Supporting Information

Synthesis of Di/Trifluoromethyl Bis(1,2,4-triazoline)spiranes and

1,2,4-Triazoles via 1,3-Dipolar Cycloaddition of Nitrilimines and

Carbodiimides

Yuxiu Zhou¹, Xiaoyong Li¹, Xiaokang Liu¹, Danfeng Huang¹, Ke-Hu Wang¹, Junjiao Wang¹, Yulai Hu^{*1,2}

¹College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou, 730070, China,

²State Key Laboratory of Applied Organic Chemistry, Lanzhou, 730000, China

Table of Contents

Synthesis		of		Difluoroacetohydrazonoyl			Bromides			
2			S2							
Synthesis		of Trifluoroacetohydrazonoyl				1	Bromides			
2′			S2							
Reference	s						S3			
Optimization of Reaction Conditions for Synthesizing 5a										
Copies of NMR and HRMS Spectra for Compounds 3										
Copies	of	NMR	and	HRMS	Spectra	for	Compound			
3'										
Copies	of	NMR	and	HRMS	Spectra	for	Compounds			
5										
Copies	of	NMR	and	HRMS	Spectra	for	Compound			
5'										
X-Ray		Crystallog	raphic	Data	о	f	Compound			
3a										
X-Ray		Crystallog	raphic	Data	о	f	Compound			

Synthesis of Difluoroacetohydrazonoyl Bromides 2¹

$$HF_{2}C \xrightarrow{OH} OH \xrightarrow{1) \text{ArNHNH}_{2} \bullet \text{HCl}} HF_{2}C \xrightarrow{OH} OH \xrightarrow{1) \text{ArNHNH}_{2} \bullet \text{HCl}} H \xrightarrow{\text{Br}} H \xrightarrow{\text{Br}} OH \xrightarrow{\text{Br}} OH \xrightarrow{1} OH \xrightarrow{1$$

Step 1: A mixture of hydrazine hydrochlorides (1.0 mmol, 1.0 equiv.), triethylamine (1.0 mmol, 1.0 equiv.), difluoroacetaldehyde ethyl hemiacetal (1.5 mmol, 1.5 equiv.), and freshly activated 4Å molecular sieves in EtOH (8 mL) was stirred at 75 °C in a round-bottom in an oil bath, and the reaction was monitored by TLC. After the reaction was completed, the solvent was removed in vacuo to afford intermediate products, which was used directly for the next step.

Step 2: To a solution of crude mixture from step 1 in DMF (8 mL) was added NBS. The resulting solution was stirred at room temperature, and the reaction was monitored by TLC. After the reaction was completed, the reaction was quenched with sat. NaCl aq., and the mixture was extracted with ethyl acetate (3×15 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting products was purified by column chromatography on silica gel (EA)/petroleum ether (PE) (1:10–1:20) to afford difluoroacetohydrazonoyl bromides **2**.

Synthesis of Trifluoroacetohydrazonoyl Bromides 2'2

Step 1: A mixture of hydrazine hydrochlorides (2.0 mmol, 1.0 equiv.), triethylamine (1.0 mmol, 1.0 equiv.), trifluoroacetaldehyde ethyl hemiacetal (1.5 mmol, 1.5 equiv.), and freshly activated molecular sieves 4Å in EtOH (8 mL) was stirred at 75 °C in a round-bottom in an oil bath, and the reaction was monitored by TLC. After the reaction was completed, the solvent was removed in vacuo to afford intermediate products, which was used directly for the next step.

Step 2: To a solution of crude mixture from step 1 in DMF (8 mL) was added NBS (2.2 mmol, 1.1 equiv.). The resulting solution was stirred at room temperature, and the reaction was monitored by TLC. After the reaction was completed, the reaction was

quenched with sat. NaCl aq., and the mixture was extracted with ethyl acetate (3×15 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The resulting products was purified by column chromatography on silica gel (EA)/petroleum ether (PE) (1:8–1:20) to afford trifluoroacetohydrazonoyl bromides **2'**.

References

[1] Tanaka, K.; Maeno, S.; Mitsuhashi, K. Cycloadditions of N-Aryl-C (Trifluoromethyl)nitrilimines with Dimethyl Fumarate and Maleate. *J. Heterocyclic Chem.* **1985**, *22*, 565.

[2] Mlostoń, G.; Urbaniak, K.; Utecht, G.; Lentz, D.; Jasinski, M. Trifluoromethylated 2,3-dihydro-1,3,4-thiadiazoles via the regioselective (3+2)-cycloadditions of fluorinated nitrile imines with aryl, hetaryl, and ferrocenyl thioketones. *J. Fluorine Chem.* **2016**, *192*, 147.

	→_N=C=N	Ph ^H NNCF ₂ H 2a	Base Solvent, 25 °C	→ HF ₂ C / N 5a	h N
Entry	Mole ratio of 4a/2a /base	Base	Solvent	Time (h)	Yield ^b (%) 5a
1	1/2.5/2.5	K ₂ CO ₃	DCM	18	45
2	1/1.2/1.2	K_2CO_3	DCM	10	65
3	1/1.0/1.0	K ₂ CO ₃	DCM	10	49
4	1/1.2/1.2	Na ₂ CO ₃	DCM	10	52
5	1/1.2/1.2	Cs_2CO_3	DCM	7	46
6	1/1.2/1.2	NaHCO ₃	DCM	10	58
7	1/1.2/1.2	Et ₃ N	DCM	10	31
8	1/1.2/1.2	K ₂ CO ₃	THF	10	trace
9	1/1.2/1.2	K ₂ CO ₃	1,4-dioxane	10	80
10	1/1.2/1.2	K ₂ CO ₃	MeCN	10	45

Table S1 Optimization of reaction conditions for synthesis of 5a^a.

^{*a*}Reaction conditions: **4a** (0.2 mmol, 1.0 equiv.), **2a** (0.2–0.5 mmol), base (0.2–0.5 mmol), solvent (3 mL), 25 °C, air atmosphere. ^{*b*}Isolated yields after chromatographic purification.

Copies of NMR and HRMS Spectra for Compounds **3** NMR copies of compound **3a**:

2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 fl (ppm)

24.6 24.4 24.2 24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 19.4 19.2 19.0 18.8 18.6 18.4 18.2 18. f1 (ppm)

 $^{19}\mathrm{F}$ 376MHz NMR, CDCl_3

-106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -1: f1 (ppm)

HRMS (ESI) copy of compound 3a:

S9

$\begin{array}{c} 3.575\\ 3.567\\ 3.554\\ 3.554\\ 3.554\\ 3.558\\ 3.572\\ 3.572\\ 3.572\\ 3.572\\ 3.572\\ 2.430\\ -2.430\\ -2.430\\ -1.389\\ -0.809\\ <0.809\end{array}$

NMR copies of compound **3b**

25.6 25.4 25.2 25.0 24.8 24.6 24.4 24.2 24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 15 ff (pm)

S12

-106.5 -107.0 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -113.5 -113.0 -113.5 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -11 fl (ppm)

HRMS (ESI) copy of compound 3b:

S14

NMR copies of compound **3c**:

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 11 (ppm)

 ^{19}F 376MHz NMR, CDCl_3

S17

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -1: f1 (ppm)

HRMS (ESI) copy of compound **3c**:

ZHOUYUXIU-10 #50-107 RT: 0.22-0.48 AV: 58 NL: 1.17E9

25.4 25.2 25.0 24.8 24.6 24.4 24.2 24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 19.4 19.2 19.0 18 f1 (ppm)

-105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 f1 (ppm)

HRMS (ESI) copy of compound 3d:

S24

26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 f1 (ppm)

140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 f1 (ppm)

-112.781 -112.781 -113.602 -113.042 -115.042 -115.043 -115.183 -115.864

 $^{19}\mathrm{F}$ 376MHz NMR, CDCl_3

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 f1 (ppm)

HRMS (ESI) copy of compound 3e:

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 f1 (ppm)

141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 10 f1 (ppm)

-113.275 -113.275 -113.417 -114.104 -115.7246 -115.844 -115.844 -116.533

 $^{19}\mathrm{F}$ 376MHz NMR, CDCl_3

34 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -1 fl (ppm)

HRMS (ESI) copy of compound 3f:

24.6 24.4 24.2 24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 15 f1 (ppm)

-113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 -120.5 -121.0 -121.5 -122.0 -122.5 -123.0 -123.5 f1 (ppm)

HRMS (ESI) copy of compound 3g:

599.1983

9448322.0

30.89

18.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-109 -110 -111 -112 -113 -114 -115 -116 f1 (ppm) -119 -120 -121 -122 -123 -117 -118

HRMS (ESI) copy of compound 3h:

NMR copies of compound 3i:

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1. 11 (ppm)

26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 22.0 21.5 21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 f1 (ppm)

141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 f1 (ppm)

-113.644 -113.644 -114.77 -114.618 -116.075 -116.075 -116.075 -116.075 -116.008

¹⁹F 376MHz NMR, CDCl₃

-107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 f1(ppm)

HRMS (ESI) copy of compound 3i:

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1 f1(ppm)

24.2 24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 19.4 19.2 19.0 18.8 18.6 18.4 18.2 18.0 17.8 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f(ppm)

-106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 f1 (ppm)

564.2577

568.1572

3595902.3

768963.6

33.29

7.12

S54

NMR copies of compound **3k**: 3,234 3,203 3,203 3,203 3,203 3,203 1,673 1,673 1,673 1,673 1,673 1,445 1,445 1,445 1,445 1,445 1,445 1,445 1,445 1,445 1,144 1,1238 1,279 1,279 1,279 1,270 1,200 ¹H 400MHz NMR, CDCl₃ 13.20-4.01 ₹ 3.69 ₹ 2.04 ↓ 2.00 6.50 10.0 7.5 7.0 6.5 6.0 5.5 5.0 f1 (ppm) 0.0 9.5 9.0 8.5 8.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 3,234 3,234 3,203 3,203 3,203 3,203 1,771 1,773 1,773 1,773 1,649 1,649 1,649 1,649 1,629 1,629 1,168 1,1238 1,238 7.137 7.117 7.097 6.812 6.754 6.754 6.754 6.754 6.734 6.521 6.521 6.389 ¹H 400MHz NMR, CDCl₃

S56

140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 101 ff (ppm)

 $^{19}\mathrm{F}$ 376MHz NMR, CDCl_3

HRMS (ESI) copy of compound 3k:

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 f1 (ppm)

HRMS (ESI) copy of compound 31:

S63

NMR copies of compound **3m**:

7.260 7.234 6.612 6.570 6.548 6.348 6.348

33.5 33.0 32.5 32.0 31.5 31.0 30.5 30.0 29.5 29.0 28.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 ft (ppm)

140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 fl (ppm)

-114.145 -114.285 -114.972 -115.112 -115.721 -115.861 -116.688

 $^{19}\mathrm{F}$ 376MHz NMR, CDCl_3

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f(ppm)

-101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 f1 (ppm)

700.1091

534910.8

30.08

NMR copies of compound **3n**:

-116.0 -117.0 f1 (ppm)

NMR copies of compound **30**:

140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 f1 (ppm)

-110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 ff (ppm)

721.2262

720

4

m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	Composition
633.3174	17195970.0	100.00			
634.3207	6132686.5	35.66			
643.3169	12565983.0	73.08	643.3167	0.24	C 37 H 39 N 6 F 4
644.3201	5188929.0	30.18			

Copies of NMR and HRMS Spectra for Compounds **3'** NMR copies of compound **3'a**:

'.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1. f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound **3'a**:

23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 19.4 f1 (ppm)

HRMS (ESI) copy of compound 3'c:

NMR copies of compound **3'd**:

23.1 23.0 22.9 22.8 22.7 22.6 22.5 22.4 22.3 22.2 22.1 22.0 21.9 21.8 21.7 21.6 21.5 21.4 21.3 21.2 21.1 21.0 20.9 20.8 20.7 20.6 20.5 20.4 11 (ppm)

HRMS (ESI) copy of compound **3'd**:

589.2360

14891453.0

10.72

23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 19.4 19.2 19.0 18.8 18.6 18.4 18.: f1 (ppm)

HRMS (ESI) copy of compound 3'e:

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 fl (ppm)

HRMS (ESI) copy of compound 3'f:

YANGGAOWANG-W35#69-112 RT:0.31-0.50 AV: 44 T:FTMS + p ESI Full lock ms [80.0000-900.0000] m/z= 654.3157-655.9266

m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	Composition
655.0251	2528773.3	100.00	655.0250	0.09	C ₂₃ H ₂₃ N ₆ Br ₂ F ₆
655.1709	542978.8	21.47	655.0250	145.96	C 23 H 23 N 6 Br 2 F 6

-121.1 -121.2 -121.3 -121.4 -121.5 -121.6 -121.7 -121.8 -121.9 -122.0 -122.1 -122.2 -122.3 -122.4 -122.5 -122.6 -122.7 ff (ppm)

HRMS (ESI) copy of compound **3'g**:

ZHOUYUXIU-15 #49-107 RT: 0.22-0.48 AV: 59 NL: 1.35E8 T: FTMS + p ESI Full lock ms [50.0000-750.0000]

3.4 23.3 23.2 23.1 23.0 22.9 22.8 22.7 22.6 22.5 22.4 22.3 22.2 22.1 22.0 21.9 21.8 21.7 21.6 21.5 21.4 21.3 21.2 21.1 21.0 20.9 20.8 20.7 20.6 20.5 20.4 20.3 20.2 20.1 20.0 19.9 19 f1 (ppm)

HRMS (ESI) copy of compound 3'h:

637.1858

23563.2

0.84

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 fl(ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 3'i:

S110

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 11 (ppm)

^{137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107} fl (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

HRMS (ESI) copy of compound 3'j:

600.2388

601.2421

4825719.5

780103.4

34.74

5.62

S114

7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 f1(ppm)

11 (bpin)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fi(ppm)

HRMS (ESI) copy of compound 3'k:

HRMS (ESI) copy of compound 3'l:

7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 fl (ppm)

36.0 35.5 35.0 34.5 34.0 33.5 33.0 32.5 32.0 31.5 31.0 30.5 30.0 29.5 29.0 28.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 11 (ppm)

-45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 f1 (ppm)

HRMS (ESI) copy of compound 3'm:

739.0836

1858036.0

50.75

S126

NMR copies of compound **3'n**:

HRMS (ESI) copy of compound 3'n:

S130

'.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0 fl (ppm)

36.0 35.5 35.0 34.5 34.0 33.5 33.0 32.5 32.0 31.5 31.0 30.5 30.0 29.5 29.0 28.5 28.0 27.5 27.0 26.5 26.0 25.5 25.0 24.5 24.0 23.5 23.0 22.5 f1(ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1(ppm)

HRMS (ESI) copy of compound 3'o:

Copies of NMR and HRMS Spectra for Compounds 5 NMR copies of compound **5a**:

7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5a:

7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 11 (ppm)

CH₃ HF_2C $^{19}\mathrm{F}$ 376MHz NMR, CDCl_3

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5b:

ZHUYUXIU-20 #30-78 RT: 0.13-0.35 AV: 49 NL: 6.25E7 T: FTMS + p ESI Full lock ms [80.0000-750.0000]

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5c:

S146

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5d:

347.0503 501657216.0

96.74

155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 1: f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5e:

363.0425

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5f:

8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.5 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 fl (ppm)

155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 f1 (ppm)

-115.9 -116.0 -116.1 -116.2 -116.3 -116.4 -116.5 -116.6 -116.7 -116.8 -116.9 -117.0 -117.1 -117.2 -117.3 -117.4 -117.5 -117.6 -117.7 -117.8 -117.9 -118.0 -118.1 -118.2 -118.3 -118.4 -116.5 -1

HRMS (ESI) copy of compound 5g:

ZHOUYUXIU-18 #56-108 RT: 0.25-0.48 AV: 53 NL: 4.66E8 T: FTMS + p ESI Full lock ms [50.0000-750.0000]

335.1289

467372608.0

100.00

7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -11 -12 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

347.0503 533407008.0

86.67

Copies of NMR and HRMS Spectra for Compound $\mathbf{5'}$

152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 11! f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5'a:

ZHOUYUXIU-18 #73-115 RT: 0.33-0.51 AV: 43 NL: 4.85E8 T: FTMS + p ESI Full lock ms [50.0000-750.0000]

NMR copies of compound 5'b:

152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5'b:

m/z= 265.6783-327.1382					
m/z	Intensity	Relative	Theo. Mass	Delta (ppm)	Composition
281.1572	14918277.0	20.99			
299.1478	52653728.0	74.08	299.1478	-0.04	C14 H18 N4 F3
325.1470	71080240.0	100.00			
326.1505	10869526.0	15.29			

^{152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116} f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5'c:

NMR copies of compound 5'd:

152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 f1 (ppm)

HRMS (ESI) copy of compound 5'd:

NMR copies of compound 5'e:

154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 1 f1 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5'e:

NMR copies of compound 5'f:

153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 1 fr (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -11 -12 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 f1 (ppm)

152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 11 11 (ppm)

-52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 f1 (ppm)

HRMS (ESI) copy of compound 5'g:

NMR copies of compound 5'h:

53 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 11 (ppm)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

HRMS (ESI) copy of compound 5'h:

X-Ray Crystallographic Data of Compound 3a

Thermal ellipsoids are set at a 50% probability level. Crystal data have been deposited to CCDC, number 2250252.

Crystallization Details

The obtained compound 3a (15 mg) was dissolved in THF (0.3 mL) in a NMR tube at room temperature. Then petroleum ether (2 mL) was added to the solution slowly along the tube wall, resulting in a two-phase mixture. The colorless crystal of 3a was formed after the two-phase mixture has diffused.

Experimental

A suitable crystal was selected on a ROD, Synergy Custom system, HyPix diffractometer. The crystal was kept at 150.00(10) K during data collection. Using Olex2, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for $C_{23}H_{26}F_4N_6$ (M = 462.50 g/mol): triclinic, space group P-1 (no. 2), a = 9.52305(17) Å, b = 13.1270(2) Å, c = 18.3358(3) Å, $\alpha = 84.4953(15)^\circ$, $\beta = 88.2625(15)^\circ$, $\gamma = 89.6565(15)^\circ$, V = 2280.51(7) Å³, Z = 4, T = 150.00(10) K, μ (Cu K α) = 0.897 mm⁻¹, *Dcalc* = 1.347 g/cm³, 26437 reflections measured (4.844° $\leq 2\Theta \leq 152.698^\circ$), 9012 unique ($R_{int} = 0.0307$, $R_{sigma} = 0.0310$) which were used in all calculations. The final R_1 was 0.0406 (I > 2 σ (I)) and wR_2 was 0.1091 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups

At 1.5 times of:

All C(H,H,H) groups

2.a Ternary CH refined with riding coordinates:

C3(H3), C5(H5), C12(H12), C21(H21), C26(H26), C28(H28), C29(H29), C32(H32) 2.b Aromatic/amide H refined with riding coordinates:

C7(H7), C8(H8), C9(H9), C10(H10), C11(H11), C16(H16), C17(H17), C18(H18), C19(H19), C20(H20), C36(H36), C37(H37), C38(H38), C39(H39), C40(H40), C42(H42), C43(H43), C44(H44), C45(H45), C46(H46)

2.c Idealised Me refined as rotating group:

C13(H13A,H13B,H13C), C14(H14A,H14B,H14C), C22(H22A,H22B,H22C), C23(H23A,H23B,H23C), C30(H30A,H30B,H30C), C31(H31A,H31B,H31C), C33(H33A,H33B,H33C), C34(H34A,H34B,H34C)

Empirical formula	$C_{23}H_{26}F_4N_6$
Formula weight	462.50
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.52305(17)
b/Å	13.1270(2)
c/Å	18.3358(3)
α/°	84.4953(15)
β/°	88.2625(15)
γ/°	89.6565(15)
Volume/Å ³	2280.51(7)
Z	4
ρcalcg/cm ³	1.347
μ/mm ⁻¹	0.897
F(000)	968.0
Crystal size/mm ³	0.05 imes 0.03 imes 0.02
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection	4.844 to 152.698
Index ranges	$-11 \le h \le 11, -16 \le k \le 16, -22 \le l \le 22$
Reflections collected	26437
Independent reflections	9012 [$R_{int} = 0.0307, R_{sigma} = 0.0310$]
Data/restraints/parameters	9012/0/604
Goodness-of-fit on F ²	1.047
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0406, wR_2 = 0.1054$
Final R indexes [all data]	$R_1 = 0.0466, wR_2 = 0.1091$
Largest diff. peak/hole / e Å-3	0.56/-0.22

Table S1 Crystal data and structure refinement for compound 3a

Atom	x	У	z	U(eq)
F1	5159.1(11)	3980.2(8)	751.7(6)	51.2(3)
F2	2936.5(10)	3876.5(7)	1044.0(5)	42.8(2)
F3	7283.8(11)	-1615.9(8)	2392.7(7)	53.3(3)
F4	6037.5(12)	-1704.3(7)	1438.7(5)	48.2(2)
N1	5308.7(13)	1943.1(9)	2705.6(7)	30.0(3)
N2	5087.0(13)	2942.9(9)	2412.0(7)	30.6(3)
N3	4298.4(12)	1875.1(8)	1637.3(6)	26.4(2)
N4	3690.4(12)	483.4(9)	2584.1(7)	29.2(3)
N5	4091.9(12)	-538.5(8)	2594.0(7)	29.4(3)
N6	5809.4(12)	436.0(9)	2040.3(7)	28.3(2)
C1	4773.5(14)	1187.8(10)	2255.6(8)	26.1(3)
C2	4506.6(14)	2863.9(10)	1791.6(8)	28.0(3)
C3	4231.1(16)	3838.5(11)	1337.6(9)	35.4(3)
C4	5313.1(14)	-523.1(10)	2267.8(8)	27.7(3)
C5	5952.4(15)	-1539.8(11)	2161.2(8)	31.8(3)
C6	5789.3(15)	1766.6(12)	3424.1(8)	31.3(3)
C7	5878.5(17)	784.0(13)	3782.3(9)	39.8(4)
C8	6375.0(18)	647.6(15)	4488.3(9)	46.3(4)
С9	6776(2)	1474.3(17)	4847.4(10)	51.5(5)
C10	6694(2)	2451.4(16)	4487.6(10)	52.9(5)
C11	6215.0(18)	2603.1(14)	3780.9(9)	42.1(4)
C12	3608.8(15)	1443.4(11)	1029.1(8)	30.3(3)
C13	2017.9(17)	1559.4(12)	1065.3(10)	40.4(4)
C14	4225(2)	1853.4(14)	283.1(9)	44.1(4)
C15	2560.1(14)	745.2(10)	3046.9(7)	27.0(3)
C16	1782.9(15)	-29.7(11)	3444.5(8)	31.5(3)
C17	676.4(17)	220.6(13)	3899.4(9)	40.4(4)
C18	317.0(17)	1232.2(13)	3966.9(9)	38.9(4)
C19	1081.8(16)	1996.1(12)	3568.0(8)	33.7(3)
C20	2191.7(15)	1765.6(11)	3106.5(8)	31.7(3)
C21	7177.6(15)	802.1(11)	1713.8(9)	34.5(3)
C22	8362.6(17)	688.5(14)	2252.9(11)	46.5(4)
C23	7548.9(18)	333.2(14)	1004.9(10)	44.1(4)
F5	10555.5(11)	-925.7(8)	790.8(6)	50.3(3)

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 3a. U_{eq} is defined as 1/3 of the trace of the orthogonalised U₁₁ tensor.

F6	12727.0(10)	-1112.5(7)	1102.8(5)	42.0(2)
F7	9604.6(12)	-6568.9(8)	1287.3(6)	54.7(3)
F8	8166.9(10)	-6595.5(8)	2223.5(8)	60.1(3)
N7	10047.3(12)	-3042.2(9)	2698.8(7)	28.2(2)
N8	10342.5(12)	-2038.7(9)	2428.5(7)	29.6(3)
N9	11202.7(12)	-3086.9(8)	1633.2(6)	25.3(2)
N10	11672.4(12)	-4510.9(8)	2568.4(7)	27.0(2)
N11	11295.4(12)	-5526.0(8)	2531.9(7)	28.4(2)
N12	9640.4(11)	-4516.9(8)	1998.8(7)	27.4(2)
C24	10644.3(13)	-3787.5(10)	2239.3(7)	24.8(3)
C25	11004.3(14)	-2104.2(10)	1811.4(8)	27.7(3)
C26	11387.3(17)	-1118.2(11)	1382.3(9)	36.4(3)
C27	10121.2(14)	-5487.1(10)	2194.2(8)	27.4(3)
C28	9535.5(16)	-6483.9(11)	2025.8(9)	35.6(3)
C29	8307.0(15)	-4124.9(11)	1684.2(9)	35.4(3)
C30	7057.1(16)	-4302.3(14)	2217.2(11)	45.8(4)
C31	8039.4(19)	-4518.7(15)	947.2(10)	48.5(4)
C32	11997.5(15)	-3506.3(11)	1026.0(8)	29.1(3)
C33	11578.9(18)	-3019.0(13)	277.1(9)	40.6(4)
C34	13577.9(15)	-3467.8(12)	1121.5(9)	34.5(3)
C35	9492.3(14)	-3242.3(11)	3417.3(8)	30.2(3)
C36	9318.5(16)	-4237.4(12)	3746.8(9)	37.5(3)
C37	8748.2(18)	-4396.6(15)	4452.4(9)	45.0(4)
C38	8349(2)	-3581.1(17)	4836.8(9)	50.9(4)
C39	8513(2)	-2594.4(16)	4505.4(10)	51.8(5)
C40	9078.2(18)	-2417.0(13)	3800.7(9)	40.3(4)
C41	12729.7(13)	-4282.0(10)	3049.0(7)	25.4(3)
C42	13085.6(15)	-3271.2(11)	3136.9(8)	30.3(3)
C43	14120.8(15)	-3069.2(12)	3620.5(8)	32.3(3)
C44	14825.5(16)	-3855.4(13)	4010.8(9)	38.3(3)
C45	14478.7(17)	-4858.4(13)	3915.0(9)	39.8(4)
C46	13446.5(15)	-5077.8(11)	3437.7(8)	30.9(3)

 $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$ U11 U22 U33 U23 U13 U12 Atom F1 55.7(6) 42.7(5) 51.1(6) 13.6(4)8.8(5) -8.9(4)F2 45.5(5) 32.3(5) 50.1(6) 1.1(4)-9.7(4)8.1(4) F3 42.5(5) 80.6(8) -8.7(5)-17.7(5)15.2(4)38.0(5) F4 64.3(6) 42.1(5) -11.1(4)8.1(5) 38.8(5)0.1(4)N1 33.9(6) 24.1(6) 31.8(6) -1.3(5)-3.4(5)0.7(5) N2 32.6(6) 21.9(5) 36.8(7) -1.0(5)0.2(5) 0.4(4)-17.7(5)N3 42.5(5) 38.0(5) 80.6(8) -8.7(5)15.2(4)N4 29.0(6) 20.6(5) 0.9(5)7.1(5) 1.6(4)36.6(6) N5 31.1(6) 20.0(5) 36.0(6) 0.6(5)3.1(5) 2.0(4)N6 24.7(5) 22.3(5) 37.1(6) 0.2(5)4.1(5)2.1(4) C1 25.6(6) 23.6(6) 28.5(7)-0.6(5)1.6(5)0.8(5)C2 27.4(6) 22.4(6) 33.9(7) -2.3(5)2.0(5) -0.2(5)C3 40.1(8) 26.0(7)39.6(8) 0.5(6)-2.9(6)-1.4(6)C4 28.6(7) 22.0(6) 31.9(7) 0.9(5)-0.7(5)1.4(5) C5 31.4(7)25.9(7)37.7(8) -3.0(6)2.0(6) 4.0(5)C6 28.8(7)37.3(8) 27.6(7)-2.8(6)1.2(5)5.0(6) C7 40.6(8) 41.9(9) 35.7(8) 1.8(7)-1.6(6)4.6(7)C8 42.3(9) 57.5(11) 36.6(9) 6.6(8) 2.5(7)12.0(8) C9 50.7(10) 75.1(13) 28.9(8) -7.1(8)-2.5(7)17.1(9) C10 36.5(9) -17.9(9)-5.7(8)62.4(11) 62.5(12)12.3(9) 37.0(9) C11 48.1(9) 42.4(9) -10.8(7)-1.8(7)7.9(7) C12 35.1(7) -4.1(5)-2.5(6)23.4(6)32.9(7)-0.3(5)C13 36.0(8) 35.1(8) 50.5(10) -3.5(7)-9.6(7)-2.0(6)C14 58.4(10) 43.4(9) 30.2(8) -1.9(7)1.6(7)0.9(8)C15 25.6(6) 28.9(7) 25.9(7) -1.2(5)0.1(5) 1.2(5)C16 34.4(7)29.1(7) 30.8(7) -2.6(6)2.4(6)-3.5(6)C17 41.8(8) 40.8(9) -4.6(7)11.7(7)-10.0(7)38.2(8) C18 9.7(6) 35.6(8) 45.4(9) 36.2(8) -10.6(7)-1.2(6)C19 34.4(7) 34.2(8) 33.0(8) -6.1(6)-0.1(6)5.5(6) C20 32.6(7) 28.4(7)33.1(7)0.5(6)2.6(6)1.9(6) C21 26.1(7) 26.7(7)49.1(9) 1.1(6) 8.4(6) -0.8(5)C22 28.6(8) -8.7(8)46.8(10) 64.5(12) 0.8(7)-2.2(7)C23 39.8(9) 44.4(9)45.9(10) 1.8(7)13.5(7)4.7(7) F5 13.6(4) 53.9(6) 43.0(5) 50.1(6) 14.6(4)-1.2(5)43.5(5) 50.9(6) -1.4(4)-7.7(4)F6 30.5(5) 9.5(4) F7 -23.7(5)66.8(7)46.6(6) 55.3(6) -21.7(5)10.2(5)F8 37.3(5) 36.4(5)107.2(10)-10.9(6)3.4(6) -12.5(4)

Table S3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 3a. TheAnisotropicdisplacementfactorexponenttakestheform:-

N7	31.2(6)	21.9(5)	31.1(6)	-2.1(5)	1.9(5)	0.7(4)
N8	31.2(6)	22.0(5)	35.5(7)	-2.0(5)	0.2(5)	0.8(4)
N9	27.6(5)	19.9(5)	28.0(6)	-1.0(4)	0.7(4)	0.8(4)
N10	27.4(6)	19.7(5)	33.8(6)	0.0(4)	-7.2(5)	-0.2(4)
N11	29.6(6)	20.8(5)	34.8(6)	-1.6(5)	-4.7(5)	-0.3(4)
N12	23.1(5)	22.3(5)	36.8(6)	-1.2(5)	-6.5(5)	-0.1(4)
C24	24.0(6)	22.0(6)	28.4(7)	-1.2(5)	-2.5(5)	0.9(5)
C25	28.0(6)	20.7(6)	34.1(7)	-2.0(5)	-0.9(5)	2.1(5)
C26	41.8(8)	25.0(7)	41.2(8)	1.3(6)	4.0(7)	3.5(6)
C27	27.1(6)	22.4(6)	32.8(7)	-1.8(5)	-2.4(5)	-0.1(5)
C28	31.7(7)	26.5(7)	49.6(9)	-5.9(6)	-9.4(6)	-1.6(6)
C29	28.4(7)	27.8(7)	50.4(9)	-1.9(6)	-13.8(6)	2.9(5)
C30	26.0(7)	44.7(9)	68.0(12)	-11.4(8)	-5.7(7)	3.5(6)
C31	44.6(9)	50.7(10)	51.0(10)	-2.8(8)	-20.7(8)	0.4(8)
C32	32.4(7)	24.9(7)	30.2(7)	-5.1(5)	1.0(5)	0.4(5)
C33	48.0(9)	44.3(9)	29.5(8)	-3.5(7)	-3.0(7)	1.0(7)
C34	30.2(7)	33.2(8)	39.3(8)	-2.2(6)	5.6(6)	2.8(6)
C35	26.6(6)	35.3(7)	28.7(7)	-2.8(6)	-2.7(5)	-2.8(5)
C36	36.2(8)	38.4(8)	36.9(8)	1.4(6)	0.8(6)	-2.7(6)
C37	39.1(8)	56.6(10)	37.3(9)	7.0(8)	-2.9(7)	-9.9(7)
C38	49.5(10)	74.8(13)	28.0(8)	-4.0(8)	1.7(7)	-13.0(9)
C39	61.0(11)	62.3(12)	34.2(9)	-16.7(8)	3.8(8)	-6.6(9)
C40	46.7(9)	42.4(9)	33.1(8)	-10.1(7)	-1.0(7)	-4.7(7)
C41	23.5(6)	28.8(7)	23.7(6)	-1.9(5)	-0.6(5)	0.4(5)
C42	31.5(7)	27.7(7)	31.6(7)	-0.8(6)	-3.3(6)	-1.3(5)
C43	31.9(7)	35.3(8)	30.4(7)	-7.1(6)	-0.4(6)	-4.9(6)
C44	35.0(8)	47.6(9)	34.0(8)	-9.8(7)	-9.9(6)	2.0(7)
C45	41.7(8)	41.2(9)	36.9(8)	-3.4(7)	-13.3(7)	10.0(7)
C46	33.5(7)	28.1(7)	31.3(7)	-3.0(6)	-3.6(6)	4.5(6)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C3	1.3697(19)	F5	C26	1.3654(19)
F2	C3	1.3589(18)	F6	C26	1.3602(18)
F3	C5	1.3493(18)	F7	C28	1.369(2)
F4	C5	1.3624(18)	F8	C28	1.3472(18)
N1	N2	1.3874(16)	N7	N8	1.3894(16)
N1	C1	1.4534(17)	N7	C24	1.4535(17)
N1	C6	1.4055(19)	N7	C35	1.4061(19)
N2	C2	1.2929(19)	N8	C25	1.2883(19)
N3	C1	1.4608(17)	N9	C24	1.4621(17)
N3	C2	1.3716(17)	N9	C25	1.3714(17)
N3	C12	1.4717(18)	N9	C32	1.4754(17)
N4	N5	1.3913(16)	N10	N11	1.3904(16)
N4	C1	1.4658(17)	N10	C24	1.4625(17)
N4	C15	1.4117(17)	N10	C41	1.4104(17)
N5	C4	1.2908(18)	N11	C27	1.2930(18)
N6	C1	1.4636(17)	N12	C24	1.4637(17)
N6	C4	1.3701(18)	N12	C27	1.3695(17)
N6	C21	1.4805(18)	N12	C29	1.4797(17)
C2	C3	1.484(2)	C25	C26	1.490(2)
C4	C5	1.4910(18)	C27	C28	1.4884(19)
C6	C7	1.393(2)	C29	C30	1.522(2)
C6	C11	1.399(2)	C29	C31	1.521(2)
C7	C8	1.387(2)	C32	C33	1.522(2)
C8	C9	1.384(3)	C32	C34	1.522(2)
C9	C10	1.388(3)	C35	C36	1.394(2)
C10	C11	1.383(2)	C35	C40	1.396(2)
C12	C13	1.522(2)	C36	C37	1.386(2)
C12	C14	1.523(2)	C37	C38	1.382(3)
C15	C16	1.396(2)	C38	C39	1.385(3)
C15	C20	1.396(2)	C39	C40	1.384(2)
C16	C17	1.382(2)	C41	C42	1.3968(19)
C17	C18	1.385(2)	C41	C46	1.3941(19)
C18	C19	1.381(2)	C42	C43	1.389(2)
C19	C20	1.384(2)	C43	C44	1.381(2)
C21	C22	1.520(2)	C44	C45	1.388(2)
C21	C23	1.522(2)	C45	C46	1.385(2)

Table S4 Bond Lengths for compound 3a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	N1	C1	113.11(11)	N8	N7	C24	112.85(11)
N2	N1	C6	118.96(12)	N8	N7	C35	119.23(11)
C6	N1	C1	127.07(12)	C35	N7	C24	126.56(12)
C2	N2	N1	105.10(11)	C25	N8	N7	105.27(11)
C1	N3	C12	119.27(11)	C24	N9	C32	119.22(10)
C2	N3	C1	108.35(11)	C25	N9	C24	108.27(11)
C2	N3	C12	132.11(12)	C25	N9	C32	131.92(12)
N5	N4	C1	112.80(10)	N11	N10	C24	112.80(10)
N5	N4	C15	118.83(11)	N11	N10	C41	119.16(11)
C15	N4	C1	125.65(11)	C41	N10	C24	125.92(11)
C4	N5	N4	105.11(11)	C27	N11	N10	105.21(11)
C1	N6	C21	118.91(11)	C24	N12	C29	118.84(11)
C4	N6	C1	108.41(11)	C27	N12	C24	108.41(10)
C4	N6	C21	132.30(11)	C27	N12	C29	132.38(12)
N1	C1	N3	99.12(10)	N7	C24	N9	99.10(10)
N1	C1	N4	117.59(11)	N7	C24	N10	117.26(11)
N1	C1	N6	114.90(11)	N7	C24	N12	115.10(11)
N3	C1	N4	114.08(11)	N9	C24	N10	114.58(11)
N3	C1	N6	113.03(11)	N9	C24	N12	112.50(11)
N6	C1	N4	98.96(10)	N10	C24	N12	99.11(10)
N2	C2	N3	114.18(12)	N8	C25	N9	114.22(12)
N2	C2	C3	116.19(12)	N8	C25	C26	116.35(12)
N3	C2	C3	129.55(13)	N9	C25	C26	129.37(13)
F1	C3	C2	111.54(12)	F5	C26	C25	111.30(13)
F2	C3	F1	105.33(12)	F6	C26	F5	105.42(13)
F2	C3	C2	113.09(12)	F6	C26	C25	112.88(12)
N5	C4	N6	114.63(12)	N11	C27	N12	114.47(12)
N5	C4	C5	116.11(12)	N11	C27	C28	116.34(12)
N6	C4	C5	129.20(12)	N12	C27	C28	129.04(12)
F3	C5	F4	105.32(12)	F7	C28	C27	110.77(13)
F3	C5	C4	112.18(12)	F8	C28	F7	105.41(13)
F4	C5	C4	111.48(12)	F8	C28	C27	112.97(12)
C7	C6	N1	121.88(14)	N12	C29	C30	112.74(13)
C7	C6	C11	119.38(15)	N12	C29	C31	112.43(13)
C11	C6	N1	118.73(14)	C31	C29	C30	112.07(14)
C8	C7	C6	119.76(16)	N9	C32	C33	112.67(12)
C9	C8	C7	121.04(17)	N9	C32	C34	112.25(11)
C8	C9	C10	119.08(16)	C33	C32	C34	111.88(13)
C11	C10	C9	120.79(18)	C36	C35	N7	121.84(13)
C10	C11	C6	119.95(17)	C36	C35	C40	119.54(14)

Table S5 Bond Angles for compound 3a.

N3	C12	C13	112.84(12)	C40	C35	N7	118.60(14)
N3	C12	C14	112.42(12)	C37	C36	C35	119.74(16)
C13	C12	C14	111.66(14)	C38	C37	C36	120.91(17)
C16	C15	N4	119.46(12)	C37	C38	C39	119.15(16)
C16	C15	C20	119.32(13)	C40	C39	C38	120.94(17)
C20	C15	N4	121.20(12)	C39	C40	C35	119.71(17)
C17	C16	C15	119.80(14)	C42	C41	N10	121.23(12)
C16	C17	C18	121.09(15)	C46	C41	N10	119.52(12)
C19	C18	C17	118.91(14)	C46	C41	C42	119.25(13)
C18	C19	C20	121.13(14)	C43	C42	C41	119.93(13)
C19	C20	C15	119.75(14)	C44	C43	C42	120.97(14)
N6	C21	C22	113.06(13)	C43	C44	C45	118.85(14)
N6	C21	C23	112.36(13)	C46	C45	C44	121.17(14)
C22	C21	C23	112.15(13)	C45	C46	C41	119.82(14)

-	. ,	-		
Atom	x	у	Z	U(eq)
F1	5159.1(11)	3980.2(8)	751.7(6)	51.2(3)
F2	2936.5(10)	3876.5(7)	1044.0(5)	42.8(2)
F3	7283.8(11)	-1615.9(8)	2392.7(7)	53.3(3)
F4	6037.5(12)	-1704.3(7)	1438.7(5)	48.2(2)
N1	5308.7(13)	1943.1(9)	2705.6(7)	30.0(3)
N2	5087.0(13)	2942.9(9)	2412.0(7)	30.6(3)
N3	4298.4(12)	1875.1(8)	1637.3(6)	26.4(2)
N4	3690.4(12)	483.4(9)	2584.1(7)	29.2(3)
N5	4091.9(12)	-538.5(8)	2594.0(7)	29.4(3)
N6	5809.4(12)	436.0(9)	2040.3(7)	28.3(2)
C1	4773.5(14)	1187.8(10)	2255.6(8)	26.1(3)
C2	4506.6(14)	2863.9(10)	1791.6(8)	28.0(3)
C3	4231.1(16)	3838.5(11)	1337.6(9)	35.4(3)
C4	5313.1(14)	-523.1(10)	2267.8(8)	27.7(3)
C5	5952.4(15)	-1539.8(11)	2161.2(8)	31.8(3)
C6	5789.3(15)	1766.6(12)	3424.1(8)	31.3(3)
C7	5878.5(17)	784.0(13)	3782.3(9)	39.8(4)
C8	6375.0(18)	647.6(15)	4488.3(9)	46.3(4)
С9	6776(2)	1474.3(17)	4847.4(10)	51.5(5)
C10	6694(2)	2451.4(16)	4487.6(10)	52.9(5)
C11	6215.0(18)	2603.1(14)	3780.9(9)	42.1(4)
C12	3608.8(15)	1443.4(11)	1029.1(8)	30.3(3)
C13	2017.9(17)	1559.4(12)	1065.3(10)	40.4(4)
C14	4225(2)	1853.4(14)	283.1(9)	44.1(4)
Н3	4322.56	4419.67	1647.79	43
Н5	5370.05	-2090.04	2435.19	38
H7	5600.19	209.77	3543.81	48
H8	6441.07	-23.96	4729.06	56
H9	7102.34	1374.46	5333.64	62
H10	6970.7	3022.9	4729.64	64
H11	6174.83	3274.67	3537.95	50
H12	3808.25	691.62	1084.05	36

Table S6 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 3a.

H13A	1662.37	1322.24	1559.23	61
H13B	1601	1149.77	708.55	61
H13C	1765.95	2280.79	951.37	61
H14A	3926.35	2565.14	169.5	66
H14B	3893.66	1437.64	-92.88	66
H14C	5253.24	1821.37	292.53	66
H16	2013.89	-727.07	3402.37	38
H17	153.45	-309.81	4170.49	48
H18	-443.13	1397.57	4282.36	47
H19	842.09	2691.81	3611.01	40
H20	2700.87	2299.66	2831.33	38
H21	7063.57	1553.4	1577.54	41
H22A	8101.6	1032.94	2688.63	70
H22B	9218.69	998.79	2021.5	70
H22C	8531.56	-39.34	2396.18	70
H23A	7805.32	-387.71	1117.02	66
H23B	8343.44	702.98	753.89	66
H23C	6737.05	382.41	687.36	66
H26	11272.43	-549.97	1705.67	44
H28	10086.13	-7053.93	2283.17	43
H29	8415.91	-3366.28	1588.05	42
H30A	6888	-5038.83	2317.25	69
H30B	6222.2	-3970.01	2001.74	69
H30C	7256.15	-4012.32	2676.01	69
H31A	8893.68	-4442.47	635.51	73
H31B	7274.36	-4124.47	709.26	73
H31C	7777.63	-5242.9	1022.19	73
H32	11742.82	-4246.56	1045.33	35
H33A	10553.23	-3022.18	247.01	61
H33B	11994.94	-3408.76	-105.51	61
H33C	11918.87	-2312.17	207.32	61
H34A	13888.3	-2753.43	1071.1	52
H34B	14057.27	-3837.65	746.01	52
H34C	13805.76	-3787.64	1608.79	52

H36	9590.04	-4804.12	3488.4	45
H37	8630.08	-5075.62	4675.24	54
H38	7966.26	-3696.25	5322.08	61
H39	8234.34	-2031.05	4765.57	62
H40	9183.65	-1736.5	3578.89	48
H42	12620.2	-2722.51	2866.23	36
H43	14347.35	-2379.93	3683.64	39
H44	15535.27	-3712.35	4339.12	46
H45	14957.8	-5404.11	4181.48	48
H46	13227.75	-5768.69	3375.48	37

X-Ray Crystallographic Data of Compound 5a

Thermal ellipsoids are set at a 50% probability level. Crystal data have been deposited to CCDC, number 2264556.

Crystallization Details

The obtained compound 5a (15 mg) was dissolved in THF (0.3 mL) in a NMR tube at room temperature. Then petroleum ether (2 mL) was added to the solution slowly along the tube wall, resulting in a two-phase mixture. The colorless crystal of compound 5a was formed after the two-phase mixture has diffused.

Experimental

A suitable crystal was selected on a ROD, Synergy Custom system, HyPix diffractometer. The crystal was kept at 301.22(10) K during data collection. Using Olex2, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for $C_{13}H_{16}F_2N_4$ (M =266.30 g/mol): monoclinic, space group P21 (no. 4), a = 6.1731(3) Å, b = 9.5526(5) Å, c = 11.6141(5) Å, β = 96.315(4), V = 680.72(6) Å^3, Z = 2, T = 301.22(10) K, μ (Cu K α) = 0.842 mm-1, Dcalc = 1.299 g/cm3, 8813 reflections measured (7.658° $\leq 2\Theta \leq 155.834^{\circ}$), 2592 unique (Rint = 0.0614, Rsigma = 0.0413) which were used in all calculations. The final R1 was 0.0686 (I > 2σ (I)) and wR₂ was 0.1899 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown. Details:

1. Fixed Uiso

```
At 1.2 times of:
```

All C(H) groups, All N(H) groups

At 1.5 times of:

All C(H,H,H) groups

2. a Ternary CH refined with riding coordinates:

C2(H2A)

2.b Aromatic/amide H refined with riding coordinates:

N2(H2), C5(H5), C8(H8), C10(H10), C11(H11), C13(H13)

2.c Idealised Me refined as rotating group:

C3(H3A,H3B,H3C), C7(H7A,H7B,H7C), C9(H9A,H9B,H9C)

Empirical formula	$C_{13}H_{16}F_2N_4$
Formula weight	266.30
Temperature/K	301.22(10)
Crystal system	monoclinic
Space group	P21
a/Å	6.1731(3)
b/Å	9.5526(5)
c/Å	11.6141(5)
α/°	90
β/°	96.315(4)
γ/°	90
Volume/Å ³	680.72(6)
Z	2
pcalcg/cm ³	1.299
μ/mm ⁻¹	0.842
F(000)	280.0
Crystal size/mm ³	$0.13 \times 0.06 \times 0.05$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection	7.658 to 155.834
Index ranges	$-7 \le h \le 7, -11 \le k \le 10, -14 \le l \le 14$
Reflections collected	8813
Independent reflections	2592 [$R_{int} = 0.0614, R_{sigma} = 0.0413$]
Data/restraints/parameters	2592/1/175
Goodness-of-fit on F ²	1.044
Final R indexes [I>=2σ (I)]	$R_1 = 0.0686, wR_2 = 0.1831$
Final R indexes [all data]	$R_1 = 0.0723, wR_2 = 0.1899$
Largest diff. peak/hole / e Å-3	0.40/-0.36
Flack parameter	-0.12(9)

Table S7 Crystal data and structure refinement for compound 5a

Atom	x	У	Z	U(eq)
F1	676(6)	7833(4)	8213(3)	104.9(10)
F2	3458(8)	8824(4)	7675(4)	131.5(16)
N1	2855(5)	5771(3)	6972(3)	57.6(7)
N2	3952(5)	3602(4)	6170(3)	63.9(8)
N3	5251(5)	5763(4)	8595(3)	63.5(8)
N4	5504(5)	4572(3)	7950(2)	57.5(7)
C1	4056(5)	4611(4)	6971(3)	53.3(7)
C2	2881(8)	7786(5)	8352(4)	73.8(11)
C3	2721(8)	2104(5)	4581(4)	79.6(13)
C4	2274(6)	3477(4)	5163(3)	58.4(8)
C5	10449(7)	1715(6)	9022(3)	76.0(12)
C6	7157(5)	3585(4)	8311(3)	55.8(8)
C7	2419(8)	4687(5)	4344(3)	75.4(11)
C8	9229(6)	4081(5)	8704(3)	63.3(9)
C9	27(6)	3424(5)	5590(4)	73.3(11)
C10	6721(6)	2172(5)	8288(3)	64.6(9)
C11	8376(8)	1225(5)	8633(4)	74.8(11)
C12	3657(6)	6408(4)	7966(3)	59.1(8)
C13	10858(6)	3135(6)	9074(4)	74.4(12)

Table S8 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 5a. U_{eq} is defined as 1/3 of the trace of the orthogonalised U₁₁ tensor.

$2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+].$						
Atom	U11	U22	U33	U23	U13	U12
F1	97(2)	98(2)	119(2)	-16.2(19)	12.4(15)	31.2(17)
F2	174(4)	59.0(19)	173(4)	0(2)	68(3)	1(2)
N1	60.1(14)	55.1(17)	57.2(15)	-2.4(12)	4.6(11)	5.3(12)
N2	62.0(15)	65(2)	61.3(16)	-14.3(14)	-8.6(12)	13.5(13)
N3	67.3(16)	63.1(19)	58.4(16)	-12.4(14)	-0.9(12)	1.9(14)
N4	56.6(14)	60.3(18)	53.7(14)	-6.7(12)	-2.8(10)	2.2(12)
C1	53.1(14)	53.6(18)	52.3(15)	-2.8(13)	1.8(11)	-0.8(13)
C2	86(3)	66(3)	68(2)	-9.4(18)	4.3(18)	8(2)
C3	81(2)	74(3)	80(3)	-25(2)	-10(2)	12(2)
C4	60.0(16)	59(2)	53.7(17)	-7.3(14)	-4.2(12)	0.6(14)
C5	73(2)	92(3)	63(2)	6(2)	5.1(16)	24(2)
C6	51.3(15)	68(2)	47.6(15)	-0.5(13)	4.4(11)	3.5(14)
C7	87(3)	73(3)	65(2)	0(2)	1.3(18)	-6(2)
C8	54.7(16)	77(2)	58.4(18)	0.2(16)	5.3(13)	-0.9(15)
С9	58.6(19)	75(3)	85(3)	-9(2)	2.8(16)	-6.6(17)
C10	64.7(19)	65(2)	63(2)	1.3(15)	1.6(14)	3.3(16)
C11	90(3)	67(3)	67(2)	2.9(18)	6.4(18)	9(2)
C12	65.3(17)	55.2(19)	56.8(17)	-3.3(14)	6.8(13)	1.3(15)
C13	53.4(17)	103(4)	66(2)	0(2)	2.5(14)	8.1(18)

Table S9 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 5a. TheAnisotropicdisplacementfactorexponenttakestheform:-
Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C2	1.354(6)	C2	C12	1.487(6)
F2	C2	1.338(7)	C3	C4	1.514(6)
N1	C1	1.334(5)	C4	C7	1.505(6)
N1	C12	1.350(5)	C4	C9	1.525(5)
N2	C1	1.336(4)	C5	C11	1.391(7)
N2	C4	1.480(4)	C5	C13	1.380(8)
N3	N4	1.381(4)	C6	C8	1.393(5)
N3	C12	1.313(5)	C6	C10	1.376(6)
N4	C1	1.367(4)	C8	C13	1.385(6)
N4	C6	1.418(5)	C10	C11	1.390(6)

Table S10 Bond Lengths for compound 5a.

Table S11 Bond Angles for compound 5a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C12	102.9(3)	C3	C4	С9	109.5(4)
C1	N2	C4	125.8(3)	C7	C4	C3	110.9(3)
C12	N3	N4	102.0(3)	C7	C4	С9	110.5(4)
N3	N4	C6	120.5(3)	C13	C5	C11	120.2(4)
C1	N4	N3	109.0(3)	C8	C6	N4	118.4(4)
C1	N4	C6	130.3(3)	C10	C6	N4	120.9(3)
N1	C1	N2	128.0(3)	C10	C6	C8	120.7(4)
N1	C1	N4	109.6(3)	C13	C8	C6	119.3(4)
N2	C1	N4	122.4(3)	C6	C10	C11	119.8(4)
F1	C2	C12	110.3(4)	C10	C11	C5	119.7(5)
F2	C2	F1	103.6(4)	N1	C12	C2	123.8(4)
F2	C2	C12	111.3(4)	N3	C12	N1	116.5(3)
N2	C4	C3	106.0(3)	N3	C12	C2	119.6(4)
N2	C4	C7	110.6(3)	C5	C13	C8	120.3(4)
N2	C4	C9	109.1(3)				

Α	В	C	D	Angle/°	Α	В	C	D	Angle/°
F1	C2	C12	N1	45.1(6)	C1	N4	C6	C8	132.0(4)
F1	C2	C12	N3	-136.6(4)	C1	N4	C6	C10	-48.9(5)
F2	C2	C12	N1	-69.2(5)	C4	N2	C1	N1	-7.8(6)
F2	C2	C12	N3	109.0(5)	C4	N2	C1	N4	172.3(3)
N3	N4	C1	N1	-1.0(4)	C6	N4	C1	N1	-177.3(3)
N3	N4	C1	N2	178.9(3)	C6	N4	C1	N2	2.6(6)
N3	N4	C6	C8	-43.9(4)	C6	C8	C13	C5	1.9(6)
N3	N4	C6	C10	135.2(4)	C6	C10	C11	C5	1.3(6)
N4	N3	C12	N1	-0.6(5)	C8	C6	C10	C11	-1.6(6)
N4	N3	C12	C2	-179.0(3)	C10	C6	C8	C13	0.1(5)
N4	C6	C8	C13	179.2(3)	C11	C5	C13	C8	-2.2(6)
N4	C6	C10	C11	179.3(3)	C12	N1	C1	N2	-179.3(4)
C1	N1	C12	N3	0.0(5)	C12	N1	C1	N4	0.6(4)
C1	N1	C12	C2	178.3(4)	C12	N3	N4	C1	0.9(4)
C1	N2	C4	C3	-174.7(4)	C12	N3	N4	C6	177.6(3)
C1	N2	C4	C7	65.0(5)	C13	C5	C11	C10	0.6(6)
C1	N2	C4	C9	-56.9(5)					

Table S12 Torsion Angles for compound 5a.

Atom	X	у	Z	U(eq)
H2	4949.11	2969.39	6246.63	77
H2A	3437.03	7961.31	9162.82	89
H3A	4155.32	2125.48	4335.76	119
H3B	1663.85	1967.36	3920.65	119
H3C	2626.26	1349.63	5119.42	119
H5	11563.11	1084.19	9246.89	91
H7A	2178.81	5547.11	4738.1	113
H7B	1332.11	4582.39	3692.47	113
H7C	3839.05	4702.26	4080.31	113
H8	9514.84	5036.77	8718.26	76
H9A	-81.27	2603.19	6057.03	110
H9B	-1072.18	3393.28	4938.15	110
Н9С	-180.99	4243.02	6044.69	110
H10	5323.42	1852	8042.47	78
H11	8097.39	268.4	8604.99	90
H13	12234.41	3458.59	9359.13	89

Table S13 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 5a.