, 97% yield). Mp: 84–86 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.13 (d, 1H, J = 5.0 Hz), 8.03 (d, 1H, J = 10.0 Hz), 7.98 (d, 2H, J = 10.0 Hz), 7.53 (t, 1H, J = 10.0 Hz), 7.44 (t, 1H, J = 10.0 Hz), 7.39 (d, 2H, J = 5.0 Hz), 2.39 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 167.8, 154.0, 142.0, 134.8, 130.7, 130.4 (2C), 127.6 (2C), 127.1, 125.8, 123.2, 122.8, 21.5.

3-(3,4-Dimethoxyphenyl)benzo[*d*]thiazole 4n⁴

Isolated as a white solid (193 mg, 89% yield). Mp: 130–131 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.09 (t, 1H, J = 5.0 Hz), 8.02 (d, 1H, J = 5.0 Hz), 7.62 (t, 2H, J = 10.0 Hz), 7.51 (t,

1H, *J* = 10.0 Hz), 7.42 (t, 1H, *J* = 5.0 Hz), 7.12 (d, 1H, *J* = 10.0 Hz), 3.88 (s, 3H), 3.85 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 167.7, 154.0, 152.1, 149.6, 134.7, 129.9, 127.0, 125.6, 122.9, 122.6, 121.4, 112.4, 109.9, 56.2, 56.1.

2-(4-(Trifluoromethyl)phenyl)benzo[d]thiazole 408

Isolated as a yellow solid (190 mg, 85% yield). Mp: 156–158 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.30 (d, 2H, J =10.0 Hz), 8.20 (d, 1H, J = 5.0 Hz), 8.12 (d, 1H, J = 5.0 Hz), 7.93 (d, 2H, J = 5.0 Hz), 7.58 (t, 1H, J = 10.0 Hz), 7.51 (d, 1H, J = 10.0 Hz). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 166.0, 153.9, 136.9, 135.2, 131.4 (q, 1C, J = 37.8 Hz), 128.4 (2C), 127.4, 126.8 (q, 2C, J = 2.52 Hz), 126.6, 124.5 (q, 1C, J = 277.2 Hz), 123.7, 123.0. ¹⁹F NMR (470 MHz, DMSO-d₆): δ (ppm) -61.41 (s, 3F).

2-(Pyridin-2-yl)-1,3-benzothiazole 4p⁹

Isolated as a white solid (138 mg, 81% yield). Mp: 136–137 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.73 (d, 1H, J = 5.0 Hz), 8.32 (d, 1H, J = 10.0 Hz), 8.16 (d, 1H, J = 10.0 Hz), 8.10 (d, 1H, J = 5.0 Hz), 8.03 (t, 1H, J = 10.0 Hz), 7.60-7.54 (m, 2H), 7.49 (t, 1H, J = 5.0 Hz). ¹³C NMR (126 MHz, DMSO- d₆): δ (ppm) 169.5, 154.2, 150.8, 150.4, 138.3, 135.8, 127.1, 126.6, 126.4, 123.8, 123.0, 120.8.

2-(Furan-2-yl)-1,3-benzothiazole 4q⁹

Isolated as a pale brown solid (132 mg, 82% yield). Mp: 100–101 °C. ¹H NMR (500 MHz, DMSO-d₆): δ (ppm) 8.13 (d, 1H, J = 5.0 Hz), 8.01 (d, 2H, J = 10.0 Hz), 7.54 (t, 1H, J = 5.0 Hz), 7.44 (t, 1H, J = 10.0 Hz), 7.36 (d, 1H, J = 5.0 Hz), 6.79-6.78 (m, 1H). ¹³C NMR (126 MHz, DMSO-d₆): δ (ppm) 157.3, 153.8, 148.4, 146.6., 134.1, 127.2, 125.9, 123.1, 122.8, 113.5, 112.4.

6. ¹H, ¹³C, and ¹⁹F-NMR spectra of compounds 2a-m, 4a-4q

¹H NMR spectrum of compound **2b**

¹H NMR spectrum of compound **2c**

 $^{19}\mathrm{F}$ NMR spectrum of compound 2c

¹H NMR spectrum of compound **2d**

¹H NMR spectrum of compound **2e**

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{2f}$

¹H NMR spectrum of compound **2g**

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{2h}$

¹H NMR spectrum of compound **2i**

¹H NMR spectrum of compound **2**j

¹H NMR spectrum of compound **2**k

 $^{19}\mathrm{F}$ NMR spectrum of compound 2k

¹H NMR spectrum of compound **2**l

¹H NMR spectrum of compound **2m**

¹H NMR spectrum of compound 4a

¹H NMR spectrum of compound **4b**

 $^1\mathrm{H}$ NMR spectrum of compound 4c

 $^{19}\mathrm{F}$ NMR spectrum of compound 4c

¹H NMR spectrum of compound **4d**

¹H NMR spectrum of compound 4e

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{4f}$

¹H NMR spectrum of compound **4g**

¹H NMR spectrum of compound **4h**

 $^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{4h}$

$$\begin{bmatrix} -108.84 \\ -108.85 \\ -108.86 \\ -108.87 \\ -108.88 \\ -108.89 \\ -108.89 \\ -108.90 \end{bmatrix}$$

106.0 -106.6 -107.2 -107.8 -108.4 -109.0 -109.6 -110.2 -110.8 -111.4 -1

¹H NMR spectrum of compound 4i

¹H NMR spectrum of compound 4j

 ^{1}H NMR spectrum of compound **4**l

¹H NMR spectrum of compound **4m**

¹H NMR spectrum of compound **4n**

¹⁹F NMR spectrum of compound **40**

¹H NMR spectrum of compound 4q

7. Reference

- 1 C. Lou, N. Zhu, R. Fan, H. Hong, L. Han, J. Zhang and Q. Suo, *Green. Chem.*, 2017, **19**, 1102–1108.
- T. Zhang, L. Han, W. Qin, N. Zhu, L. Wang and H. Hong, *Synth. Commun.*, 2017, 47, 1916–1925.
- 3 L. B. Martine, P. Michel and J. C. Richer, *J. Heterocycl. Chem.*,1980, **17**, 1175–1179.
- 4 B. Liu, N. Zhu, H. Hong and L. Han, *Tetrahedron*, 2015, **71**, 9287–9292.
- 5 K. Inamoto, C. Hasegawa, K. Hiroya and T. Doi, Org. Lett., 2008, 10, 5147–5150.
- 6 Y. Zhao, R. Hu, X. Li, X. Wang, R. Gu and S. Han, *Tetrahedron Lett.*, 2017, **58**, 2366–2369.
- S. Ray, P. Das, B. Banerjee, A. Bhaumik and C. Mukhopadhyay, *RSC Adv.*, 2015, 5, 72745–72754.
- 8 J. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen and M. M. Faul, *J. Am. Chem. Soc.*, 2010, **132**, 3674–3675.
- 9 K. Minami, M. Minakawa, and Y. Uozumi, Asian J. Org. Chem. 2022, 11, e202200211.