Supporting Information

Coordination Complexes of P^{III}-Doped Heterobuckybowls and Their Applications in Catalysis

Lijun Feng, Xinqiang Hua, Jihai Shang, and Xiangfeng Shao*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China. Email: shaoxf@lzue.edu.cn (S.X.)

Contents

1. Materials and General methods	S1
2. Synthesis	S2
3. Scope of the Pd-Catalyzed SMC reactions employing 1 as ligand	S7
4. Thermogravimetric Analyses	S14
5. X-ray Crystal Structure Analyses	S16
5.1 Experimental details on crystal growth	S16
6. Electrochemical spectra	S35
7. Photophysical Study	S38
8. Calculations	S40
8.1 Optimized Structures, Molecular Orbitals and Corresponding Energies	S42
8.2 Bowl to Bowl Inversion Energy	S50
8.3 Molecular Electrostatic Potential Surfaces and Dipole Moments	S51
8.4 Aromaticity Calculations	S52
9. References	S54
10. ¹ H NMR, ³¹ P NMR, C NMR, IR Spectra of Products	S55

1. Materials and General methods

All chemicals and solvents were purified according to the standard procedure.^[S1] The heterasumanenes (1-3) were synthesized according to our previous report.^[S2]

The melting points were determined on a WRS-2 melting point apparatus. The high resolution mass spectral analysis (HRMS) was carried out on Bruker APEX II type mass spectrometer. Thermogravimetric analyses (TGA) were conducted on 1090B type thermal analyzer (Dupont Engineering Polymers).

The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance III 400 MHz (101 MHz for ¹³C NMR) or a VARIAN INOVA 600 MHz (151 MHz for ¹³C NMR) spectrometer. Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and referenced internally to the residual proton in the solvent (CDCl₃: δ 7.26). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane, and are referenced to the ¹³C resonance of the NMR solvent (CDCl₃: δ 77.00). Data are reported as follows: Chemical shift, multiplicity (*s* = singlet, *d* = doublet, *t* = triplet, *q* = quartet, *m* = multiplet), coupling constants, *J*, are reported in hertz.

The redox potentials were obtained by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods on a RST 5000 electrochemical analyzer with glassy carbon discs as the working electrode, Pt wire as the counter electrode, and SCE electrode as the reference electrode. Measurement conditions: solvent, CH₂Cl₂; concentration, $c = 1 \times 10^{-4}$ mol L⁻¹; supporting electrolyte, $(n-Bu)_4NPF_6$ (0.1 M); scan speed, 50 mV S⁻¹; temperature, 20 °C.

The UV-Vis absorption spectra were measured on a UV-2006 UV-Specterophotometer. Measurement conditions: solvent, CH₂Cl₂; concentration, $c = 1.0 \times 10^{-5}$ mol L⁻¹; temperature, 20 °C. The infrared (IR) spectra were record on the PerkinElmer Spectrum 400 spectrometer with the resolution of 2 cm⁻¹.

The single-crystal X-ray diffraction was carried out on a SuperNova (Agilent) diffractometer. The crystal structure was solved by a direct method $SIR2004^{[S3]}$ and refined by full-matrix least-square method on F^2 by means of *SHELX*L-97.^[S4] The calculated positions of the hydrogen atoms were included in the final refinement.

2. Synthesis

The compounds 1-3 were synthesized according to our previous report, and in the following, the syntheses of compounds (1)•AuCl, (2)•AuCl, (3)2•(AuCl)2, (1)2•(PdCl2)2, (2)2•PdCl2, (3)2•PdCl2, (1)2•PtCl2, (2)2•PtCl2, and (3)2•PtCl2 are reported. Among them, R represents OBu.

Scheme S1 The chemical structures of the compounds in this report.

Scheme S2 Synthesis of the coordination complexes of 1–3 with Au⁺.

Scheme S3 Synthesis of the coordination complexes of 1-3 with Pt^{2+} .

Scheme S4 Synthesis of the coordination complexes of 1-3 with Pd^{2+} .

Synthesis of (1)•AuCl: To a Schlenk tube containing 1 (0.41g, 0.5 mmol) and AuCl(SMe₂) (0.15 g, 0.5 mmol) was added 10 mL of CH₂Cl₂. After stirring for 1.0 h at room temperature, the resulting mixture was evaporated and subjected to silica gel column chromatography (eluent, CH₂Cl₂/petro ether, 1 : 3, v:v) to give (1)•AuCl as a yellow solid (0.48 g, yield 90%). mp: 167.3-168.5 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.82-7.77 (m, 2H), 7.54-7.49 (m, 1H), 7.42 (td, *J* = 7.8, 2.8 Hz, 2H), 4.46-4.33

(m, 10H), 4.20-4.15 (m, 2H), 1.94-1.82 (m, 8H), 1.72 (ddd, J = 7.9, 6.5, 2.8 Hz, 4H), 1.67-1.56 (m, 8H), 1.46-1.36 (m, 4H), 1.03 (dt, J = 15.0, 7.4 Hz, 12H), 0.90 (t, J = 7.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 152.98, 152.93, 147.36, 147.30, 147.06, 135.60, 133.76, 133.65, 132.72, 132.70, 131.84, 131.76, 129.46, 129.37, 128.62, 128.59, 128.56, 128.20, 128.09, 127.31, 120.65, 120.21, 77.25, 77.04, 76.83, 74.65, 74.64, 73.19, 72.94, 32.26, 32.24, 32.19, 19.27, 19.23, 19.09, 13.92, 13.89, 13.87; ³¹P NMR (243 MHz, CDCl₃): δ 41.32. HRMS (ESI) Calcd. for C₄₈H₅₉AuO₆PS₂ [M-Cl]⁺: 1023.3151, Found: 1023.3154. Elemental analysis calcd for C₄₈H₅₉AuClO₆PS₂: C, 54.41; H, 5.61; O, 9.06; found: C, 54.37; H, 5.58; O, 9.09.

Synthesis of (2)•AuCl: (2)•AuCl was synthesized similarly as described for synthesis of (1)•AuCl. For (2)•AuCl, yellow solid (0.53g, yield 92%). mp: 173.5-174.2 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.70 (dd, *J* = 14.8, 7.7 Hz, 2H), 7.51-7.46 (m, 1H), 7.37 (td, *J* = 7.8, 2.6 Hz, 2H), 4.65-4.27 (m, 10H), 4.27-4.15 (m, 2H), 1.93-1.83 (m, 8H), 1.75-1.69 (m, 4H), 1.68-1.56 (m, 8H), 1.51-1.36 (m, 4H), 1.10-0.99 (m, 12H), 0.92 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 152.46, 152.42, 149.93, 149.87, 148.58, 133.72, 133.62, 132.59, 131.63, 130.13, 130.05, 129.35, 129.26, 129.09, 128.70, 128.11, 128.05, 127.90, 124.80, 119.09, 118.65, 77.25, 77.04, 76.83, 74.19, 74.17, 72.51, 72.48, 32.31, 32.28, 19.37, 19.14, 13.99, 13.91; ³¹P NMR (243 MHz, CDCl₃): δ 42.92. HRMS (ESI) Calcd. for C₄₈H₅₉AuClo₆PSe₂ [M-Cl]⁺: 1119.2040, Found: 1119.2096. Elemental analysis calcd for C₄₈H₅₉AuClo₆PSe₂: C, 49.99; H, 5.16; O, 8.32; found: C, 49.95; H, 5.12; O, 8,35.

Synthesis of (**3**)₂•(AuCl)₂: Compound (**3**)₂•(AuCl)₂ was synthesized similarly as described for synthesis of (**1**)•AuCl. For (**3**)₂•(AuCl)₂, yellow solid (0.54g, yield 87%). mp: 180.6-181.5 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.74-7.67 (m, 2H), 7.51-7.46 (m, 1H), 7.37 (td, *J* = 7.8, 2.8 Hz, 2H), 4.33-4.20 (m, 12H), 1.90-1.79 (m, 8H), 1.74-1.67 (m, 4H), 1.65-1.54 (m, 8H), 1.49-1.35 (m, 4H), 1.07-1.00 (m, 12H), 0.91 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 154.04, 153.98, 152.53, 152.48, 135.52, 133.80, 133.69, 133.24, 133.18, 132.57, 132.49, 129.36, 129.27, 128.96, 128.56, 123.19, 123.17, 120.06, 119.61, 117.79, 77.24, 77.03, 76.82, 74.09, 74.08, 73.02, 72.77, 32.59, 32.50, 32.39, 19.52, 19.46, 19.16, 14.00, 13.98, 13.92; ³¹P NMR (243 MHz, CDCl₃): δ 36.72. HRMS (ESI) Calcd. for C₄₈H₅₉AuClO₆PTe₂Na [M+Na]⁺: 1275.1402, Found: 1275.1415. Elemental analysis calcd for C₄₈H₅₉AuClO₆PTe₂: C, 46.10; H, 4.76; O, 7.68; found: C, 46.18; H, 4.73; O, 7.54.

Synthesis of (1)₂•PtCl₂: To a Schlenk tube containing 1 (0.41 g, 0.5 mmol) and PtCl₂(Cod) (93.5 mg, 0.25 mmol) was added 10 mL of CH₂Cl₂, and the resulting mixture was stirred for 2 h at room temperature. The solution was evaporated and subjected to silica gel column chromatography (eluent, CH₂Cl₂/MeOH, 50 : 1, v:v) to give (1)₂•PtCl₂ as a yellow solid (0.34 g, yield 70%). mp: 205.5-206.0 $^{\circ}$ C; ¹H NMR (600 MHz, CDCl₃): δ 7.63-7.58 (m, 4H), 7.18 (t, *J* = 7.4 Hz, 2H), 7.09 (t, *J* = 8.2, 2.2 Hz, 4H), 4.49 (d, *J* = 7.6 Hz, 4H), 4.40-4.22 (m, 20H), 1.97-1.85 (m, 24H), 1.71-1.50 (m, 24H), 1.12-1.06 (m, 24H), 1.03 (t, *J* = 7.4 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃): δ 152.18, 146.93, 146.22, 132.89, 132.86, 132.82, 131.79, 130.59, 128.40, 128.37, 128.33, 128.30, 127.93, 127.91, 127.21, 127.17, 127.13, 125.42, 124.69, 124.66, 124.63, 124.04, 117.44, 116.99, 77.21, 77.00, 76.79, 73.73, 72.56, 71.69, 32.16, 32.07, 19.24, 19.22, 14.07, 13.88, 13.85; ³¹P NMR (243 MHz, CDCl₃): δ 31.61. HRMS (ESI) Calcd. for C₉₆H₁₁₈ClO₁₂P₂PtS₄ [M-Cl]⁺: 1883.6346, Found: 1883.6345. Elemental analysis calcd for C₉₆H₁₁₈Cl₂O₁₂P₂PtS₄: C, 60.05; H, 6.19; O, 10.00; found: C, 60.12; H, 6.14; O, 10.06.

Synthesis of (2)₂•PtCl₂: Compound (2)₂•PtCl₂ was synthesized similarly as described for synthesis of

(1)₂•PtCl₂. For (2)₂•PtCl₂, yellow solid (0.40g, yield 76%). mp: 214.5-215.6 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (dd, J = 13.2, 7.7 Hz, 4H), 7.17 (t, J = 7.3 Hz, 2H), 7.11-7.03 (m, 4H), 5.48-2.90 (m, 24H), 1.90 (ddtd, J=15.1, 12.2, 6.4, 3.2 Hz, 24H), 1.71-1.48 (m, 24H), 1.08 (td, J=7.4, 3.0 Hz, 24H), 1.01 (t, J = 7.4 Hz, 12H); ³¹P NMR (243 MHz, CDCl₃): δ 27.11. ¹³C NMR (151 MHz, CDCl₃) δ 151.97, 151.95, 151.93, 149.23, 149.20, 149.17, 148.09, 132.94, 132.90, 132.87, 130.49, 129.58, 129.23, 128.95, 128.91, 127.35, 127.30, 127.26, 126.73, 126.20, 126.17, 126.15, 124.47, 117.45, 117.10, 77.21, 77.00, 76.79, 73.68, 72.40, 71.29, 32.31, 32.23, 32.05, 19.28, 19.21, 14.07, 13.92, 13.88. HRMS (ESI) Calcd. for C₉₆H₁₁₈ClO₁₂P₂PtSe₄ [M-Cl]⁺: 2073.4132, Found: 2073.4167. Elemental analysis calcd for C₉₆H₁₁₈Cl₂O₁₂P₂PtSe₄: C, 54.70; H, 5.64; O, 9.11; found: C, 54.66; H, 5.59; O, 9.14. Synthesis of (3)₂•PtCl₂: Compound (3)₂•PtCl₂ was synthesized similarly as described for synthesis of (1)₂•PtCl₂. For (3)₂•PtCl₂, yellow solid (0.51g, yield 88%). mp: 219.9-221.7 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.58-7.52 (m, 4H), 7.15 (t, *J* = 7.4 Hz, 2H), 7.06-7.02 (m, 4H), 4.53-4.47 (m, 4H), 4.29-4.18 (m, 16H), 4.13-4.06 (m, 4H), 1.96-1.90 (m, 8H), 1.88-1.80 (m, 16H), 1.63-1.57 (m, 16H), $1.57-1.46 \text{ (m, 8H)}, 1.07 \text{ (q, } J = 7.3 \text{ Hz}, 24\text{H)}, 0.99 \text{ (t, } J = 7.4 \text{ Hz}, 12\text{H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3):$ δ 153.08, 153.05, 153.02, 151.81, 151.78, 151.76, 134.45, 133.09, 133.06, 133.02, 131.58, 131.54, 131.51, 130.57, 128.79, 128.76, 128.33, 128.30, 127.19, 127.15, 127.11, 119.96, 118.08, 117.63, 73.54, 72.96, 71.26, 32.79, 32.57, 32.18, 19.56, 19.51, 19.28, 14.19, 14.13, 14.06; ³¹P NMR (243) MHz, CDCl₃): δ 19.80. HRMS (ESI) Calcd. for C₉₆H₁₁₈ClO₁₂P₂PtTe₄ [M-Cl]⁺: 2269.3665, Found: 2269.3660. Elemental analysis calcd for C₉₆H₁₁₈Cl₂O₁₂P₂PtTe₄: C, 50.08; H, 5.17; O, 8.34; found: C, 50.05; H, 5.13; O, 8.29.

Synthesis of (1)₂•(PdCl₂)₂: To a suspension of PdCl₂ (44.3 mg, 0.25 mmol) in MeOH (4.0 mL) was added a CH₂Cl₂(8.0 mL) solution of **1** (0.41 g, 0.5 mmol). After stirring for 14 h at room temperature, the resulting mixture was evaporated and followed by recrystallization from CH₂Cl₂/MeOH gave (1)₂•(PdCl₂)₂ as brown solid (0.36 g, 71%). mp: 229.0-229.7 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.86 (dd, *J* = 14.2, 7.8 Hz, 4H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.28-6.98 (m, 4H), 5.00-4.80 (m, 8H), 4.55-4.47 (m, 4H), 4.47-4.33 (m, 12H), 2.19 (p, *J* = 6.9 Hz, 8H), 1.96-1.89 (m, 8H), 1.90-1.84 (m, 8H), 1.80-1.71 (m, 8H), 1.68-1.57 (m, 16H), 1.07 (q, *J* = 7.2 Hz, 24H), 1.02 (t, *J* = 7.4 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃): δ 152.19, 152.17, 148.46, 148.42, 148.39, 147.09, 134.43, 132.68, 132.63, 132.59, 131.75, 130.11, 130.04, 128.54, 128.50, 128.45, 127.89, 127.86, 127.83, 127.65, 126.63, 125.93, 125.55, 119.58, 119.14, 75.02, 73.08, 72.64, 32.70, 32.19, 19.57, 19.29, 19.24, 14.20, 13.92, 13.89; ³¹P NMR (243 MHz, CDCl₃): δ 50.94. HRMS (ESI) Calcd. for C₉₆H₁₁₈Cl₃O₁₂P₂Pd₂S4 [M-Cl]⁺: 1972.41488, Found: 1972.41519. Elemental analysis calcd for C₉₆H₁₁₈Cl₄O₁₂P₂Pd₂S4: C, 57.40; H, 5.92; O, 9.56; found: C, 57.47; H, 5.86; O, 9.58.

Synthesis of (2)₂•PdCl₂: Compound (2)₂•PdCl₂ was synthesized similarly as described for synthesis of (1)₂•(PdCl₂)₂. For (2)₂•PdCl₂, brown solid (0.40g, yield 80%). m.p. 225.4-226.0 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.56 (dd, *J* = 12.8, 8.0 Hz, 4H), 7.20-7.14 (m, 2H), 7.07 (td, *J* = 8.0, 2.6 Hz, 4H), 4.55-4.49 (m, 4H), 4.41-4.35 (m, 4H), 4.30 (t, *J* = 6.4 Hz, 8H), 4.27-4.20 (m, 8H), 2.01-1.86 (m, 24H), 1.69-1.50 (m, 24H), 1.12-1.06 (m, 24H), 1.02 (t, *J* = 7.4 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃): δ 153.19, 153.16, 153.13, 151.83, 151.73, 151.71, 151.68, 134.37, 133.20, 133.16, 133.12, 131.74, 131.72, 131.67, 131.64, 131.62, 131.60, 130.53, 129.92, 129.54, 127.38, 127.34, 127.30, 120.40, 118.67, 118.32, 118.14, 73.64, 72.94, 71.45, 32.80, 32.59, 32.21, 19.57, 19.52, 19.29, 14.19, 14.13, 14.07; ³¹P NMR (243 MHz, CDCl₃) δ 47.29. HRMS (ESI) Calcd. for C₉₆H₁₂₂Cl₂O₁₂P₂PdSe₄N

[M+NH₄]⁺: 2037.3551, Found: 2037.3690. Elemental analysis calcd for C₉₆H₁₁₈Cl₂O₁₂P₂PdSe₄: C, 57.11; H, 5.89; O, 9.51; found: C, 57.16; H, 5.94; O, 9.47.

Synthesis of (3)₂•PdCl₂: Compound (3)₂•PdCl₂ was synthesized similarly as described for synthesis of (1)₂•(PdCl₂)₂. For (3)₂•PdCl₂, brown solid (0.50g, yield 90%) mp: 192.4-193.2 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.55-7.49 (m, 4H), 7.18-7.13 (m, 2H), 7.07-6.99 (m, 4H), 4.55-4.49 (m, 4H), 4.29-4.17 (m, 16H), 4.12 (dt, *J* = 8.7, 6.6 Hz, 4H), 1.95 (p, *J* = 7.3 Hz, 8H), 1.84 (tdd, *J* = 15.7, 7.9, 4.7 Hz, 16H), 1.64-1.45 (m, 24H), 1.07 (q, *J* = 7.2 Hz, 24H), 0.99 (t, *J* = 7.4 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃): δ 153.19, 153.16, 153.13, 151.83, 151.73, 151.71, 151.68, 134.37, 133.20, 133.16, 133.12, 131.74, 131.72, 131.67, 131.64, 131.62, 131.60, 130.53, 129.92, 129.54, 127.38, 127.34, 127.30, 120.40, 118.67, 118.32, 118.14, 73.64, 72.94, 71.45, 32.80, 32.59, 32.21, 19.57, 19.52, 19.29, 14.19, 14.13, 14.07; ³¹P NMR (243 MHz, CDCl₃): δ 39.47. HRMS (ESI) Calcd. for C₉₆H₁₁₈Cl₂O₁₂P₂PdTe₄: C, 52.09; H, 5.37; O, 8.67; found: C, 52.03; H, 5.35; O, 8.63.

3. Scope of the Pd-Catalyzed SMC reactions employing 7 as ligand.

Table S1. Scope of Pd-Catalyzed Suzuki-Miyaura Cross-Coupling

Entry	Halid	Boronic acid	Product	Pd [mol%]	Yield [%]
1	NC	(HO) ₂ B		0.1	95
2	NC CI	(HO) ₂ B	NC	0.1	93
3	CI	(HO) ₂ B		0.1	90
4	онс-	(HO) ₂ B	онс	0.1	81
5	ОНС	(HO) ₂ B	онс	0.1	78
6	СІ	(HO) ₂ B	СНО	0.1	70
7	° CI	(HO) ₂ B		0.1	77
8	CI	(HO) ₂ B		0.1	71
9	MeO ₂ C-CI	(HO) ₂ B	MeO ₂ C	0.1	82
10	MeO ₂ C	(HO) ₂ B	MeO ₂ C	0.1	76
11	F ₃ C-CI	(HO) ₂ B	F ₃ C	0.1	90
12	F CI F	(HO) ₂ B	F F	0.1	60
13	O ₂ N-CI	(HO) ₂ B	0 ₂ N-	0.1	92
14	MeO	(HO) ₂ B	MeO	1	65
15	OMe CI	(HO) ₂ B	OMe	1	47

Conditions: aryl chloride (1.0 equiv), boronic acid (1.5 equiv), cat. $Pd(OAc)_2$, ligand 1, L/Pd=2:1, K₃PO₄ (3 equiv), toluene (0.25 M), 90 °C, 15 h.

General Procedure: Pd-Catalyzed Suzuki-Miyaura Couplings of Aryl Halides with Aryl Boronic Acids.

An oven-dried Schlenk tube containing a magnetic stir bar was charged with Pd(OAc)₂ (2.2 mg,

1.0 mol%), **1** (16.5 mg, 2.0 mol%), aryl boronic acid (1.5 mmol, 1.5 equiv.), anhydrous K_3PO_4 (636 mg, 3.0 mmol, 3.0 equiv.). The Schlenk tube was capped with a rubber septum and then evacuated and backfilled with argon (this sequence was repeated three times). Toluene (4.0 mL) was added via syringe through the septum and the resulting mixture was stirred at room temperature for ~2 min. The aryl halide (1.0 mmol, 1.0 equiv.) was added dropwise via syringe through the septum (aryl halides which were solids at room temperature were added during the initial charge, prior to the evacuation/backfill cycles). The reaction mixture was heated at 90 °C with vigorous stirring until the aryl halide had been completely consumed as judged by thin-layer chromatography. The reaction mixture was then allowed to cool to room temperature, diluted with diethyl ether (10 mL), filtered through a thin pad of silica gel (eluting with diethyl ether) and concentrated under reduced pressure. The crude material obtained was purified by flash chromatography on silica gel.

[1,1'-biphenyl]-4-carbonitrile (Table S1, entry 1). White solid; 170.3 mg, 95% yield; m.p. 85.1-86.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.59 (dd, *J* = 7.4, 1.8 Hz, 2H), 7.49 (dd, *J*

= 8.4, 6.8 Hz, 2H), 7.46–7.40 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 145.62, 139.13, 132.54, 129.07, 128.62, 127.68, 127.18, 118.89, 110.87.

[1,1'-biphenyl]-3-carbonitrile (Table S1, entry 2). White solid; 166.7 mg, 93% yield; m.p. 44.2-44.7 °C; ¹H NMR (600 MHz, C CDCl₃) δ 7.84 (s, 1H), 7.81 (dt, J = 8.0, 1.6 Hz, 1H), 7.62 (dt, J = 7.7, 1.4 Hz, 1H), 7.57–7.54 (m, 3H), 7.48 (t, J = 7.6 Hz, 2H), 7.44–7.41 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 142.27, 138.69,

131.33, 130.54, 130.52, 129.48, 129.00, 128.27, 126.93, 118.72, 112.81.

[1,1'-biphenyl]-2-carbonitrile (Table S1, entry 3). White solid; 161.3 mg, 90% yield; m.p. 35.3-36.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 7.2 Hz, 2H), 7.54–7.48 (m, 3H), 7.47–7.43 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 145.49, 138.12, 133.73, 132.79, 130.06, 128.73, 128.70, 127.51, 118.69, 111.27.

[1,1'-biphenyl]-4-carbaldehyde (Table S1, entry 4). White solid; 147.6 mg, 81% yield; m.p. 57.4-58.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.06 (s, 1H), 7.98–7.94 (m, 2H), 7.78–7.74 (m, 2H), 7.67–7.62 (m, 2H), 7.52–7.46 (m,

2H), 7.44–7.41 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 191.93, 147.20, 139.72, 135.21, 130.27, 129.02, 128.48, 127.68, 127.36.

[1,1'-biphenyl]-3-carbaldehyde (Table S1, entry 5). White solid; 142.1 mg, 78% yield; m.p. 167.7-168.6 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.09 (s, 1H), 8.12–8.10 (m, 1H), 7.86 (dq, J = 7.8, 1.5 Hz, 2H), 7.66–7.59 (m, 3H), 7.48 (t, J = 7.7 Hz, 2H), 7.44–7.38 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 192.29,

142.05, 139.58, 136.83, 132.96, 129.41, 128.93, 128.55, 128.09, 127.97, 127.05.

[1,1'-biphenyl]-2-carbaldehyde (Table S1, entry 6). White solid; 127.5 mg, 70% yield; m.p. 202.7-203.8 °C; ¹H NMR (600 MHz, C CDCl₃) δ 10.00 (s, 1H), 8.05 (dd, J = 7.8, 1.4 Hz, 1H), 7.62 (td, J = 7.5, 1.5 Hz, 1H), 7.51 - 7.40 (m, 5H), 7.39 -7.35 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 192.11, 145.73, 137.54, 133.51,

133.35, 130.58, 129.90, 128.23, 127.92, 127.57, 127.36.

1-([1,1'-biphenyl]-4-yl)ethan-1-one (Table S1, entry 7). White solid; 151.1 mg, 77% yield; m.p. 152.7-153.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.02-7.98 (m, 2H), 7.67-7.62 (m, 2H), 7.62-7.57 (m, 2H), 7.44 (dd, J = 8.4, 6.9 Hz, 2H),

7.40–7.35 (m, 1H), 2.60 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.57, 145.60, 139.70, 135.73, 135.72, 128.84, 128.79, 128.12, 127.13, 127.06, 26.49.

1-([1,1'-biphenyl]-2-yl)ethan-1-one (Table S1, entry 8). White solid; 139.4 mg, 71% yield; m.p. 56.1-57.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.55–7.52 (m, 1H), 7.46 (dd, J = 7.5, 1.4 Hz, 1H), 7.41–7.34 (m, 5H), 7.33–7.31 (m, 2H), 1.98 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 204.51, 140.70, 140.53, 140.30, 130.52, 130.05, 128.64, 128.48, 127.69, 127.25, 30.20.

MeO₂C

Methyl [1,1'-biphenyl]-4-carboxylate (Table S1, entry 9). White solid; 174.0 mg, 82% yield; m.p. 118.1-119.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, J = 7.9 Hz, 2H), 7.67 (d, J = 7.9 Hz, 2H), 7.63 (d, J = 7.6 Hz,

2H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 3.95 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.96, 145.59, 139.95, 130.06, 128.88, 128.85, 128.10, 127.23, 127.00, 52.07.

MeO₂C

Methyl [1,1'-biphenyl]-3-carboxylate (Table S1, entry 10). White solid; 161.3 mg, 76% yield; m.p.160.5-160.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.27 (t, J = 1.8 Hz, 1H), 7.99 (dt, J = 7.8, 1.4 Hz, 1H), 7.71 (ddd, J = 7.7, 2.0, 1.2 Hz, 1H), 7.59–7.55 (m, 2H), 7.46–7.37 (m, 3H), 7.35–7.29 (m, 1H), 3.89

(s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.79, 141.24, 139.87, 131.30, 130.52, 128.71, 128.67, 128.16, 128.04, 127.56, 126.94, 51.93.

4-(trifluoromethyl)-1,1'-biphenyl (Table S1, entry 11). White solid; 200.0 mg, 90% yield; m.p. 70.7-71.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.70 (s, 4H), 7.62–7.59 (m, 2H), 7.48 (t, J = 7.7 Hz, 2H), 7.44–7.39 (m, 1H). ¹³C NMR

(151 MHz, CDCl₃) δ 144.74, 139.77, 128.98, 128.18, 127.42, 127.28, 125.74, 125.72, 125.69.

2,6-difluoro-1,1'-biphenyl (Table S1, entry 12). White solid; 114.1 mg, 60% yield; m.p. 97.2-98.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.47–7.41 (m, 4H), 7.39–7.34 (m, 1H), 7.25–7.17 (m, 1H), 6.98–6.90 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 160.95, 159.30, 130.30, 129.15, 128.81, 128.23, 118.49, 111.67.

4-nitro-1,1'-biphenyl (Table S1, entry 13). White solid; 183.3 mg, 92% NO yield; m.p. 114.1-114.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.6 Hz, 2H), 7.63 (dd, J = 7.6, 1.8 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.3

Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 147.64, 147.10, 138.79, 129.16, 128.91, 127.80, 127.39, 124.11.

4-methoxy-1,1'-biphenyl (Table S1, entry 14). White solid; 120.0 mg, 65% yield; m.p. 86.0-87.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.58–7.51 (m, 4H), 7.42 (t, J = 7.7 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.01–6.96 (m, 2H), 3.86 (s,

3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.15, 140.83, 133.78, 128.80, 128.15, 126.74, 126.65, 114.19, 55.34.

2-methoxy-1,1'-biphenyl (Table S1, entry 15). White solid; 86.6 mg, 47% yield; m.p. 50.1-51.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.60–7.56 (m, 2H), 7.49–7.42 (m, 2H), 7.40–7.35 (m, 3H), 7.11–7.01 (m, 2H), 3.85 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) & 156.44, 138.52, 130.86, 130.69, 129.51, 128.58, 127.95, 126.88, 120.80,

111.20, 55.49.

3,5-dimethoxy-1,1'-biphenyl (Table S1, entry 16). White solid; 137.1 mg, 64% yield; m.p. 64.1.7-65.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.56 (dd, J = 8.0, 1.4Hz, 2H), 7.41 (t, J = 7.7 Hz, 2H), 7.36–7.30 (m, 1H), 6.73 (d, J = 2.2 Hz, 2H), 6.46 (t, J = 2.3 Hz, 1H), 3.82 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 161.02, 143.44, 141.16, 128.66, 127.50, 127.14, 105.41, 99.23, 55.32.

N-methyl-[1,1'-biphenyl]-4-amine (Table S1, entry 17). White solid; 97.1 mg, 53% yield; m.p. 38.7-39.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.55-7.52 (m, 2H), 7.47–7.44 (m, 2H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.27–7.23 (m, 1H), 6.71–

6.66 (m, 2H), 2.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.61, 141.28, 130.26, 128.62, 127.87, 126.29, 126.02, 112.73, 30.80.

N-methyl-[1,1'-biphenyl]-3-amine (Table S1, entry 18). White solid; 102.6 mg, 56% yield; m.p. 55.8-56.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.58–7.53 (m, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.31–7.27 (m, 1H), 7.21 (d, J = 7.8 Hz, 1H), 6.92 (dt, J = 7.7, 1.3 Hz, 1H), 6.76 (t, J = 2.1 Hz, 1H), 6.54 (dd, J = 8.2, 2.5 Hz, 1H),

2.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.56, 142.22, 141.72, 129.47, 128.52, 127.08, 127.04, 116.28, 111.37, 111.09, 30.64.

N-methyl-[1,1'-biphenyl]-2-amine (Table S1, entry 19). White solid; 91.6 mg, 50% yield; m.p. 61.4-62.5 °C; ¹H NMR (600 MHz, C CDCl₃) δ 7.38 (d, J = 4.4 Hz, 4H), 7.29 (p, J = 4.3 Hz, 1H), 7.23 (ddd, J = 8.6, 7.5, 1.7 Hz, 1H), 7.06 (dd, J = 7.4, 1.7Hz, 1H), 6.74 (td, J = 7.4, 1.2 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 2.72 (s, 3H). ¹³C

NMR (151 MHz, CDCl₃) δ 146.06, 139.44, 129.93, 129.32, 128.76, 128.69, 127.47, 127.08, 116.71, 109.69, 30.62.

4'-methyl-[1,1'-biphenyl]-4-carbonitrile (Table S1, entry 20). White solid; 181.6 mg, 94% yield; m.p. 108.5-109.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.70–7.64 (m, 4H), 7.50 (d, J = 7.7 Hz, 2H), 7.30 (d, J = 7.7 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 145.40, 138.61, 136.06, 132.39, 129.71, 127.28, 126.89, 118.89, 110.36, 21.02.

3',5'-dimethyl-[1,1'-biphenyl]-4-carbonitrile (Table S1, entry 21). White solid; 192.8 mg, 93% yield; m.p. 58.3-59.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73–7.64 (m, 4H), 7.20 (s, 2H), 7.07 (s, 1H), 2.39 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 145.96, 139.18, 138.71, 132.46, 130.26, 127.72, 125.11, 119.03,

110.65, 21.34.

3',5'-dimethoxy-[1,1'-biphenyl]-4-carbonitrile (Table S1, entry 22). White solid; 220.1 mg, 92% yield; m.p. 65.2-66.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.70 (dd, J = 8.3, 1.5 Hz, 2H), 7.65 (dd, J = 8.4 Hz, 2H), 6.70 (d, J = 2.2 Hz, 2H), 6.52 (t, J = 2.3 Hz, 1H), 3.85 (s, 6H). ¹³C NMR (151 MHz,

CDCl₃) δ 161.26, 145.56, 141.25, 132.45, 127.74, 118.82, 111.08, 105.52, 100.26, 55.42.

CN-CN-CN [1,1'-biphenyl]-4,4'-dicarbonitrile (Table S1, entry 23). White solid; 173.6 mg, 85% yield; m.p. 232.1-232.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 8.4 Hz, 4H), 7.69 (d, J = 8.3 Hz, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 143.51, 132.87, 127.93, 118.38, 112.44.

4-(thiophen-3-yl)benzonitrile (Table S1, entry 24). White solid; 168.5 mg, 91% yield; m.p. 125.7-126.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.68 (s, 4H), 7.58 (s, 1H), 7.46–7.43 (m, 1H), 7.40 (d, J = 5.0 Hz, 1H). ¹³C NMR (151 MHz,

CDCl₃) δ 140.37, 140.03, 132.70, 127.15, 126.84, 125.93, 122.60, 118.93, 110.51.

2-(4-methylnaphthalen-1-yl)benzonitrile (Table S1, entry 25). White solid; 201.9 mg, 83% yield; m.p. 125.7-126.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, *J* = 8.5 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.55–7.50 (m, 2H), 7.46–7.38 (m, 3H), 7.38–7.31 (m, 2H), 2.70 (d, *J* = 2.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 144.53, 135.46, 134.14, 132.88, 132.67, 132.08,

131.51, 131.32, 127.62, 127.09, 126.05, 125.86, 125.82, 125.64, 124.50, 118.06, 113.48, 19.47.

4-(trifluoromethyl)-1,1':2',1''-terphenyl (Table S1, entry 26). White solid; 149.1 mg, 50% yield; m.p. 125.7-126.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.48–7.38 (m, 6H), 7.27–7.19 (m, 5H), 7.14–7.08 (m, 2H). ¹³C NMR (151

MHz, CDCl₃) δ 145.26, 140.90, 140.69, 139.09, 130.79, 130.46, 130.13, 129.84, 128.21, 128.09, 127.66, 126.79, 124.83, 124.81.

2'-methyl-[1,1'-biphenyl]-2-carbonitrile (Table S1, entry 27). White solid; 156.5 mg, 81% yield; m.p. 46.1-46.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.22–7.17 (m, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 2.07 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 145.63, 137.91, 135.49, 132.66, 132.31, 130.31, 130.25, 129.27, 128.57, 127.43, 125.70, 117.96, 112.65, 19.69.

6-phenyl-1H-indole (Table S1, entry 28). White solid; 102.4 mg, 53% yield; m.p. 106.1-107.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.20 (s, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.68–7.64 (m, 2H), 7.61 (dt, *J* = 1.7, 0.9 Hz, 1H), 7.45 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.41 – 7.38 (m, 1H), 7.35–7.31 (m, 1H), 7.25 (t, *J* = 0.9 Hz, 1H),

6.59 (s, 1H).¹³C NMR (151 MHz, CDCl₃) δ 142.31, 136.36, 135.61, 128.68, 127.38, 127.20, 126.58, 124.78, 120.89, 119.81, 109.52, 102.56.

6-phenylquinoline (Table S1, entry 29). White solid; 154.0 mg, 85% yield; m.p. 115.7-116.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.92 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.23–8.17 (m, 2H), 8.02–7.97 (m, 2H), 7.74–7.70 (m, 2H), 7.53–7.48 (m, H)

2H), 7.46–7.38 (m, 2H).

3-(4-methoxyphenyl)pyridine (Table S1, entry 30). White solid; 155.6 mg, 84% yield; m.p. 62.1-63.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.84–8.80 (m, 1H), 8.55 (dd, J = 4.7, 1.6 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.55–7.50 (m, 4.8 Hz, 1H), 7.04 – 6.99 (m, 2H), ¹³C NMR (151 MHz, CDCl₃) δ 160.32.

2H), 7.35 (dd, J = 7.8, 4.8 Hz, 1H), 7.04 – 6.99 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 160.32, 147.75, 147.61, 136.38, 134.06, 130.13, 128.22, 122.68, 115.20, 55.37.

2-(4-methoxyphenyl)pyridine (Table S1, entry 31). White solid; 151.9 mg, 82% yield; m.p. 55.2-56.4 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.67–8.65 (m, 1H), 7.98–7.94 (m, 2H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.68 (d, *J* = 7.9 Hz,

1H), 7.21–7.16 (m, 1H), 7.03–6.98 (m, 2H), 3.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.57, 157.00, 148.95, 136.90, 132.19, 128.22, 121.44, 119.91, 114.17, 56.25.

4. Thermogravimetric Analyses

Thermogravimetric analyses (TGA) were conducted on 1030B type thermal analyzer (Dupont Engineering Polymers).

Table S2. Thermal stability of compounds (1)•AuCl, (2)•AuCl and (3)₂•(AuCl)₂.

Comp	(1)•AuCl	(2)•AuCl	$(3)_2 \bullet (\mathrm{AuCl})_2$
$T_{\rm d}$ / $^{\rm o}{ m C}$	225	234	251

*T*d: degradation temperature.

Table S3. Thermal stability of compounds (1)₂•PtCl₂, (2)₂•PtCl₂ and (3)₂•PtCl₂.

Comp	$(1)_2 \cdot PtCl_2$	$(2)_2 \cdot PtCl_2$	(3) ₂ •PtCl ₂
$T_{\rm d}$ / $^{ m o}{ m C}$	220	305	235

Table S4. Thermal stability of compounds (1)₂•(PdCl₂)₂, (2)₂•PdCl₂ and (3)₂•PdCl₂.

Comp	$(1)_2 \cdot (PdCl_2)_2$	$(2)_2 \cdot \mathrm{PdCl}_2$	$(3)_2 \cdot \mathrm{PdCl}_2$
$T_{\rm d}$ / °C	231	252	241

T^d : degradation temperature.

Fig. S1 Thermogravimetric analyses of compounds (1)•AuCl, (2)•AuCl and (3)₂•(AuCl)₂.

Fig. S2 Thermogravimetric analyses of compounds (1)₂•PtCl₂, (2)₂•PtCl₂ and (3)₂•PtCl₂.

Fig. S3. Thermogravimetric analyses of compounds (1)₂• (PdCl₂)₂, (2)₂•PdCl₂ and (3)₂•PdCl₂.

5. X-ray Crystal Structure Analyses

5.1 Experimental details on crystal growth

Single crystals of (1)•AuCl (yellow needle), (2)•AuCl (yellow needle) and $(3)_2$ •(AuCl)₂ (yellow needle) obtained by slowly evaporating DCM-MeCN (1:2, v/v)solutions at room temperature, (1)₂•(PdCl₂)₂ (reddish brown needle) and (2)₂•PdCl₂ (reddish brown needle) obtained by slowly evaporating DCM-MeCN (1:1, v/v) solutions at room temperature, (3)₂•PdCl₂ (reddish brown needle) obtained by slowly evaporating DCM-Hexane (1:1, v/v) solutions at room temperature, (1)₂•PtCl₂ (yellow needle), (2)₂•PtCl₂ (yellow needle) and (3)₂•PtCl₂ (yellow needle) obtained by slowly evaporating DCM-Hexane (1:1, v/v) solutions at room temperature, (1)₂•PtCl₂ (yellow needle), (2)₂•PtCl₂ (yellow needle) and (3)₂•PtCl₂ (yellow needle) obtained by slowly evaporating DCM-MeCN (1:2, v/v) solutions at room temperature.

Compounds	(1)•AuCl	(2)•AuCl	(3) ₂ •(AuCl) ₂
CCDC number	2331327	2331332	2331333
Empirical formula	C48H59AuClO6PS2	C48.5H59.75AuClN0.25O6PSe2	C48H59AuClO6PTe2
Formula weight	1059.45	1163.52	1249.02
Temperature [K]	149.99(10)	149.99(10)	149.99(11)
Crystal system	triclinic	monoclinic	monoclinic
Space group	<i>P</i> -1 (#2)	$P2_{1}/c$ (#14)	$P2_1/c$ (#14)
<i>a</i> [Å]	16.7310(3)	28.00533(19)	9.95628(4)
<i>b</i> [Å]	17.9089(4)	38.3306(3)	33.13649(19)
<i>c</i> [Å]	19.0611(3)	17.81397(12)	29.23546(13)
α [°]	106.6663(17)	90	90
β [°]	102.9809(16)	91.8893(6)	90.7583(4)
γ [°]	114.312(2)	90	90
V[Å ³]	4585.98(18)	19112.2(2)	9644.41(8)
Ζ	4	16	8
d_{calc} [g cm ⁻³]	1.534	1.617	1.72
$\mu [\mathrm{mm}^{-1}]$	8.124	8.73	16.274
Crystal size [mm ³]	$0.17 \times 0.08 \times 0.04$	$0.13 \times 0.11 \times 0.05$	$0.05 \times 0.02 \times 0.01$
λ [Å]	1.54184 (Cu-Kα)	1.54184 (Cu-Kα)	1.54184 (Cu-Kα)
$2\theta_{max}$ [°]	152.89	155.454	152.122
Data/restraints/parameters	18478/0/1094	38279/1632/2164	19062/1572/1230
GooF	1.063	1.04	1.057
$R\left[I > 2\sigma(I)\right]$	0.0397	0.0801	0.0434
wR_2	0.1031	0.2264	0.1102

Table S5.	Selected	crystallogram	ohic data	of (1)•/	AuCl. (2)	•AuCl and	(3)2•	(AuCl) ₂ .
14010 00.	Serected	or journo grup	Jine aata		14019 (=	, mach and	(0)2	(11401)2.

Compounds	$(1)_2 \cdot PtCl_2$	$(2)_2 \cdot PtCl_2$	$(3)_2 \cdot PtCl_2$
CCDC number	2331336	2331339	2331340
Empirical formula	$C_{96.5}H_{119}Cl_2N_{0.5}O_{12.5}P_2PtS_4$	$C_{97}H_{119.5}Cl_2N_{0.5}O_{12}P_2PtSe_4$	$C_{96}H_{118}Cl_2O_{12}P_2PtTe_4$
Formula weight	1942.08	2128.19	2302.23
Temperature [K]	149.99(10)	149.96(13)	129.99(10)
Crystal system	triclinic	triclinic	triclinic
Space group	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)	<i>P</i> -1 (#2)
<i>a</i> [Å]	17.4708(3)	17.1838(2)	16.26452(15)
<i>b</i> [Å]	22.2672(4)	22.6370(3)	16.53506(16)
<i>c</i> [Å]	24.0276(4)	24.0907(2)	19.14664(18)
α [°]	89.5107(13)	89.8577(9)	83.1891(8)
β[°]	79.0226(14)	78.6933(10)	65.4490(9)
γ [°]	86.6647(15)	86.8545(11)	88.1601(8)
V [Å ³]	9160.8(3)	9175.00(19)	4649.78(8)
Ζ	4	4	2
d_{calc} [g cm ⁻³]	1.408	1.541	1.644
$\mu \text{ [mm^{-1}]}$	5.072	6.024	13.85
Crystal size [mm ³]	$0.15 \times 0.07 \times 0.05$	$0.05 \times 0.01 \times 0.01$	$0.14 \times 0.11 \times 0.09$
λ [Å]	1.54184 (Cu-Kα)	1.54184 (Cu-Kα)	1.54184 (Cu-Kα)
$2\theta_{max}$ [°]	3.746 to 153.206	3.74 to 133.194	5.108 to 151.692
Data/restraints/parameters	36241/2026/2224	32357/73/2159	18064/30/1083
GooF	1.019	1.035	1.018
$R\left[I > 2\sigma(I)\right]$	0.0575	0.0636	0.0534
wR_2	0.1414	0.1810	0.1441

Table S6. Selected crystallographic data of $(1)_2 \cdot PtCl_2$, $(2)_2 \cdot PtCl_2$ and $(3)_2 \cdot PtCl_2$.

Table S7. Selected crystallographic data of (1)₂•(PdCl₂)₂, (2)₂•PdCl₂ and (3)₂•PdCl₂.

Compounds	$(1)_2 \cdot (PdCl_2)_2$	$(2)_2 \cdot PdCl_2$	$(3)_2 \cdot PdCl_2$
CCDC number	2331347	2331348	2331349
Empirical formula	$C_{98}H_{121}Cl_4NO_{12}P_2Pd_2S_4\\$	$C_{194}H_{239}Cl_4NO_{24}P_4Pd_2Se_8\\$	$C_{96}H_{118}Cl_{2}O_{12}P_{2}PdTe_{4} \\$
Formula weight	2049.73	4079.01	2213.54
Temperature [K]	149.99(10)	150.1(3)	150
Crystal system	triclinic	triclinic	triclinic
Space group	P-1 (#2)	<i>P</i> -1 (#2)	P-1 (#2)
<i>a</i> [Å]	16.9381(2)	17.3656(2)	15.0020(4)
<i>b</i> [Å]	20.3995(2)	22.3745(2)	17.4424(4)
<i>c</i> [Å]	29.6262(3)	24.2121(2)	17.9639(5)
α [°]	100.1680(10)	89.6800(10)	94.148(2)
β[°]	103.3670(10)	78.8790(10)	96.151(2)
γ [°]	95.8090(10)	86.7940(10)	90.060(2)
V [Å ³]	9694.55(19)	9216.30(16)	4661.1(2)
Ζ	4	2	2
$d_{calc} [\mathrm{g \ cm^{-3}}]$	1.404	1.47	1.577
$\mu [\mathrm{mm}^{-1}]$	5.599	4.773	12.606
Crystal size [mm ³]	$0.12 \times 0.07 \times 0.04$	$0.15 \times 0.05 \times 0.02$	$0.2\times0.1\times0.08$
λ [Å]	1.54184 (Cu-Kα)	1.54184 (Cu-Kα)	1.54184 (Cu-Kα)

$2\theta_{max}$ [°]	4.45 to 155.006	3.72 to 155.258	4.96 to 152.276
Data/restraints/parameters	38957/170/2344	37106/30/2159	17836/36/1092
GooF	1.097	1.033	1.047
$R \left[I > 2\sigma(I) \right]$	0.0969	0.0703	0.0826
wR_2	0.2363	0.1922	0.2194

Compounds	Molecular geometry parameters					
Compounds		C–X and P–N	A Bond Lengths		Bowl-depth	
(1)•AuC1	Mole. A	C–S, 1.80	C–P, 1.86	Au–P, 2.22	0.27	
(I)•AuCI	Mole. <i>B</i>	C–S, 1.79	С–Р, 1.86	Au–P, 2.22	0.56	
	Mole. A	C–Se, 1.94	C–P, 1.84	Au–P, 2.22	planar	
$(2) \bullet \mathbf{A} \cup \mathbf{C}^{1}$	Mole. <i>B</i>	C–Se, 1.94	С–Р, 1.84	Au–P, 2.23	planar	
(2)•AuCl	Mole. C	C–Se, 1.93	C–P, 1.85	Au–P, 2.22	planar	
	Mole. D	C–Se, 1.94	C–P, 1.85	Au–P, 2.23	0.21	
$(3) \circ (A \cup C^{1})$	Mole. A	C–Te, 2.12	С–Р, 1.83	Au–P, 2.23	0.17	
$(3)_2^{\bullet}(AuC1)_2$	Mole. <i>B</i>	C–Te, 2.12	C–P, 1.84	Pt–P, 2.23	planar	
	Mole. A	C–S, 1.80	С–Р, 1.87	Pt–P, 2.25	0.32	
$(1) \rightarrow D + C $	Mole. <i>B</i>	C–S, 1.81	C–P, 1.87	Pt–P, 2.25	planar	
$(\mathbf{I})_2 \bullet PtC_{12}$	Mole. C	C–S, 1.81	C–P, 1.87	Pt–P, 2.25	0.20	
	Mole. <i>D</i>	C–S, 1.80	С–Р, 1.88	Pt–P, 2.24	planar	
	Mole. A	C–Se, 1.94	C–P, 1.87	Pt–P, 2.25	planar	
	Mole. <i>B</i>	C–Se, 1.94	C–P, 1.85	Pt–P, 2.25	0.15	
$(2)_2 \bullet PtCl_2$	Mole. C	C–Se, 1.95	С–Р, 1.86	Pt–P, 2.24	planar	
	Mole. D	C–Se, 1.94	C–P, 1.86	Pt–P, 2.25	0.26	
$(2) \bullet D + C $	Mole. A	C–Te, 2.12	С–Р, 1.85	Pt–P, 2.24	planar	
$(3)_2$ $(1)_2$	Mole. <i>B</i>	C–Te, 2.12	C–P, 1.85	Pt–P, 2.24	0.10	
$(1) \bullet (D dC1)$	Mole. A	C–S, 1.80	С–Р, 1.85	Pd–P, 2.20	0.33	
$(1)_{2} \cdot (\Gamma dC_{12})_{2}$	Mole. <i>B</i>	C–S, 1.80	C–P, 1.84	Pd–P, 2.20	0.39	
(1) (D4C1) CUCN	Mole. <i>C</i>	C–S, 1.80	С–Р, 1.85	Pd–P, 2.22	0.50	
$(1)^{\bullet}(PdCl_2)^{\bullet}CH_3CN$	Mole. D	C–S, 1.80	C–P, 1.84	Pd–P, 2.21	0.49	
	Mole. A	C–Se, 1.93	C–P, 1.86	Pd–P, 2.27	planar	
$(2)_2 \cdot \mathrm{PdCl}_2$	Mole. <i>B</i>	C–Se, 1.94	C–P, 1.85	Pd–P, 2.28	0.18	
	Mole. C	C–Se, 1.94	С–Р, 1.86	Pd–P, 2.27	planar	
	Mole. D	C–Se, 1.94	C–P, 1.87	Pd–P, 2.27	0.25	
	Mole. A	C–Te, 2.11	C–P, 1.86	Pd–P, 2.27	0.22	
$(\mathfrak{Z})_2 \cdot \mathrm{PdCl}_2$	Mole. B	C–Te, 2.12	С–Р, 1.85	Pd–P, 2.28	planar	

Table S8. Averaged C-X (X = S, Se, Te, P) and P-M (M = Au, Pd, Pt) bond lengths (Å) and bowl-depth (Å).

Fig. S4 Crystal structure of (1)•AuCl: a) top view and b) side view of coordination molecule A in (1)•AuCl. c) top view and d) side view of coordination molecule B in (1)•AuCl. e) packing motif with intermolecular contacts shown (Å). The C, H, O, S, P, Cl and Au atoms are respectively shown in blue, pale cyan, red, yellow, orange, cyan and pink. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d) and e).

Fig. S5 Crystal structure of (2)•AuCl: a) top view and b) side view of coordination molecule A in (2)•AuCl. c) top view and d) side view of coordination molecule B in (2)•AuCl. e) top view and f) side view of coordination molecule C in (2)•AuCl. g) top view and h) side view of coordination molecule D in (2)•AuCl. The C, H, O, Se, P, Cl and Au atoms are respectively shown in blue, pale cyan, red, green, orange, cyan and pink. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d), f) and h).

Fig. S6 a) Packing structure of (**2**)•AuCl. The C, H, O, Se, P, Cl and Au atoms are respectively shown in blue, pale cyan, red, green, orange, cyan and pink. The n-Bu groups and H atoms are omitted for clarity.

Fig. S7 Crystal structure of $(3)_2 \cdot (AuCl)_2$: a) top view and b) side view of molecule *A* in compound $(3)_2 \cdot (AuCl)_2$. c) top view and d) side view of molecule *B* in compound $(3)_2 \cdot (AuCl)_2$. e) packing motif of $(3)_2 \cdot (AuCl)_2$. The C, H, O, Te, P, Cl and Au atoms are respectively shown in blue, pale cyan, red, blue, orange, cyan and pink. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d) and e).

Fig. S8 Crystal structure of $(1)_2 \cdot PtCl_2$: a) top view and b) side view of molecule *A* in $(1)_2 \cdot PtCl_2$. c) top view and d) side view of molecule *B* in $(1)_2 \cdot PtCl_2$. e) top view and f) side view of molecule *C* in $(1)_2 \cdot PtCl_2$. g) top view and h) side view of molecule *D* in $(1)_2 \cdot PtCl_2$. The C, H, O, S and P atoms are respectively shown in blue, pale cyan, red, yellow and orange. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d), f) and h).

Fig. S9 Crystal structure of (1)₂•PtCl₂ with n-Bu groups and H atoms omitted for clarity: a) and b) structures of two kinds of (1)₂•PtCl₂ with Pt-P bond length and bowl-depth shown (Å); c) packing structure of compound (1)₂•PtCl₂. The C, H, O, S, P, Cl and Pt atoms are respectively shown in blue, pale cyan, red, yellow, orange, cyan and violet.

Fig. S10 Crystal structure of $(2)_2 \cdot PtCl_2$: a) top view and b) side view of molecule A in $(2)_2 \cdot PtCl_2$. c) top view and d) side view of molecule B in $(2)_2 \cdot PtCl_2$. e) top view and f) side view of molecule C in $(2)_2 \cdot PtCl_2$. g) top view and h) side view of molecule D in $(2)_2 \cdot PtCl_2$. The C, H, O, Se and P atoms are respectively shown in blue, pale cyan, red, green and orange. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d), f) and h).

Fig. S11 Crystal structure of (2)₂•PtCl₂ with n-Bu groups and H atoms omitted for clarity: a) and b) structures of two kinds of (2)₂•PtCl₂ with Pt-P bond length and bowl-depth shown (Å); c) packing structure of compound (2)₂•PtCl₂. The C, H, O, Se, P, Cl and Pt atoms are respectively shown in blue, pale cyan, red, green, orange, cyan and violet.

Fig. S12 Crystal structure of $(3)_2 \cdot PtCl_2$: a) top view and b) side view of molecule A in $(3)_2 \cdot PtCl_2$. c) top view and d) side view of molecule *B* in $(3)_2 \cdot PtCl_2$. e) Side view and f) top view of molecule $(3)_2 \cdot PtCl_2$. The C, H, O, Te, P, Cl and Pt atoms are respectively shown in blue, pale cyan, red, blue, orange, cyan and violet. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d), e) and f).

Fig. S13 g) packing motif of crystal structure of (**3**)₂•PtCl₂.The C, H, O, Te, P, Cl and Pt atoms are respectively shown in blue, pale cyan, red, blue, orange, cyan and violet. The n-Bu groups and H atoms are omitted for clarity.

Fig. S14 Crystal structure of $(1)_2 \cdot (PdCl_2)_2$: a) top view and b) side view of molecule A in $(1)_2 \cdot (PdCl_2)_2$; c) top view and d) side view of molecule B in $(1)_2 \cdot (PdCl_2)_2$. e) top view and f) side view of molecule C in $(1) \cdot PdCl_2 \cdot MeCN$; g) top view and h) side view of molecule D in $(1) \cdot PdCl_2 \cdot MeCN$. C, H, O, S and P atoms are respectively shown in blue, pale cyan, red, yellow and orange. The selected bond lengths are in unit of Å. *n*-Bu groups and H atoms are omitted for clarity in b), d), f) and h).

Fig. S15 Packing structure of (1)₂•(PdCl₂)₂: a) side view of (1)₂•(PdCl₂)₂ with Pd-P bond length and bowl-depth shown (Å); b) and c) side view of two kinds of (1)•PdCl₂•**MeCN** with Pd-P bond length and bowl-depth shown (Å); d) packing motif with intermolecular contacts shown (Å). The C, H, O, N, S, P, Cl and Pd atoms are respectively shown in blue, pale cyan, red, cyan, yellow, orange, cyan and pink. The n-Bu groups and H atoms are omitted for clarity.

Fig. S16 Crystal structure of $(2)_2 \cdot PdCl_2$: a) top view and b) side view of molecule A in $(2)_2 \cdot PdCl_2$. c) top view and d) side view of molecule B in $(2)_2 \cdot PdCl_2$. e) top view and f) side view of molecule C in $(2)_2 \cdot PdCl_2$. g) top view and h) side view of molecule D in $(2)_2 \cdot PdCl_2$. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d), f) and h). The C, H, O, Se and P atoms are respectively shown in blue, pale cyan, red, green and orange.

Fig. S17 Crystal structure of (2)₂•PdCl₂ with n-Bu groups and H atoms omitted for clarity: a) and b) structures of two kinds of (2)₂•PdCl₂ with Pd-P bond length and bowl-depth shown (Å); c) packing structure of compound (2)₂•PdCl₂. The C, H, O, Se, P, Cl and Pd atoms are respectively shown in blue, pale cyan, red, green, orange, cyan and pink.

Fig. S18 Crystal structure of $(3)_2 \cdot PdCl_2$: a) top view and b) side view of molecule A in $(3)_2 \cdot PdCl_2$; c) top view and d) side view of molecule B in $(3)_2 \cdot PdCl_2$; e) side view and f) top view of molecule $(3)_2 \cdot PdCl_2$; g) packing structure of compound $(3)_2 \cdot PdCl_2$. The C, H, O, Te, P, Cl and Pd atoms are respectively shown in blue, pale cyan, red, blue, orange, cyan and pink. The selected bond lengths are in unit of Å. The n-Bu groups and H atoms are omitted for clarity in b), d), e), f)

6. Electrochemical spectra

comp.	$E_{\mathrm{ox}}^{1}(\mathrm{V})$	$E_{\rm ox}^2({\rm V})$	$E_{0x}^{3}(V)$	<i>Е</i> номо (eV)
1	0.76	1.21	_	-5.16
2	0.78	1.21	1.39	-5.18
3	0.78	1.11	1.39	-5.18
(1)•AuCl	0.97	1.27	1.47	-5.37
(2)•AuCl	0.98	1.28	1.48	-5.38
(3) ₂ •(AuCl) ₂	0.96	1.22	1.61	-5.36
$(1)_2 \bullet (PdCl_2)_2$	0.97	1.30	1.48	-5.37
$(2)_2 \cdot PdCl_2$	0.86	1.06	1.43	-5.26
$(3)_2 \cdot PdCl_2$	0.81	1.13	1.38	-5.21
$(1)_2 \cdot PtCl_2$	0.83	1.07	1.43	-5.23
$(2)_2 \cdot PtCl_2$	0.83	1.05	1.42	-5.23
$(3)_2 \cdot PtCl_2$	0.80	0.92	1.28	-5.20

 Table S9. Electrochemical data, estimated HOMO levels.

The HOMO energy levels are estimated from electrochemical data, $E_{\text{HOMO}} = -e (E_{\text{ox}}^{1} + 4.40)$ (eV).

Fig. S19 CV and DPV of 1, 2, 3, (1)•AuCl, (2)•AuCl and (3)₂•(AuCl)₂ in CH₂Cl₂ (c = 10^{-4} mol·L⁻¹) at RT. Reference electrode: SCE.

Fig. S20 CV and DPV of (1)₂•PtCl₂, (2)₂•PtCl₂, (3)₂•PtCl₂, (1)₂•(PdCl₂)₂, (2)₂•PdCl₂ and (3)₂•PdCl₂ in CH₂Cl₂ ($c = 10^{-4} \text{ mol} \cdot L^{-1}$) at RT. Reference electrode: SCE.

7. Photophysical Study

The UV-Vis spectra of the compounds so far obtained were measured in their dichloromethane (CH₂Cl₂) solution (c= $1.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) at 20 °C on a UV-2600 UV-Vis spectrometer (Shimadzu).

Table S10.	UV-Vis spectra	a of compounds	s 1-3, (1)•AuCl,	(2)•AuCl,	(3) ₂ •(AuCl) ₂ ,	(1)2•(PdCl ₂) ₂ ,
$(2)_2 \cdot PdCl_2, ($	$(3)_2 \cdot PdCl_2, (1)_2 \cdot$	•PtCl ₂ , (2) ₂ •PtCl	$_{2}$, and (3) ₂ •PtCl ₂	in CH ₂ Cl ₂ s	solution.	

Comp.	$\lambda_{\rm max}/{\rm nm}$	log ɛ	$\lambda_{\rm max}/{\rm nm}$	log ε	$\lambda_{\rm max}/{\rm nm}$	log ɛ
1	306	4.96	403	3.60	-	-
2	305	4.72	397	3.60	-	-
3	307	4.86	398	3.60	-	-
(1)•AuCl	305	4.83	407	3.85	-	-
(2)•AuCl	301	4.91	401	3.90	-	-
$(3)_2 \bullet (\mathrm{AuCl})_2$	303	4.89	378	3.90	401	3.78
$(1)_2 \cdot (PdCl_2)_2$	305	5.32	390	4.40	466	4.08
$(2)_2 \bullet PdCl_2$	298	5.23	391	4.30	-	-
$(3)_2 \bullet \mathrm{PdCl}_2$	291	5.02	393	4.26	-	-
$(1)_2 \cdot PtCl_2$	299	5.14	412	4.11	-	-
$(2)_2 \bullet PtCl_2$	295	5.15	405	4.04	-	-
$(3)_2 \cdot PtCl_2$	303	5.00	405	3.90	_	-

Fig. S21 UV-Vis absorption spectra of 1, (1)•AuCl, (1)₂•PtCl₂ and (1)₂•(PdCl₂)₂ in CH₂Cl₂ solution $(c = 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ at 20 °C.

Fig. S22 UV-Vis absorption spectra of **2**, (**2**)•AuCl, (**2**)₂•PtCl₂ and (**2**)₂•PdCl₂ in CH₂Cl₂ solution ($c = 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) at 20 °C.

Fig. S23 UV-Vis absorption spectra of 3, $(3)_2 \cdot (AuCl)_2$, $(3)_2 \cdot PtCl_2$ and $(3)_2 \cdot PdCl_2$ in CH₂Cl₂ solution ($c = 10^{-5} \text{ mol} \cdot L^{-1}$) at 20 °C.

8. Calculations

During the structure optimizations and frontier orbital calculations, the butyl groups on calculated molecules were replaced by methyl groups to give the corresponding molecules (**Scheme S7**), because alkyl groups have almost no contribution to the HOMO and LUMO orbitals and the geometry of the conjugated framework.

All the calculations were performed with Gaussian 16 software package^[S5]. Geometry optimizations were carried out using B3LYP^[S6]/Def2-SVP^[S7]/ method. Molecular orbital energies were calculated at B3LYP/Def2-TZVP level of theory using optimized structures. Aromaticity of each ring was measured by nucleus independent chemical shift (NICS)^{[S8][S9]}, which was computed using the gauge invariant atomic orbital (GIAO)^[S10-13]approach at the GIAO-B3LYP/Def2-SVP level with optimized structures.

Scheme S5 The chemical structures of calculated molecules.

8.1 Optimized Structures, Molecular Orbitals and Corresponding Energies

Comp			Energy levels	e/eV	
Comp.	HOMO-1	НОМО	LUMO	LUMO+1	Eg ^[a]
1'	-5.66	-5.47	-1.45	-1.36	4.02
2'	-5.65	-5.42	-1.39	-1.32	4.03
3'	-5.56	-5.27	-1.31	-1.27	3.95
(1')•AuCl	-5.99	-5.62	-1.96	-1.68	3.66
(2')•AuCl	-5.98	-5.57	-1.82	-1.54	3.75
(3') ₂ •(AuCl) ₂	-5.44	-5.18	-1.85	-1.88	3.33
$(1')_2 \cdot PtCl_2$	-5.67	-5.52	-2.20	-2.13	3.32
$(2')_2 \cdot PtCl_2$	-5.61	-5.46	-2.17	-2.11	3.29
(3') ₂ •PtCl ₂	-5.58	-5.32	-2.04	-1.96	3.28
$(1')_2 \cdot (PdCl_2)_2$	-5.64	-5.61	-3.04	-2.99	2.57
$(2')_2 \cdot PdCl_2$	-5.70	-5.48	-2.62	-2.11	2.86
$(\mathbf{3'})_2 \bullet PdCl_2$	-5.58	-5.34	-2.33	-2.07	3.01

Table S11 The calculated energy levels for the frontier orbitals for 1', 2', 3', (1')•AuCl, (2')•AuCl, (3')₂•(AuCl)₂, (1')₂•(PdCl₂)₂, (2')₂•PdCl₂, (3')₂•PdCl₂, (1')₂•PtCl₂, (2')₂•PtCl₂ and (3')₂•PtCl₂.

[a] $E_g = E_{\text{LUMO}} - E_{\text{HOMO}}$

Fig. S24 HOMO-LUMO level gaps of 1', (1')•AuCl, (1')₂• (PdCl₂)₂ and (1')₂•PtCl₂.

Fig. S25 HOMO-LUMO level gaps of 2', (2')•AuCl, (2')₂•PdCl₂ and. (2')₂•PtCl₂.

Fig. S26 HOMO-LUMO level gaps of 3', (3')₂•(AuCl)₂, (3')₂•PdCl₂ and (3')₂•PtCl₂.

Fig. S27 Calculated molecular orbitals of compound 1'.

Fig. S28 Calculated molecular orbitals of compound 2'.

Fig. S29 Calculated molecular orbitals of compound 3'.

Fig. S30 Calculated molecular orbitals of compound (1')•AuCl.

Fig. S31 Calculated molecular orbitals of compound (2')•AuCl.

Fig. S32 Calculated molecular orbitals of compound (3')₂•(AuCl)₂.

Fig. S33 Calculated molecular orbitals of compound $(1')_2$ ·PtCl₂.

Fig. S34 Calculated molecular orbitals of compound (2')₂•PtCl₂.

Fig. S35 Calculated molecular orbitals of compound (3')₂•PtCl₂.

Fig. S36 Calculated molecular orbitals of compound (1')₂• (PdCl₂)₂.

Fig. S37 Calculated molecular orbitals of compound (2')₂•PdCl₂.

Fig. S38 Calculated molecular orbitals of compound (3')₂•PdCl₂.

8.2 Bowl to Bowl Inversion Energy

inner-conformer

Fig. S39 Bowl-to-bowl inversion energy of 1' calculated at the B3LYP/def2-TZVP level.

	C	inversion energy	
comp.	conformer	ΔG^{\dagger} (kcal / mol)	
1'	inner	4.44	
1	outer	2.95	
(1 ²)•AuCl	inner	7.02	
	outer	2.87	
$(1^{\prime}) \cdot (PdCl_{2}) \cdot CH_{2}CN$	inner	4.74	
	outer	1.81	

8.3 Molecular Electrostatic Potential Surfaces and Dipole Moments

Fig. S40 Calculated electrostatic potential surfaces and dipole moments.

8.4 Aromaticity Calculations

Scheme S6 The chemical structures of calculated compounds (R=OBu).

Comp.	1 ring	2 ring	3 ring	4 ring	5 ring	6 ring	7 ring
1'	-12.74	-5.72	-11.44	1.47	-11.45	-5.87	-0.51
2'	-12.25	-4.80	-11.10	1.61	-11.13	-4.91	-1.12
3'	-11.54	-4.05	-10.66	1.45	-10.67	-4.08	-1.49
(1')•AuCl	-12.49	-5.15	-9.73	2.18	-11.06	-5.71	-2.02
(2')•AuCl	-11.99	-4.05	-9.76	2.56	-10.72	-4.68	-2.35
(3') ₂ •(AuCl) ₂	-12.14	-4.85	-11.43	2.00	-10.13	-5.28	-3.99
(1') ₂ •PtCl ₂	-13.99	-7.36	-12.70	0.48	-12.34	-6.68	-4.94
(2') ₂ •PtCl ₂	-13.43	-6.52	-12.09	1.08	-11.76	-5.54	-4.62
(3') ₂ •PtCl ₂	-12.44	-5.72	-11.43	1.03	-11.18	-4.60	-4.37
$(1')_2 \cdot (PdCl_2)_2$	-12.35	-5.24	-10.21	2.04	-10.17	-5.54	-1.92
$(2')_2 \cdot PdCl_2$	-13.46	-6.55	-12.08	0.95	-11.72	-5.54	-4.64
(3') ₂ •PdCl ₂	-12.44	-5.97	-11.90	1.28	-10.25	-4.57	-3.92

 Table S13 Calculated nucleus independent chemical shift (NICS).

 Table S14 Calculated nucleus independent chemical shift (NICS).

Comp.	1' ring	2' ring	3' ring	4' ring	5' ring	6' ring	7' ring
(3') ₂ •(AuCl) ₂	-13.14	-4.51	-10.19	1.95	-10.94	-5.42	-3.30
(1') ₂ •PtCl ₂	-14.15	-6.46	-10.45	1.75	-12.44	-7.27	-4.17
(2') ₂ •PtCl ₂	-13.47	-5.49	-10.09	1.47	-12.31	-6.98	-4.31
(3') ₂ •PtCl ₂	-12.44	-4.42	-9.52	1.33	-11.86	-6.09	-4.37
$(1')_2 \cdot (PdCl_2)_2$	-12.35	-5.26	-10.27	2.01	-10.18	-5.54	-1.83
$(2')_2 \cdot PdCl_2$	-13.48	-7.01	-12.33	1.18	-10.07	-5.47	-4.36
(3') ₂ •PdCl ₂	-12.57	-5.89	-11.27	0.96	-11.18	-4.65	-4.30

9. References

- [S1] W. L. F. Armarege, C. L. L. Chai, Purification of Laboratory Chemicals, 5th ed.
- [S2] L. Feng, X. Hua, J. Shang, Y. Feng, C. Yuan, Z. Liu, H.-L. Zhang, X. Shao, Chem. Eur. J., n/a, e202402977.
- [S3] M. C. Burla, R Caliandro., M. Camalli, B. Carrozzini, G. L. Cascarano, L. de Caro, C.Giacovazzo, G. Polidori, R. Spagna, J. Appl. Cryst. 2008, 38, 381.
- [S4] G. M. Sheldrick, SHELXL-97, A Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.
- [S5] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2008, 7, 3297.
- [S6] P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. V. E. Hommes, J. Am. Chem.Soc. 1999, 118, 6317.
- [S7] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. V. R Schleyer, Chem. Rev. 2008, 105, 3842.
- [S8] F. London, J. Phys. Radium. 1937, 8, 397.
- [S9] H. F. Hameka, Mol. Phys. 1988, 1, 203.
- [S10] R. Ditchfield, Mol. Phys. 1977, 27, 789.
- [S11] K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
- [S12] J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
- [S13] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

10. ¹H NMR, ³¹P NMR, C NMR, IR Spectra of Products

10.1 ³¹P NMR of P^{III}-doped heterasumanenes and their coordination complexes

	1	(1')•AuCl	$(1)_2 \cdot (PdCl_2)_2$	$(1)_2 \cdot PtCl_2$
	Y = lone pair	Y = Au	Y = Pd	Y = Pt
³¹ P NMR (ppm)	21.48	41.32	50.94	31.61
	2	(2')•AuCl	$(2)_2 \cdot PdCl_2$	$(2)_2 \cdot PtCl_2$
	Y = lone pair	Y = Au	Y = Pd	Y = Pt
³¹ P NMR (ppm)	23.10	42.92	47.29	27.11
	3	(3') ₂ •(AuCl) ₂	$(3)_2 \cdot \mathrm{PdCl}_2$	$(3)_2 \cdot PtCl_2$
	Y = lone pair	Y=Au	Y = Pd	Y = Pt
³¹ P NMR (ppm)	14.09	36.72	39.47	19.80

- 42.92

- 31.61

S66

140 130 120 110 90 80 żο 50 40 30 20 10 ò -10 -20 -30 -40 100 60 f1 (ppm)

- 47.29

