# **Supporting information**

# Aluminum-Catalyzed Anti-Markovnikov Hydroamination of

# **Aromatic Alkenes with Aromatic Amines**

Wenliang Yan, <sup>a</sup> Xiaoli Ma, <sup>\*a</sup> Qifeng Li, <sup>a</sup> Ziyuan Pang, <sup>a</sup> Xiaobo Yang, <sup>a</sup> Yiwen Chen, <sup>a</sup> Zhi Yang <sup>\* a</sup>

\* Corresponding authors. E-mail: maxiaoli@bit.edu.cn, zhiyang@bit.edu.cn.

<sup>a</sup> School of Chemistry and Chemical Engineering, Beijing Institute of Technology,

Beijing, P. R. China.

#### Contents

| 1. General Information                                                 | S2  |
|------------------------------------------------------------------------|-----|
| 2. Synthesis of Ligand and New Catalyst                                |     |
| 3. Optimization of Reaction Conditions                                 | S6  |
| 4. Typical Procedures for Alkene Hydroamination                        | S10 |
| 5. Transformations of Hydroamination Products and Gram-scale Synthesis | S11 |
| 6. Analytical Data of Compounds                                        | S14 |
| 7.Copies of NMR Spectra                                                | S24 |
| 8.References                                                           |     |

#### **1.** General Information

Unless otherwise noted, all manipulations were carried out using standard Schlenk and glovebox techniques. AlMe<sub>3</sub> (1.0 M in hexane) was purchased from Energy Chemical and used as received. Anhydrous solvents were purified and dried following standard procedures.<sup>1</sup> All commercially available reagents were used as received. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Column chromatography was performed on silica gel (200-300 mesh). Melting points (abbreviated as m.p.) were measured on a YRT-3 apparatus and uncorrected. The NMR spectra were recorded on a Bruker Ascend 400M or a Bruker Ascend 500 M spectrometer. Chemical shifts were reported in ppm downfield from internal tetramethylsilane (<sup>1</sup>H NMR: 0 ppm) and CDCl<sub>3</sub> (<sup>13</sup>C NMR: 77.16 ppm). Abbreviations are used in the description of NMR data as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (*J*, Hz). The LC-MS was performed on Agilent Q-TOF 6520 instruments.

#### 2. Synthesis of Ligand and New Catalyst

(1) Synthesis of Ligand LH



The title compound LH (L = HC(CCH<sub>3</sub>NAr)<sub>2</sub>, Ar = 2,6-(OMe)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) was prepared according to a literature procedure with a slight modification.<sup>2</sup> To an oven-dried 500 mL round-bottom flask equipped with a magnetic stir bar was added 2,6-dimethoxyaniline (20.220 g, 132 mmol), acetylacetone (6.007 g, 60 mmol) and toluene (150 mL). The solution was added 4-methylbenzenesulfonic acid (10.332 g, 60 mmol). The reaction vessel was equipped with a Dean-Stark apparatus and allowed to reflux for 30 h. The solution was then cooled to room temperature and a gray precipitate was collected by vacuum filtration and washed with excess toluene. The solid was then dissolved into 160 mL of an 80:80 mL mixture of dichloromethane and saturated sodium bicarbonate in water. The mixture was then stirred vigorously for 2 h followed by separation using a separatory funnel. The aqueous layer was then washed with dichloromethane (2×100 mL). All organic phases were then combined, dried over sodium sulfate, filtered, and concentrated under vacuum to give a gray solid. The solid was dried under high vacuum.

18.576 g, 84% yield, m.p. 167-170 °C.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 12.00 (s, 1H), 7.00 (t, *J* = 8.3 Hz, 2H), 6.57 (d, *J* = 8.3 Hz, 4H), 4.93 (s, 1H), 3.78 (s, 12H), 1.81 (s, 6H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 162.28, 153.81, 124.59, 124.29, 105.19, 95.46, 56.18, 20.82.

(2) Synthesis of New Catalyst NacNac<sup>DMOA</sup>AIMe<sub>2</sub>



A solution of LH (1.852 g, 5 mmol) in hexane (10 mL) was added dropwise AIMe<sub>3</sub> (6 mL, 6 mmol, 1.0 M in hexane) at ice bath under nitrogen atmosphere, and the reaction mixture was allowed to warm up to room temperature and stirred for 18 h. After the reaction, a yellow solid was generated. The yellow solid was filtered and washed with hexane (3×10 mL), and the residue was dried under high vacuum to afford a white solid. Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization in a saturated hexane solution of NacNac<sup>DMOA</sup>AIMe<sub>2</sub>.

1.735 g, 81% yield, m.p. 104-107 °C.

<sup>1</sup>H NMR (400 MHz, Benzene-*d*<sub>6</sub>) δ 6.77 (t, *J* = 8.3 Hz, 2H), 6.23 (d, *J* = 8.3 Hz, 4H),
4.99 (s, 1H), 3.27 (s, 12H), 1.72 (s, 6H), -0.65 (s, 6H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 168.02, 153.87, 124.59, 123.37, 104.19, 96.48, 55.16, 54.85, 21.64.



Table S1. Crystal data and structure refinement for NacNac<sup>DMOA</sup>AIMe<sub>2</sub>

| CCDC                                        | 2401637                                                         |
|---------------------------------------------|-----------------------------------------------------------------|
| Empirical formula                           | C <sub>23</sub> H <sub>31</sub> AlN <sub>2</sub> O <sub>4</sub> |
| Formula weight                              | 426.48                                                          |
| Temperature/K                               | 293(2)                                                          |
| Crystal system                              | orthorhombic                                                    |
| Space group                                 | Aea2                                                            |
| a/Å                                         | 14.4662(5)                                                      |
| b/Å                                         | 21.9361(7)                                                      |
| c/Å                                         | 15.0299(5)                                                      |
| α/°                                         | 90                                                              |
| β/°                                         | 90                                                              |
| γ/°                                         | 90                                                              |
| Volume/ų                                    | 4769.5(3)                                                       |
| Z                                           | 8                                                               |
| $\rho_{calc}g/cm^3$                         | 1.188                                                           |
| µ/mm⁻¹                                      | 0.114                                                           |
| F(000)                                      | 1824                                                            |
| Crystal size/mm <sup>3</sup>                | $0.36 \times 0.25 \times 0.24$                                  |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                              |
| 20 range for data collection/°              | 6.522 to 61.88                                                  |
| Index ranges                                | -13 ≤ h ≤ 20, -30 ≤ k ≤ 23, -18 ≤ l ≤ 18                        |
| Reflections collected                       | 14189                                                           |
| Independent reflections                     | 5505 [R <sub>int</sub> = 0.0294, R <sub>sigma</sub> = 0.0372]   |
| Data/restraints/parameters                  | 5505/1/279                                                      |
| Goodness-of-fit on F <sup>2</sup>           | 1.067                                                           |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0410$ , $wR_2 = 0.1017$                                |
| Final R indexes [all data]                  | $R_1 = 0.0519$ , $wR_2 = 0.1054$                                |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.28/-0.22                                                      |
| Flack parameter                             | 0.05(9)                                                         |

### 3. Optimization of Reaction Conditions

| NH <sub>2</sub> | Naci                            | Nac <sup>DMOA</sup> AIMe <sub>2</sub> (10 mol%), base |                                          | Ph                                   |
|-----------------|---------------------------------|-------------------------------------------------------|------------------------------------------|--------------------------------------|
|                 | Ph                              | THF, 60 °C, 24 h, N <sub>2</sub>                      | Ph                                       | Ph Ph                                |
| 1a              | 2a                              |                                                       | 3a                                       | 4a                                   |
| Entry           | Base                            | Loading (mol%)                                        | Yield of <b>3a</b><br>(%) <sup>[b]</sup> | Ratio ( <b>3a/4a)</b> <sup>[b]</sup> |
| 1               | <sup>t</sup> BuOK               | 200                                                   | 76                                       | 93:7                                 |
| 2               | КОН                             | 200                                                   | n.d.                                     | n.d.                                 |
| 3               | K <sub>2</sub> CO <sub>3</sub>  | 200                                                   | n.d.                                     | n.d.                                 |
| 4               | KPF <sub>6</sub>                | 200                                                   | n.d.                                     | n.d.                                 |
| 5               | <sup>t</sup> BuONa              | 200                                                   | n.d.                                     | n.d.                                 |
| 6               | NaOH                            | 200                                                   | n.d.                                     | n.d.                                 |
| 7               | NaH                             | 200                                                   | n.d.                                     | n.d.                                 |
| 8               | $NaNH_2$                        | 200                                                   | n.d.                                     | n.d.                                 |
| 9               | MeONa                           | 200                                                   | n.d.                                     | n.d.                                 |
| 10              | Cs <sub>2</sub> CO <sub>3</sub> | 200                                                   | n.d.                                     | n.d.                                 |
| 11              | $CaH_2$                         | 200                                                   | n.d.                                     | n.d.                                 |
| 12              | DBU                             | 200                                                   | n.d.                                     | n.d.                                 |
| 13              | Et₃N                            | 200                                                   | n.d.                                     | n.d.                                 |
| 14              | NMM                             | 200                                                   | n.d.                                     | n.d.                                 |
| 15              | <sup>t</sup> BuOK               | 50                                                    | 59                                       | 95:5                                 |
| 16              | <sup>t</sup> BuOK               | 100                                                   | 43                                       | 95:5                                 |
| 17              | <sup>t</sup> BuOK               | 150                                                   | 47                                       | 92:8                                 |
| 18              | <sup>t</sup> BuOK               | 220                                                   | 43                                       | 96:4                                 |
| 19              | <sup>t</sup> BuOK               | 250                                                   | 46                                       | 94:6                                 |
| 20              | <sup>t</sup> BuOK               | 300                                                   | 45                                       | 93:7                                 |
| 21              | <sup>t</sup> BuOK               | 320                                                   | 45                                       | 93:7                                 |

| Table S2. | Evaluation | of | bases <sup>[a]</sup> |
|-----------|------------|----|----------------------|
|-----------|------------|----|----------------------|

<sup>[a]</sup> General conditions: aniline (0.25 mmol), styrene (1.2 equiv.), base, and **NacNac<sup>DMOA</sup>AIMe<sub>2</sub>** (10 mol%) were stirred in 1 mL THF at 60 °C for 24 h under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard. n.d. = not detected.

| NH <sub>2</sub> |    | NacNac <sup>DMOA</sup> AIMe <sub>2</sub> (10 m | ol%), <sup>t</sup> BuOK (200 mol%)    | H Ph                                  |
|-----------------|----|------------------------------------------------|---------------------------------------|---------------------------------------|
|                 | Ph | Solvent, 60 °                                  | C, 24 h, N <sub>2</sub> Ph            | Ph Ph Ph Ph                           |
| 1a              | 2a |                                                |                                       | 3a 4a                                 |
|                 |    |                                                |                                       |                                       |
| Entry           |    | Solvent                                        | Yield of <b>3a</b> (%) <sup>[b]</sup> | Ratio ( <b>3a/4a</b> ) <sup>[b]</sup> |
| 1               |    | THF                                            | 76                                    | 93:7                                  |
| 2               |    | Dioxane                                        | 30                                    | 100:0                                 |
| 3               |    | MTBE                                           | 28                                    | 100:0                                 |
| 4               |    | PhCl                                           | 13                                    | 100:0                                 |
| 5               |    | DMF                                            | n.d.                                  | n.d.                                  |
| 6               |    | DMSO                                           | 5                                     | 85:15                                 |
| 7               |    | Hexane                                         | 8                                     | 87:13                                 |
| 8               |    | MeCN                                           | n.d.                                  | n.d.                                  |
| 9               |    | <i>p</i> -Xylene                               | 5                                     | 100:0                                 |
| 10              |    | Toluene                                        | 6                                     | 86:14                                 |

#### Table S3. Evaluation of solvents<sup>[a]</sup>

<sup>[a]</sup> General conditions: aniline (0.25 mmol), styrene (1.2 equiv.), <sup>t</sup>BuOK (2 equiv.) and **NacNac<sup>DMOA</sup>AIMe<sub>2</sub>** (10 mol%) were stirred in 1 mL solvent at 60 °C for 24 h under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard. n.d. = not detected.

| NH2 +                   | Ph NacNac <sup>DMOA</sup> AIM | <mark>e₂</mark> (10 mol%), <sup>t</sup> BuOK (20<br>, 60 °C,  24 h, N₂ | $\frac{10 \text{ mol}\%)}{\text{Ph}} \xrightarrow{H} N$ | Ph<br>Ph + Ph<br>N<br>Ph              |
|-------------------------|-------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 1a                      | 2a                            |                                                                        | 3a                                                      | 4a                                    |
| Entry                   | Aniline (equiv.)              | Styrene<br>(equiv.)                                                    | Yield of <b>3a</b><br>(%) <sup>[b]</sup>                | Ratio ( <b>3a/4a</b> ) <sup>[b]</sup> |
| 1                       | 1                             | 5                                                                      | 80                                                      | 84:16                                 |
| 2                       | 1                             | 3                                                                      | 61                                                      | 94:6                                  |
| 3                       | 1                             | 1.5                                                                    | 47                                                      | 95:5                                  |
| 4                       | 1                             | 1.2                                                                    | 76                                                      | 93:7                                  |
| 5                       | 1                             | 1                                                                      | 45                                                      | 96:4                                  |
| 6                       | 1.2                           | 1                                                                      | 39                                                      | 96:4                                  |
| 7                       | 2                             | 1                                                                      | 55                                                      | 97:3                                  |
| <b>8</b> <sup>[c]</sup> | 1                             | 1.2                                                                    | 30                                                      | 100:0                                 |
| <b>9</b> [c]            | 1                             | 2                                                                      | 57                                                      | 97:3                                  |
| 10 <sup>[c]</sup>       | 1                             | 3                                                                      | 57                                                      | 97:3                                  |
| 11 <sup>[c]</sup>       | 1                             | 5                                                                      | 84                                                      | 94:6                                  |

#### Table S4. Evaluation of Substrate ratio<sup>[a]</sup>

<sup>[a]</sup> General conditions: 1 equiv. = 0.25 mmol, aniline, styrene, <sup>t</sup>BuOK (2 equiv.) and **NacNac<sup>DMOA</sup>AIMe<sub>2</sub>** (10 mol%) were stirred in 1 mL THF at 60 °C for 24 h under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard. n.d. = not detected. <sup>[c]</sup> Dioxane instead of THF.

| NH <sub>2</sub> | + Ph Catalyst, <sup>t</sup> Bu<br>Solvent, 6 | IOK (200 mol%)<br>0 °C, 24 h, N <sub>2</sub> | → Ph    | l<br>N`Ph Ph´                | Ph<br>N<br>Ph                   |
|-----------------|----------------------------------------------|----------------------------------------------|---------|------------------------------|---------------------------------|
| 1a              | 2a                                           |                                              | 3a      |                              | 4a                              |
|                 |                                              |                                              |         |                              |                                 |
| Entry           | Cataluct                                     | Loading                                      | Solvont | Yield of                     | Ratio                           |
| Entry           | Catalyst                                     | (mol%)                                       | Solvent | <b>3a</b> (%) <sup>[b]</sup> | ( <b>3a/4a</b> ) <sup>[b]</sup> |
| 1               | AlMe <sub>3</sub>                            | 10                                           | THF     | 39                           | 93:7                            |
| 2               | Al′Bu₂H                                      | 10                                           | THF     | 19                           | 100:0                           |
| 3               | AICIEt <sub>2</sub>                          | 10                                           | THF     | 25                           | 93:7                            |
| 4               | NacNac <sup>DMOA</sup> AIMe <sub>2</sub>     | 10                                           | THF     | 80                           | 84:16                           |
| 5               | NacNac <sup>DMOA</sup> AIMe <sub>2</sub>     | 10                                           | Dioxane | 84                           | 94:6                            |
| 6               | NacNac <sup>DMOA</sup> AIMe <sub>2</sub>     | 15                                           | Dioxane | 63                           | 66:34                           |
| 7               | NacNac <sup>DMOA</sup> AIMe <sub>2</sub>     | 5                                            | Dioxane | 70                           | 95:5                            |
| 8               | NacNac <sup>DMOA</sup> AIMe <sub>2</sub>     | 1                                            | Dioxane | 18                           | 100:0                           |

#### Table S5. Evaluation of catalysts and catalyst loadings <sup>[a]</sup>

<sup>[a]</sup> General conditions: aniline (0.25 mmol), styrene (5 equiv.), <sup>t</sup>BuOK (2 equiv.), and catalyst were stirred in 1 mL solvent at 60 °C for 24 h under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard.

| NH <sub>2</sub> + Ph | NacNac <sup>DMOA</sup> AIMe <sub>2</sub> (10 n<br>Dioxane, 60 | nol%), <sup>t</sup> BuOK (200 mol%)<br>℃, 24 h, N <sub>2</sub> Ph | $\sim \frac{H}{N_{Ph}} + \frac{Ph}{Ph} \sim \frac{Ph}{N_{Ph}} $ |
|----------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
| 1a 2a                |                                                               |                                                                   | 3a 4a                                                           |
| Entry                | Dioxane (mL)                                                  | Yield of <b>3a</b> (%) <sup>[b]</sup>                             | Ratio <b>(3a/4a)</b> <sup>[b]</sup>                             |
| 1                    | 1.5                                                           | 61                                                                | 97:3                                                            |
| 2                    | 1.0                                                           | 84                                                                | 94:6                                                            |
| 3                    | 0.5                                                           | 84                                                                | 88:12                                                           |
| 4                    | 0.1                                                           | 73                                                                | 75:25                                                           |

#### Table S6. Evaluation of amounts of solvent <sup>[a]</sup>

<sup>[a]</sup> General conditions: aniline (0.25 mmol), styrene (5 equiv.), <sup>t</sup>BuOK (2 equiv.) and NacNac<sup>DMOA</sup>AIMe<sub>2</sub> (10 mol%) were stirred in Dioxane at 60 °C for 24 h under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard.

| Table S7. Ev    | valuati | on of amounts of solv                            | vent <sup>[a]</sup>              |                      |                        |
|-----------------|---------|--------------------------------------------------|----------------------------------|----------------------|------------------------|
| NH <sub>2</sub> |         | NacNac <sup>DMOA</sup> AIMe <sub>2</sub> (10 mol | %), <sup>t</sup> BuOK (200 mol%) | H                    | Ph                     |
| , T             | Ph      | Dioxane,tempe                                    | erature, 24 h, N <sub>2</sub>    | Ph                   | Ph Ph                  |
| 1a              | 2a      |                                                  |                                  | 3a                   | 4a                     |
|                 |         |                                                  |                                  |                      |                        |
| Entry           |         | Temperature (°C)                                 | Yield of <b>3a</b> (%            | 6) <sup>[b]</sup> Ra | tio <b>(3a/4a)</b> [b] |

| 1 | 90   | 78 | 80:20 |
|---|------|----|-------|
| 2 | 60   | 84 | 94:6  |
| 3 | r.t. | 18 | 100:0 |

<sup>[a]</sup> General conditions: aniline (0.25 mmol), styrene (5 equiv.), <sup>t</sup>BuOK (2 equiv.) and **NacNac<sup>DMOA</sup>AIMe<sub>2</sub>** (10 mol%) were stirred in Dioxane at different temperature for 24 h under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard.

| NH <sub>2</sub> + Ph | NacNac <sup>DMOA</sup> AIMe <sub>2</sub> (1<br>Dioxane, | 0 mol%), <sup>t</sup> BuOK (200 mol%)<br>90 ℃,time, N <sub>2</sub> | Ph <sup>H</sup> N <sub>Ph</sub> + | Ph<br>N<br>Ph         |
|----------------------|---------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|-----------------------|
| 1a 2a                |                                                         |                                                                    | 3a                                | 4a                    |
| Entry                | Time (h)                                                | Yield of <b>3a</b> (%) <sup>[b]</sup>                              | Ratio (                           | 3a/4a) <sup>[b]</sup> |
| 1                    | 4                                                       | 84                                                                 | 9                                 | 2:8                   |
| 2                    | 5                                                       | 84                                                                 | 90                                | D:10                  |
| 3                    | 6                                                       | 83                                                                 | 87                                | 7:13                  |
| 4                    | 8                                                       | 83                                                                 | 85                                | 5:15                  |
| 5                    | 24                                                      | 78                                                                 | 80                                | 0:20                  |

#### Table S8. Evaluation of time <sup>[a]</sup>

<sup>[a]</sup> General conditions: aniline (0.25 mmol), styrene (5 equiv.), <sup>t</sup>BuOK (2 equiv.) and **NacNac<sup>DMOA</sup>AIMe<sub>2</sub>** (10 mol%) were stirred in 1 mL Dioxane at 90 °C for different time under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard.

#### Table S9. Other control experiments [a]

| NH2 +                                                                                                        | NacNac <sup>DMOA</sup> AIMe <sub>2</sub> (10 mol%), <sup>t</sup> BuOK (200 | mol%) → → ∧ ∧ N                          | Ph<br>- + ^ N ^                      |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|--------------------------------------|--|
|                                                                                                              | THF, 60 °C,24 h, N <sub>2</sub>                                            | Ph' 🗸 🤇                                  | Ph Ph Ph Ph                          |  |
| 1a                                                                                                           | 2a                                                                         | 3a                                       | 4a                                   |  |
|                                                                                                              |                                                                            |                                          |                                      |  |
| Entry                                                                                                        | Variables                                                                  | Yield of <b>3a</b><br>(%) <sup>[b]</sup> | Ratio ( <b>3a/4a)</b> <sup>[b]</sup> |  |
| 1 <sup>[c]</sup>                                                                                             | without NacNac <sup>DMOA</sup> AIMe <sub>2</sub>                           | 5                                        | 100:0                                |  |
| 2 <sup>[d]</sup>                                                                                             | without <sup>t</sup> BuOK                                                  | n.d.                                     | n.d.                                 |  |
| 3 <sup>[d]</sup>                                                                                             | without THF                                                                | 23                                       | 89:11                                |  |
| 4 <sup>[d]</sup>                                                                                             | THF: Dioxane = 0.5:0.5 mL                                                  | 41                                       | 97:3                                 |  |
| 5                                                                                                            | THF: Dioxane = 0.5:0.5 mL                                                  | 86                                       | 87:13                                |  |
| 6 <sup>[e]</sup>                                                                                             | THF: Dioxane = 0.5:0.5 mL                                                  | 90                                       | 91:9                                 |  |
| <b>7</b> <sup>[f]</sup>                                                                                      | THF: Dioxane = 0.5:0.5 mL                                                  | 84                                       | 92:8                                 |  |
| <b>8</b> <sup>[g]</sup>                                                                                      | THF: Dioxane = 0.5:0.5 mL                                                  | 83                                       | 92:8                                 |  |
| 9                                                                                                            | LH instead of NacNac <sup>DMOA</sup> AIMe <sub>2</sub>                     | 73                                       | 95:5                                 |  |
| 10                                                                                                           | none                                                                       | 80                                       | 84:16                                |  |
| 11 <sup>[c]</sup>                                                                                            | none                                                                       | 84                                       | 94:6                                 |  |
| <sup>[a]</sup> General conditions: aniline (0.25 mmol), styrene (5 equiv.), <sup>t</sup> BuOK (2 equiv.) and |                                                                            |                                          |                                      |  |

**NacNac<sup>DMOA</sup>AIMe**<sub>2</sub> (10 mol%) were stirred in THF at 60 °C for 24 h under a N<sub>2</sub> atmosphere. <sup>[b]</sup> The yield of **3a** and ratio were determined by <sup>1</sup>H NMR using toluene as an internal standard. n.d. = not detected. <sup>[c]</sup> Dioxane instead of THF. <sup>[d]</sup> Syrene (1.2 equiv.). <sup>[e]</sup> 21 h. <sup>[f]</sup> 18 h. <sup>[g]</sup> 15 h.

#### 4. Typical Procedures for Alkene Hydroamination

General procedure: In a nitrogen-filled glovebox, a 10 mL Schlenk flask was charged with **NacNac<sup>DMOA</sup>AlMe**<sub>2</sub> (0.025 mmol, 10 mol %) and <sup>t</sup>BuOK (0.5 mmol, 2 equiv.), then amine (0.25 mmol), alkene (0.3-1.25 mmol, 1.2-5 equiv.) and solvent was added by sequence. The flask was removed from the glovebox and the reaction mixture was stirred for indicated time at specified temperature. After indicated time, the reaction mixture was filtered through a short pad of silica gel (Hexane: EA = 5:1), the filtrate was dried under high vacuum and analyzed by <sup>1</sup>H NMR using toluene as an internal standard after which was purified by flash column chromatography (Hexane: EA = 10:1-10:2 with 1% Et<sub>3</sub>N) to afford the desired product.

#### 5. Transformations of Hydroamination Products and Gram-scale Synthesis

#### 5.1 Transformations of Hydroamination Products

#### (1) Synthesis of 4-(phenethylamino)phenol (3n)



In a nitrogen-filled glovebox, a 10 mL Schlenk flask was charged with **NacNac<sup>DMOA</sup>AIMe**<sub>2</sub> (0.025 mmol, 10 mol %) and <sup>t</sup>BuOK (0.5 mmol, 2 equiv.), then 4methoxyaniline (0.25 mmol), styrene (1.25 mmol, 5 equiv.) and 1 mL of an equal volume mixture of THF and Dioxane was added by sequence. The flask was removed from the glovebox and the reaction mixture was stirred for 21 hours at 60 °C. After the completion of the reaction, the mixture was purified by flash column chromatography (Hexane: EA = 10:1 with 1% Et<sub>3</sub>N) to afford 4-methoxy-*N*-phenethylaniline (**3m**). To start, **3m** and 10 mL of HBr (48 wt% in H<sub>2</sub>O) were added to a round-bottom flask. The mixture was refluxed at 120 °C for 6 hours. Once the reaction was completed, the mixture was allowed to cool to room temperature. Next, the pH was adjusted to 8 using ammonia. The solution was then extracted with DCM: 3×20 mL, and the organic phases were combined and dried over Na<sub>2</sub>SO<sub>4</sub>. The target reddish brown powder **5n** was gained by column chromatography (hexane: EA = 10:5) after filtration and drying by rotary evaporation.

Reddish brown solid, 43 mg, 81% Yield.

<sup>1</sup>H NMR (500 MHz, Chloroform-*d*) δ 7.26 – 7.08 (m, 5H), 6.64 – 6.39 (m, 4H), 4.25 (s, 2H), 3.25 (t, *J* = 7.0 Hz, 2H), 2.79 (t, *J* = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 147.30, 140.63, 138.25, 127.78, 127.58, 125.39, 115.29, 114.15, 45.36, 34.41.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>14</sub>H<sub>15</sub>NOH<sup>+</sup> [M+H]<sup>+</sup>: 214.1226; found: 214.1260.

#### (2) Synthesis of 4-(2-(phenylamino)ethyl)phenol (5n)



In a nitrogen-filled glovebox, a 10 mL Schlenk flask was charged with **NacNac<sup>DMOA</sup>AIMe**<sub>2</sub> (0.025 mmol, 10 mol %) and <sup>r</sup>BuOK (0.5 mmol, 2 equiv.), then aniline (0.25 mmol), 1-methoxy-4-vinylbenzene (1.25 mmol, 5 equiv.) and 1 mL of Dioxane was added by sequence. The flask was removed from the glovebox and the reaction mixture was stirred for 34 hours at 90 °C. After the completion of the reaction, the mixture was purified by flash column chromatography (Hexane: EA = 10:1 with 1% Et<sub>3</sub>N) to afford *N*-(4-methoxyphenethyl)aniline (**5m**). To start, **5m** and 10 mL of HBr (48 wt% in H<sub>2</sub>O) were added to a round-bottom flask. The mixture was refluxed at 120 °C for 6 hours. Once the reaction was completed, the mixture was allowed to cool to room temperature. Next, the pH was adjusted to 8 using ammonia. The solution was then extracted with DCM:  $3\times 20$  mL, and the organic phases were combined and dried over Na<sub>2</sub>SO<sub>4</sub>. The target white powder **5n** was gained by column chromatography (hexane: EA = 10:5) after filtration and drying by rotary evaporation.

White solid, 49 mg, 92% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.21 – 6.95 (m, 4H), 6.73 – 6.50 (m, 5H), 4.23 (s, 2H), 3.28 (t, *J* = 7.0 Hz, 2H), 2.77 (t, *J* = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 154.13, 148.01, 131.39, 129.94, 129.32, 117.64, 115.47, 113.18, 45.29, 34.56.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>14</sub>H<sub>15</sub>NOH<sup>+</sup> [M+H]<sup>+</sup>: 214.1226; found: 214.1240.

#### 5.2 Gram-scale Synthesis



In a nitrogen-filled glovebox, a 50 mL Schlenk flask was charged with **NacNac<sup>DMOA</sup>AIMe**<sub>2</sub> (1.19 mmol, 10 mol %) and <sup>t</sup>BuOK (23.8 mmol, 2 equiv.), then aniline (11.9 mmol, 1.125 g), styrene (59.5 mmol, 5 equiv.) and 24 mL of an equal volume mixture of THF and Dioxane was added by sequence. The flask was removed

from the glovebox and the reaction mixture was stirred for 24 h at 60 °C. After indicated time, the reaction mixture was purified by flash column chromatography (Hexane: EA = 10:1 with 1% Et<sub>3</sub>N) to afford the **3a** 1.640 g, 70% yield, 87:13 ratio.

#### 6. Analytical Data of Compounds

#### 6.1 Analytical Data of Hydroboration Products: Amine Scope

#### N-phenethylaniline (3a)



Yellow oil, 44 mg, 89% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-d) δ 7.20 – 6.89 (m, 7H), 6.60 – 6.45 (m, 1H), 6.42 –

6.29 (m, 2H), 3.37 (s, 1H), 3.11 (t, J = 7.1 Hz, 2H), 2.62 (t, J = 7.1 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-d) δ 148.42, 139.79, 129.68, 129.18, 128.97, 126.78,

117.76, 113.35, 45.36, 35.84.

#### 2-bromo-*N*-phenethylaniline (3b)



Yellow oil, 26 mg, 37% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.20 – 7.00 (m, 6H), 6.63 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 7.9 Hz, 2H), 3.61 (s, 1H), 3.29 (t, *J* = 7.3 Hz, 2H), 2.84 (t, *J* = 7.3 Hz, 2H), 2.26 (s, 3H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 143.70, 137.94, 131.41, 127.76, 127.63, 127.45, 125.51, 116.71, 110.30, 108.85, 44.03, 34.34.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>14</sub>H<sub>14</sub>BrNH<sup>+</sup> [M+H]<sup>+</sup>: 276.0382; found: 276.0396.

#### 2-methyl-N-phenethylaniline (3c)

Yellow oil, 40 mg, 70% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.29 – 7.00 (m, 6H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 7.6 Hz, 2H), 3.42 (s, 1H), 3.34 (t, *J* = 7.0 Hz, 2H), 2.86 (t, *J* = 6.9 Hz, 2H), 1.92 (s, 3H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 144.92, 138.34, 129.08, 129.07, 127.76, 127.74, 127.58, 127.57, 126.11, 125.41, 121.04, 115.98, 115.97, 108.85, 108.83, 43.92, 34.45, 16.25.

2-methoxy-N-phenethylaniline (3d)



Orange oil, 47 mg, 83% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.32 – 7.03 (m, 5H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.74 – 6.47 (m, 3H), 4.21 (s, 1H), 3.70 (s, 3H), 3.30 (t, *J* = 7.3 Hz, 2H), 2.84 (t, *J* = 7.3 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 145.87, 138.49, 136.99, 127.72, 127.46, 125.26, 120.30, 115.44, 108.92, 108.54, 54.37, 43.99, 34.65.

3-bromo-*N*-phenethylaniline (3e)

Br

Rose-red oil, 30 mg, 43% Yield.

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 7.31 (td, *J* = 8.0, 7.6, 1.9 Hz, 2H), 7.26 – 7.20 (m, 1H), 7.22 – 7.17 (m, 2H), 6.98 (td, *J* = 8.0, 1.5 Hz, 1H), 6.79 (dd, *J* = 7.9, 2.0 Hz, 1H), 6.71 (t, *J* = 2.0 Hz, 1H), 6.47 (dd, *J* = 8.2, 2.3 Hz, 1H), 3.70 (s, 1H), 3.34 (t, *J* = 7.0 Hz, 2H), 2.88 (t, *J* = 7.0 Hz, 2H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 149.34, 138.99, 130.56, 128.81, 128.73, 126.62, 123.38, 120.17, 115.44, 111.72, 44.79, 35.34.

#### 3-methyl-*N*-phenethylaniline (3f)



Yellow oil, 36 mg, 68% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.06 (m, 5H), 6.98 (dd, *J* = 8.9, 7.4 Hz, 1H), 6.45 (d, *J* = 7.4 Hz, 1H), 6.32 – 6.34 (m, 2H), 3.51 (s, 1H), 3.29 (t, *J* = 7.0 Hz, 2H), 2.81 (t, *J* = 7.0 Hz, 2H), 2.18 (s, 3H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 147.04, 138.34, 137.98, 128.11, 127.74, 127.55, 125.35, 117.38, 112.75, 109.12, 44.03, 34.54, 20.59.

4-fluoro-*N*-phenethylaniline (3g)

Pale yellow oil, 41 mg, 76% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.28 – 7.09 (m, 5H), 6.80 (t, *J* = 8.7 Hz, 2H), 6.54 – 6.36 (m, 2H), 3.45 (s, 1H), 3.27 (t, *J* = 7.0 Hz, 2H), 2.81 (t, *J* = 6.9 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 156.01, 153.67, 143.35, 143.33, 138.16, 127.67
(d, J = 13.2 Hz), 125.45, 114.65 (d, J = 22.2 Hz), 112.79 (d, J = 7.4 Hz), 44.65, 34.44.
<sup>19</sup>F NMR (376 MHz, Chloroform-*d*) δ -127.98.

#### 4-chloro-N-phenethylaniline (3h)



Yellow oil, 41 mg, 71% Yield.

<sup>1</sup>H NMR (500 MHz, Chloroform-*d*) δ 7.31 – 6.99 (m, 7H), 6.50 – 6.39 (m, 2H), 3.60 (s, 1H), 3.29 (t, J = 7.0 Hz, 2H), 2.83 (t, J = 7.0 Hz, 2H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 145.52, 138.00, 128.06, 127.73, 127.63, 125.50, 120.94, 112.99, 44.05, 34.29.

4-bromo-N-phenethylaniline (3i)

Claybank gum, 52 mg, 71% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.04 (m, 7H), 6.43 – 6.29 (m, 2H), 3.58 (s, 1H), 3.25 (t, J = 7.0 Hz, 2H), 2.79 (t, J = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 145.95, 137.98, 130.91, 127.71, 127.62, 125.49, 113.48, 107.91, 43.93, 34.26.

4-methyl-N-phenethylaniline (3j)

NH Ne Ph

Yellow oil, 37 mg, 70% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.27 – 7.09 (m, 5H), 6.90 (d, *J* = 8.1 Hz, 2H), 6.54 – 6.40 (m, 2H), 3.54 – 3.34 (m, 1H), 3.29 (t, *J* = 7.0 Hz, 2H), 2.81 (t, *J* = 7.0 Hz, 2H), 2.15 (s, 3H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 144.71, 138.38, 128.73, 127.75, 127.53, 125.64, 125.33, 112.19, 44.39, 34.51, 19.35.

4-ethyl-N-phenethylaniline (3k)

Yellow oil, 38 mg, 68% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.09 (m, 5H), 6.97 – 6.90 (m, 2H), 6.51 –
6.45 (m, 2H), 3.30 (t, J = 7.0 Hz, 2H), 2.82 (t, J = 7.0 Hz, 2H), 2.46 (q, J = 7.6 Hz, 2H),
1.11 (t, J = 7.6 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 144.96, 138.40, 132.34, 127.76, 127.56, 127.54, 125.34, 112.15, 44.37, 34.59, 26.90, 14.91.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>16</sub>H<sub>19</sub>NH<sup>+</sup> [M+H]<sup>+</sup>: 226.1590; found: 226.1603. **4-(***tert***-butyl)-***N***-phenethylaniline (3I)** 

Yellow solid, 38 mg, 60% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.10 (m, 7H), 6.57 – 6.43 (m, 2H), 3.49 (s, 1H), 3.32 (t, J = 7.0 Hz, 2H), 2.84 (t, J = 7.0 Hz, 2H), 1.21 (s, 9H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 144.67, 139.26, 138.41, 127.76, 127.55, 125.35, 125.01, 111.72, 44.30, 34.68, 32.83, 30.53.

#### 4-methoxy-N-phenethylaniline (3m)



Orange oil, 46 mg, 81% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.26 – 7.17 (m, 2H), 7.17 – 7.09 (m, 3H), 6.73 – 6.65 (m, 2H), 6.54 – 6.40 (m, 2H), 3.74 (s, 1H), 3.64 (s, 3H), 3.25 (t, *J* = 7.0 Hz, 2H), 2.79 (t, *J* = 7.0 Hz, 2H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 151.15, 141.20, 138.38, 127.75, 127.54, 125.34, 113.89, 113.34, 54.75, 45.00, 34.55.

4-(phenethylamino)phenol (3n)

Reddish brown solid, 43 mg, 81% Yield.

<sup>1</sup>H NMR (500 MHz, Chloroform-*d*) δ 7.26 – 7.08 (m, 5H), 6.64 – 6.39 (m, 4H), 4.25 (s, 2H), 3.25 (t, J = 7.0 Hz, 2H), 2.79 (t, J = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 147.30, 140.63, 138.25, 127.78, 127.58, 125.39, 115.29, 114.15, 45.36, 34.41.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>14</sub>H<sub>15</sub>NOH<sup>+</sup> [M+H]<sup>+</sup>: 214.1226; found: 214.1260.

#### 6.2 Analytical Data of Hydroboration Products: Alkene Scope

N-(2-fluorophenethyl)aniline (5b)

Yellow oil, 38 mg, 71% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 6.89 (m, 6H), 6.67 – 6.59 (m, 1H), 6.58 – 6.52 (m, 2H), 3.65 (s, 1H), 3.33 (t, *J* = 7.1 Hz, 2H), 2.88 (t, *J* = 7.1 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 161.55, 146.89, 130.04 (d, *J* = 5.0 Hz), 128.27, 127.17 (d, *J* = 8.1 Hz), 125.23 (d, *J* = 16.1 Hz), 123.11 (d, *J* = 3.6 Hz), 116.45, 114.38 (d, *J* = 22.2 Hz), 111.88, 42.86, 28.17.

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -118.42.

#### N-(2-methylphenethyl)aniline (5c)



Yellow oil, 41 mg, 78% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.14 – 7.06 (m, 6H), 6.63 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 7.9 Hz, 2H), 3.61 (s, 1H), 3.29 (t, *J* = 7.3 Hz, 2H), 2.84 (t, *J* = 7.3 Hz, 2H), 2.26 (s, 3H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 147.04, 136.39, 135.29, 129.41, 128.27, 128.24, 125.52, 125.09, 116.42, 111.90, 42.85, 31.93, 18.37.

#### N-(3-fluorophenethyl)aniline (5d)

**NHPh** 

Yellow oil, 33 mg, 62% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.27 – 6.49 (m, 9H), 3.57 (s, 1H), 3.33 (t, *J* = 7.0 Hz, 2H), 2.83 (t, *J* = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 163.22, 146.79, 140.89 (d, *J* = 7.3 Hz), 128.99 (d, *J* = 8.3 Hz), 128.31, 123.40 (d, *J* = 2.9 Hz), 116.62, 114.60 (d, *J* = 20.9 Hz), 112.31 (d, *J* = 21.0 Hz), 111.98, 43.76, 34.28.

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -113.25.

#### N-(3-methylphenethyl)aniline (5e)

Me NHPh

Pale yellow oil, 36 mg, 78% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.20 – 6.86 (m, 6H), 6.67 – 6.47 (m, 3H), 3.56 (s,

1H), 3.29 (t, J = 7.0 Hz, 2H), 2.78 (t, J = 7.0 Hz, 2H), 2.25 (s, 3H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 147.05, 138.20, 137.16, 128.53, 128.23, 127.45,

126.14, 124.76, 116.40, 111.98, 44.02, 34.44, 20.35.

N-(4-fluorophenethyl)aniline (5f)



Yellow oil, 16 mg, 30% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-d) δ 7.20 – 6.83 (m, 6H), 6.68 – 6.43 (m, 3H), 3.54 (s,

1H), 3.29 (t, J = 7.0 Hz, 2H), 2.79 (t, J = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 161.83, 159.40, 146.87, 133.93 (d, *J* = 3.2 Hz),

129.17, 129.09, 128.29, 116.56, 114.34 (d, *J* = 21.2 Hz), 111.97, 44.07, 33.68.

<sup>19</sup>**F NMR** (376 MHz, Chloroform-*d*) δ -116.74.

N-(4-chlorophenethyl)aniline (5g)

Yellow oil, 32 mg, 56% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 6.95 (m, 6H), 6.76 – 6.36 (m, 3H), 3.54 (s, 1H), 3.30 (t, J = 7.0 Hz, 2H), 2.80 (t, J = 6.9 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 146.77, 136.75, 131.20, 129.10, 128.30, 127.67, 116.60, 111.96, 43.85, 33.82.

#### *N*-(4-bromophenethyl)aniline (5h)



Yellow oil, 28 mg, 40% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 – 6.90 (m, 6H), 6.69 – 6.42 (m, 3H), 3.55 (s,

1H), 3.30 (t, *J* = 7.0 Hz, 2H), 2.79 (t, *J* = 6.9 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 146.75, 137.28, 130.63, 129.50, 128.30, 119.23, 116.61, 111.97, 43.79, 33.89.

N-(4-methylphenethyl)aniline (5j)

Pale yellow oil, 43 mg, 82% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.15 – 6.87 (m, 6H), 6.70 – 6.44 (m, 3H), 3.55 (s, 1H), 3.27 (t, J = 7.0 Hz, 2H), 2.77 (t, J = 7.0 Hz, 2H), 2.24 (s, 3H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 147.06, 135.15, 134.92, 128.26, 128.24, 127.64,

116.41, 111.98, 44.10, 34.05, 19.99.

N-(4-(tert-butyl)phenethyl)aniline (5k)



Yellow oil, 51 mg, 80% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.00 (m, 6H), 6.70 – 6.46 (m, 3H), 3.61 (s,

1H), 3.32 (t, J = 7.0 Hz, 2H), 2.82 (t, J = 7.0 Hz, 2H), 1.25 (s, 9H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 148.26, 147.08, 135.17, 128.24, 127.42, 124.47, 116.40, 111.98, 44.01, 33.97, 33.40, 30.37.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>18</sub>H<sub>23</sub>NH<sup>+</sup> [M+H]<sup>+</sup>: 254.1903; found: 254.1927.

#### N-(2-([1,1'-biphenyl]-4-yl)ethyl)aniline (5l)



White solid, 55 mg, 81% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 6.23 (m, 13H), 3.43 (t, *J* = 7.7 Hz, 2H),
2.78 (t, *J* = 7.7 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 146.32, 139.90, 138.19, 137.73, 128.46, 128.15, 127.70, 126.21, 126.08, 125.96, 115.05, 111.03, 52.19, 32.25.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>20</sub>H<sub>19</sub>NH<sup>+</sup> [M+H]<sup>+</sup>: 274.1590; found: 274.1597.

*N*-(4-methoxyphenethyl)aniline (5m)

Yellow oil, 51 mg, 89% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.16 – 6.42 (m, 9H), 3.69 (s, 3H), 3.55 (s, 1H),

3.26 (t, J = 7.0 Hz, 2H), 2.76 (t, J = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 157.23, 147.07, 130.27, 128.67, 128.23, 116.38, 113.02, 111.97, 54.23, 44.18, 33.56.

4-(2-(phenylamino)ethyl)phenol (5n)

White solid, 49 mg, 92% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.21 – 6.95 (m, 4H), 6.73 – 6.50 (m, 5H), 4.23 (s, 2H), 3.28 (t, J = 7.0 Hz, 2H), 2.77 (t, J = 7.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 154.13, 148.01, 131.39, 129.94, 129.32, 117.64, 115.47, 113.18, 45.29, 34.56.

**MS (ESI-TOF, [M+H]<sup>+</sup>)** m/z calcd. for C<sub>14</sub>H<sub>15</sub>NOH<sup>+</sup> [M+H]<sup>+</sup>: 214.1226; found: 214.1240.

#### N-(2-(pyridin-2-yl)ethyl)aniline (50)



Yellow oil, 22 mg, 89% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 4.9 Hz, 1H), 7.58 – 6.39 (m, 8H), 3.91 (s, 1H), 3.44 (t, *J* = 6.6 Hz, 2H), 2.99 (t, *J* = 6.6 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 158.78, 148.35, 147.17, 135.45, 128.19, 122.28, 120.42, 116.26, 111.91, 42.51, 36.45.

N-(2-(thiophen-2-yl)ethyl)aniline (5p)



Brown oil, 38 mg, 75% Yield.

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 7.21 – 6.40 (m, 8H), 3.68 (s, 1H), 3.35 (t, *J* = 6.8 Hz, 2H), 3.04 (t, *J* = 6.8 Hz, 2H).

<sup>13</sup>**C NMR** (101 MHz, Chloroform-*d*) δ 146.73, 140.73, 128.28, 125.94, 124.25, 122.83,

116.62, 112.05, 44.19, 28.72.

N-(2,2-diphenylethyl)aniline (5q)

Pale yellow oil, 40 mg, 59% Yield.

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.05 (m, 12H), 6.64 (t, J = 7.3 Hz, 1H), 6.52 (d, J = 7.9 Hz, 2H), 4.22 (t, J = 7.6 Hz, 1H), 3.67 (d, J = 7.7 Hz, 2H), 3.56 (s, 1H).
<sup>13</sup>C NMR (101 MHz, Chloroform-*d*) δ 146.81, 141.27, 128.27, 127.71, 127.14, 125.77, 116.65, 112.15, 49.27, 47.54.

# 7.Copies of NMR Spectra



**LH** (L = HC(CCH<sub>3</sub>NAr)<sub>2</sub>, Ar = 2,6-(OMe)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)



NacNac<sup>DMOA</sup>AIMe<sub>2</sub>









2-bromo-N-phenethylaniline (3b)





**2-methyl-N-phenethylaniline (3c)**  $\left(\begin{array}{c} 3.42\\ 3.36\\ 3.34\\ 3.34\\ 3.32\\ 2.88\\ 2.88\\ 2.84\end{array}\right)$ -1.92-0.00н₃с NH 0.804 2.004 2.00-3.00-6.00/ 1.00/ 2.00/T 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 5.5 5.0 f1 (ppm) 6.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. 4.5







3-bromo-N-phenethylaniline (3e)





3-methyl-N-phenethylaniline (3f)





4-fluoro-*N*-phenethylaniline (3g)





# 4-chloro-N-phenethylaniline (3h)



4-bromo-N-phenethylaniline (3i)



4-methyl-N-phenethylaniline (3j)



4-ethyl-N-phenethylaniline (3k)



4-(tert-butyl)-N-phenethylaniline (3l)



4-methoxy-N-phenethylaniline (3m)



4-(phenethylamino)phenol (3n)



# N-(2-fluorophenethyl)aniline (5b)







*N*-(2-methylphenethyl)aniline (5c)



# N-(3-fluorophenethyl)aniline (5d)







# N-(3-methylphenethyl)aniline (5e)





# N-(4-fluorophenethyl)aniline (5f)







N-(4-chlorophenethyl)aniline (5g)









*N*-(4-methylphenethyl)aniline (5j)





N-(4-(tert-butyl)phenethyl)aniline (5k)









N-(4-methoxyphenethyl)aniline (5m)





4-(2-(phenylamino)ethyl)phenol (5n)



# N-(2-(pyridin-2-yl)ethyl)aniline (50)





N-(2-(thiophen-2-yl)ethyl)aniline (5p)





N-(2,2-diphenylethyl)aniline (5q)



#### 8.References

- 1 W. L. F. Armarego, *Purification of Laboratory Chemicals*, The Australian National University, Canberra, 2017.
- 2 T. K. Salvador, C. H. Arnett, S. Kundu, N. G. Sapiezynski, J. A. Bertke, M. Raghibi Boroujeni and T. H. Warren, *J. Am. Chem. Soc.*, 2016, **138**, 16580–16583.