Supplementary Information for

Organocatalytic SuFEx click reactions of SO₂F₂

Yu Xie, Muze Lin, Zhihang Wei, Zhihua Cai, and Lin He*, Guangfen Du*

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.

E-mail: helin@shzu.edu.cn; duguangfen@shzu.edu.cn

Table of Contents

1. General experimental methods	S2
2. General Procedure	S2
2.1 General Procedure A: DBU-catalyzed synthesis of aryl fluorosulfates	S2
2.2 General Procedure B: DBU-catalyzed synthesis of 3am	S2
2.3 General Procedure C: DBU-catalyzed synthesis of 3an	S3
2.4 General Procedure D: DBU-catalyzed synthesis of sulfamoyl fluorides	S3
3. Gram-Scale Experiments	S3
3.1 Gram-scale synthesis of 3a	S4
3.2 Gram-scale synthesis of 3v	S4
4. Spectroscopic data for all products	S5
5. References	S16
6. ¹ H and ¹³ C NMR Spectra for all products	S17

1. General experimental methods

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃ on a Bruker Avance III 400 MHz spectrometer with TMS as internal standard at room temperature, the chemical shifts (δ) were expressed in ppm and *J* values were given in Hz. High resolution mass spectra (HRMS) were obtained on a Thermo Scientific Q Exactive mass spectrometry equipped with an ESI or EI source. All commercially available chemicals were purchased from Adamas, Alfa-Aesar and Bide Pharmatech and used as received without further purification unless otherwise stated. Anhydrous THF, toluene, 1,4-dioxane, DCM, DCE and CH₃CN were distilled from sodium/benzophenone or calcium hydride prior to use. molecular sieves 4Å were calcined in a muffle furnace under air at 350°C for 5h prior to use. Column chromatography was performed on silica gel (200-300 mesh). Petroleum ether (PE), where used, has a boiling point range of 60-90°C.

2. General Procedure

2.1 General Procedure A: DBU-catalyzed synthesis of aryl fluorosulfates

To a suspension of phenol **1** (0.8 mmol) and MS 4Å (800 mg) in anhydrous CH₃CN (2.0 mL) was added DBU (0.08 mmol, 12.2 mg, 10 mol%). The mixture was stirred at room temperature for 10 min. Then the reaction tube was sealed with a septum. The atmosphere above the mixture was removed with gentle vacuum, and SO_2F_2 gas from a balloon was introduced. The reaction mixture was stirred vigorously at room temperature for 24 hours, and the progress was monitored by TLC. After completion, the reaction mixture was then diluted with ethyl acetate, filtered through a short pad of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel to afford the desired product.

2.2 General Procedure B: DBU-catalyzed synthesis of 3am

To a suspension of pyridin-4(1H)-one 4 (0.8 mmol, 76.1 mg) and MS 4Å (800 mg) in anhydrous CH₃CN (2.0 mL) was added DBU (0.08 mmol, 12.2 mg, 10 mol%). The mixture was stirred at room temperature for 10 min. Then the reaction tube was sealed

with a septum. The atmosphere above the mixture was removed with gentle vacuum, and SO_2F_2 gas from a balloon was introduced. The reaction mixture was stirred vigorously at room temperature for 24 hours, and the progress was monitored by TLC. After completion, the reaction mixture was then diluted with ethyl acetate, filtered through a short pad of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel to afford the desired product **3am** as a white solid (46.6 mg, 33% yield).

2.3 General Procedure C: DBU-catalyzed synthesis of 3an

To a suspension of 5-methyl-2-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one **5** (0.8 mmol, 150.6 mg) and MS 4Å (800 mg) in anhydrous CH₃CN (2.0 mL) was added DBU (0.08 mmol, 12.2 mg, 10 mol%). The mixture was stirred at room temperature for 10 min. Then the reaction tube was sealed with a septum. The atmosphere above the mixture was removed with gentle vacuum, and SO_2F_2 gas from a balloon was introduced. The reaction mixture was stirred vigorously at room temperature for 24 hours, and the progress was monitored by TLC. After completion, the reaction mixture was then diluted with ethyl acetate, filtered through a short pad of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel to afford the desired product **3an** as a yellow oil (155.5 mg, 72% yield).

2.4 General Procedure D: DBU-catalyzed synthesis of sulfamoyl fluorides

To a suspension of amine (0.8 mmol) and MS 4Å (800 mg) in anhydrous CH₃CN (2.0 mL) was added DBU (0.08 mmol, 12.2 mg, 10 mol%). The mixture was stirred at room temperature for 10 min. Then the reaction tube was sealed with a septum. The atmosphere above the mixture was removed with gentle vacuum, and SO_2F_2 gas from a balloon was introduced. The reaction mixture was stirred vigorously at room temperature for 24 hours, and the progress was monitored by TLC. After completion, the reaction mixture was then diluted with ethyl acetate, filtered through a short pad of silica gel and concentrated. The crude product was purified by flash column chromatography on silica gel to afford the desired product.

3. Gram-Scale Experiments

3.1 Gram-scale synthesis of 3a

Scheme S1. Gram-scale synthesis of 3a

To a suspension of Phenol **1a** (5 mmol) and MS 4Å (5 g) in anhydrous CH₃CN (12.5 mL) was added DBU (0.5 mmol, 76.1 mg, 10 mol%). The mixture was stirred at room temperature for 10 min. Then the reaction tube was sealed with a septum. The atmosphere above the mixture was removed with gentle vacuum, and SO₂F₂ gas from a balloon was introduced. For large scale reactions, depletion of the sulfuryl fluoride from the balloon was easily observed, and more SO₂F₂ gas was introduced with a fresh balloon when required. The reaction mixture was stirred vigorously at room temperature for 24 hours, and the progress was monitored by TLC. After completion, the reaction mixture was then diluted with ethyl acetate, filtered through a sand core funnel and concentrated. The crude product was purified by flash column chromatography on silica gel to afford **3a** as a white solid (1.235 g, 98% yield).

3.2 Gram-scale synthesis of 3v

Scheme S2. Gram-scale synthesis of 3v

To a suspension of Phenol **1v** (3.7 mmol) and MS 4Å (3.7 g) in anhydrous CH₃CN (9.3 mL) was added DBU (0.37 mmol, 56.3 mg, 10 mol%). The mixture was stirred at room temperature for 10 min. Then the reaction tube was sealed with a septum. The atmosphere above the mixture was removed with gentle vacuum, and SO_2F_2 gas from a balloon was introduced. For large scale reactions, depletion of the sulfuryl fluoride from the balloon was easily observed, and more SO_2F_2 gas was introduced with a fresh balloon when required. The reaction mixture was stirred vigorously at room temperature for 24 hours, and the progress was monitored by TLC. After completion,

the reaction mixture was then diluted with ethyl acetate, filtered through a sand core funnel and concentrated. The crude product was purified by flash column chromatography on silica gel to afford 3v as a white solid (0.857 g, 65% yield).

4. Spectroscopic data for all products

[1,1'-biphenyl]-4-yl sulfurofluoridate $(3a)^{[1]}$

Compound **3a** was prepared according to the general **A**. White solid (196.5 mg, 97% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.63 (m, 2H), 7.57-7.52 (m, 2H), 7.49-7.43 (m, 2H), 7.42-7.37 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 142.0, 139.3, 129.03, 129.01, 128.1, 127.2, 121.2.

4-ethylphenyl sulfurofluoridate (**3b**)^[2]

Compound **3b** was prepared according to the general **A**. Yellow oil (138.8 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (q, J = 8.7 Hz, 4H), 2.68 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 145.0, 129.7, 120.6, 28.3, 15.4.

4-methoxyphenyl sulfurofluoridate $(3c)^{[3]}$

3c

Compound **3c** was prepared according to the general **A**. Yellow oil (119.6 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.21 (m, 2H), 6.95-6.90 (m, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 143.6, 121.9, 115.1, 55.7.

4-(methylthio)phenyl sulfurofluoridate (**3d**)^[3]

3d

Compound **3d** was prepared according to the general **A**. Yellow oil (168.9 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.26 (m, 2H), 7.26-7.22 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 140.2, 127.6, 121.3, 15.7.

4-chlorophenyl sulfurofluoridate $(3e)^{[4]}$

3e

Compound **3e** was prepared according to the general **A**. Colorless oil (134.8 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.41 (m, 2H), 7.31-7.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 134.6, 130.5, 122.4.

4-bromophenyl sulfurofluoridate $(3f)^{[4]}$

Compound **3f** was prepared according to the general **A**. Colorless oil (157.1 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.58 (m, 2H), 7.26-7.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 133.6, 122.7, 122.4...

4-iodophenyl sulfurofluoridate $(3g)^{[5]}$

3g

Compound **3g** was prepared according to the general **A**. Yellow oil (223.0 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.76 (m, 2H), 7.12-7.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 139.6, 122.9, 93.6.

4-cyanophenyl sulfurofluoridate $(3h)^{[6]}$

3h

Compound **3h** was prepared according to the general **A**. White solid (146.5 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.81 (m, 2H), 7.53-7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 134.7, 122.2, 117.0, 113.2.

4-pentanoylphenyl sulfurofluoridate (3i)

Compound **3i** was prepared according to the general **A**. Red oil (206.1 mg, 99% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.06 (m, 2H), 7.47-7.42 (m, 2H), 2.98 (t, *J* = 7.44 Hz, 2H), 1.77-1.69 (m, 2H), 1.47-1.37 (m, 2H), 0.96 (t, J = 7.28 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 152.6, 137.1, 130.4, 121.1, 38.5, 26.2, 22.4, 13.9; IR (KBr, thin film): 2960, 1690, 1594, 1497, 1456, 1410, 1236, 1145, 1014, 915, 851, 818 cm⁻¹; HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd. for C₁₁H₁₄FO₄S, 261.0591, Found 261.0592.

ethyl 4-((fluorosulfonyl)oxy)benzoate (3j)^[6]

Compound **3j** was prepared according to the general **A**. Colorless oil (192.0 mg, 97% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.15 (m, 2H), 7.44-7.39 (m, 2H), 4.41 (q, J = 7.12 Hz, 2H), 1.41 (t, J = 7.12 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 152.7, 132.0, 131.0, 120.9, 61.6, 14.2.

2-methoxyphenyl sulfurofluoridate $(3k)^{[6]}$

Compound **3k** was prepared according to the general **A**. Yellow oil (121.0 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.28 (m, 2H), 7.06-7.03 (m, 1H), 7.01-6.95 (m, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 139.0, 129.6, 122.4, 120.9, 113.5, 56.2.

2-formylphenyl sulfurofluoridate (31)^[6]

Compound **31** was prepared according to the general **A**. Yellow oil (119.7 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.05-8.01 (m, 1H), 7.79-7.74 (m, 1H), 7.63-7.58 (m, 1H), 7.50 (d, J = 8.32 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.3, 150.5, 136.0, 130.9, 129.3, 128.1, 122.1.

3-bromophenyl sulfurofluoridate (3m)^[7]

Compound **3m** was prepared according to the general **A**. Colorless oil (161.2 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.52 (m, 2H), 7.39-7.29 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 132.1, 131.4, 124.5, 123.2, 119.7.

2-iodophenyl sulfurofluoridate $(3n)^{[5]}$

OSO₂F

Compound **3n** was prepared according to the general **A**. Yellow oil (226.6 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.96, 1.36 Hz, 1H), 7.47-7.38 (m, 2H), 7.15-7.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 140.8, 130.3, 130.1, 121.7, 88.4.

2-bromo-4-methoxyphenyl sulfurofluoridate $(3o)^{[8]}$

Compound **30** was prepared according to the general **A**. Yellow oil (218.3 mg, 96% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 9.12, 1.16 Hz, 1H), 7.17 (d, J = 2.96, Hz, 1H), 6.89 (dd, J = 9.12, 3.0 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 140.9, 123.0, 119.2, 115.9, 114.5, 56.0.

3,5-dimethoxyphenyl sulfurofluoridate (3p)

Compound **3p** was prepared according to the general **A**. White solid (177.4 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.49-6.46 (m, 3H), 3.81 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 151.2, 100.5, 99.4, 55.8; IR (KBr, thin film): 2986, 1739, 1626, 1592, 1451, 1374, 1233, 1159, 1110, 1047, 972, 738 cm⁻¹; mp: 38.6-39.1°C; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₈H₁₀FO₅S, 237.0228, Found 237.0230.

2,3-dihydro-1H-inden-5-yl sulfurofluoridate (3q)

Compound **3q** was prepared according to the general **A**. Colorless oil (165.4 mg, 96% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.2 Hz, 1H), 7.16 (s, 1H), 7.07 (d, J = 8.2 Hz, 1H), 2.96-2.88 (m, 4H), 2.17-2.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 147.0, 144.9, 125.6, 118.4, 116.8, 33.0, 32.3, 25.8; IR (KBr, thin film): 2983, 2360, 2340, 1558, 1501, 1447, 1234, 1111, 943, 891, 800, 675 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₉H₁₀FO₃S, 217.0329, Found 217.0329.

benzo[d][1,3]dioxol-5-yl sulfurofluoridate (3r)^[1]

Compound **3r** was prepared according to the general **A**. Yellow oil (137.0 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.83-6.80 (m, 3H), 6.05 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.7, 144.1, 114.0, 108.3, 103.0, 102.5.

2-cinnamoylphenyl sulfurofluoridate (3s)

Compound **3s** was prepared according to the general **A**. Yellow oil (150.7 mg, 61% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 7.6, 1.72 Hz, 1H), 7.68-7.58 (m, 4H), 7.56-7.51 (m, 1H), 7.49-7.46 (m, 1H), 7.46-7.38 (m, 3H), 7.23-7.18 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.5, 147.3, 147.0, 134.2, 133.1, 132.7, 131.2, 130.9, 129.1, 128.9, 128.7, 124.7, 122.1; IR (KBr, thin film): 2922, 1652, 1608, 1575, 1448, 1332, 1232, 1156, 1113, 1060, 918, 816, 773 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₅H₁₂FO₄S, 307.0435, Found 307.0432.

4-chloro-2-(2,3-dichlorophenoxy)phenyl sulfurofluoridate (3t)

Compound **3t** was prepared according to the general **A**. Colorless oil (280.4 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 2.48 Hz, 1H), 7.47-7.45 (m, 1H), 7.30-7.25 (m, 2H), 7.02 (d, J = 8.72 Hz, 1H), 6.73 (d, J = 8.88 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 147.4, 139.2, 131.4, 131.0, 129.8, 128.64, 128.62, 127.4, 123.6, 122.4, 118.7; IR (KBr, thin film): 3096, 1735, 1581, 1472, 1458, 1273, 1234, 1168, 1119, 1099, 938, 878 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd. for C₁₂H₆C₁₃FO₄SNa, 392.8929, Found 392.8927.

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl sulfurofluoridate (3

U)

Compound 3u was prepared according to the general A. Colorless oil (172.3 mg, 71%

yield); ¹H NMR (400 MHz, CDCl₃) δ 7.94-7.89 (m, 2H), 7.35-7.31 (m, 2H), 1.35 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 152.2, 137.0, 120.1, 84.4, 24.9; IR (KBr, thin film): 2982, 1601, 1489, 1455, 1401, 1363, 1235, 1173, 1141, 918, 857, 809 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. For C₁₂H₁₇BFO₅S, 303.0868, Found 303.0868.

2-(diphenylphosphaneyl)phenyl sulfurofluoridate $(3v)^{[9]}$

Compound **3v** was prepared according to the general **A**. White solid (184.5 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.43 (m, 1H), 7.42-7.27 (m, 12H) 6.99-6.94 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8 (d, *J* = 19.9 HZ), 135.2, 134.5 (d, *J* = 10.4 HZ), 134.0 (d, *J* = 20.7 HZ), 131.8 (d, *J* = 21.3 HZ), 130.9, 129.4 128.8 (d, *J* = 7.25 HZ), 128.6, 120.4.

1-bromonaphthalen-2-yl sulfurofluoridate $(3w)^{[8]}$

Compound **3w** was prepared according to the general **A**. White solid (196.5 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.35-8.31 (m, 1H), 7.95-7.88 (m, 2H), 7.73-7.68 (m, 1H), 7.66-7.60 (m, 1H), 7.54-7.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 133.2, 132.7, 129.9, 128.9, 128.4, 127.9, 127.7, 119.4, 115.7.

2-isopropyl-5-methylphenyl sulfurofluoridate $(3x)^{[1]}$

Compound **3x** was prepared according to the general **A**. Colorless oil (158.7 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.96 Hz, 1H), 7.16 (d, *J* = 8.08 Hz, 1H), 7.11 (s, 1H), 3.31-3.19 (m, 1H), 2.35 (s, 3H), 1.24 (d, *J* = 6.92 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 137.8, 137.5, 129.7, 127.6, 121.0, 26.7, 23.1, 20.8.

1H-indol-6-yl sulfurofluoridate (**3y**)

3у

Compound 3y was prepared according to the general A. Yellow oil (121.1 mg, 70%

yield); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.40 (d, J = 8.08 Hz, 1H), 7.27-7.25 (m, 1H), 7.19 (t, J = 7.96 Hz, 1H), 7.13-7.10 (m, 1H), 6.66-6.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 138.2, 125.9, 122.2, 120.6, 111.8, 111.7, 99.1; IR (KBr, thin film): 3448, 1444, 1343, 1233, 1188, 1153, 1092, 1000, 896, 831, 742 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₈H₇FNO₃S, 216.0125, Found 216.0126.

pyridin-4-yl sulfurofluoridate $(3z)^{[3]}$

3z

Compound **3z** was prepared according to the general **A**. Yellow oil (91.3 mg, 64% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.72-8.68 (m,, 2H), 7.75-7.71 (m, 1H), 7.50-7.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 147.1, 142.7, 128.7, 124.8.

5-pentyl-1,3-phenylene bis(sulfurofluoridate) (3aa)

Compound **3aa** was prepared according to the general **A**. Yellow oil (234.2 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.25 (m, 2H), 7.23-7.20 (m, 1H), 2.75-2.7 (m, 2H), 1.70-1.62 (m, 2H), 1.42--1.29 (m, 4H), 0.93-0.89 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 148.7,121.2, 111.9, 35.6, 31.2, 30.3, 22.3, 13.9; IR (KBr, thin film): 1868, 1749, 1720, 1701, 1688, 1653, 1558, 1540, 1522, 1511, 1457, 1396 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd. for C₁₁H₁₄F₂O₆S₂Na, 367.0092, Found 367.0092.

(R)-2,8-dimethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl sulfu-

rofluoridate (3ab)

Compound **3ab** was prepared according to the general **A**. Yellow oil (160.0 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 6.89 (dd, J = 19.08, 2.48 Hz, 2H), 2.79-2.73 (m, 2H), 2.17 (s, 3H), 1.86-1.71 (m, 2H), 1.60-1.50 (m, 3H), 1.46-1.35 (m, 4H), 1.31-1.19 (m, 10H), 1.18-1.00 (m, 7H), 0.88-0.83 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 142.1, 128.5, 121.8, 120.3, 118.6, 76.9, 40.1, 39.4, 37.5, 37.41, 37.38, 37.3, 32.8, 32.7, 30.7, 28.0, 24.8, 24.5, 24.2, 22.7, 22.6, 22.5, 20.9, 19.8, 19.7, 16.2; IR (KBr, thin film): 2926, 1761, 1448, 1378, 1238, 1220, 1048, 985, 923, 885, 802 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd. for C₂₇H₄₆FO₄SNa, 507.2915, Found 507.2917.

Methyl (R)-2-((tert-butoxycarbonyl)amino)-3-(4-((fluorosulfonyl)oxy)phe-

nyl)propanoate (3ac)^[10]

Compound **3ac** was prepared according to the general **A**. White solid (276.0 mg, 91% yield); ¹H NMR (400 MHz, Chloroform-d) δ 7.31 – 7.22 (m, 4H), 5.04 (d, *J* = 7.4 Hz, 1H), 4.61 (q, *J* = 6.3 Hz, 1H), 3.73 (s, 3H), 3.12 (ddd, *J* = 57.9, 13.8, 6.0 Hz, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 154.9, 149.1, 137.2, 131.3, 120.9, 80.2, 54.2, 52.4, 37.9, 28.2.

4-((tetrahydro-2H-pyran-2-yl)oxy)phenyl sulfurofluoridate (3ad)

Compound **3ad** was prepared according to the general **A**. White solid (205.9 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.21 (m, 2H), 7.13-7.08 (m, 2H), 5.41 (t, *J* = 3.08 Hz, 1H), 3.89-3.82 (m, 1H), 3.64-3.58 (m, 1H), 2.05-1.94 (m, 1H), 1.90-1.84 (m, 2H), 1.76-1.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 144.1, 121.8, 117.7, 96.6, 62.0, 30.2, 25.1, 18.5; IR (KBr, thin film): 2947, 1596, 1499, 1448, 1233, 1169, 1143, 1037, 960, 916, 838, 799 cm⁻¹; mp: 48.6-48.9 °C; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd. for C₁₁H₁₃FO₅SNa, 299.0360, Found 299.0360.

2-methyl-4-oxo-4H-pyran-3-yl sulfurofluoridate (3ae)

Compound **3ae** was prepared according to the general **A**. Yellow oil (141.9 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 5.8 Hz, 1H), 6.50 (d, *J* = 5.8 Hz, 1H), 2.47 (d, *J* = 0.56 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 162.0, 154.7, 139.3, 117.9, 15.5; IR (KBr, thin film): 3086, 1669, 1456, 1417, 1363, 1226, 1139, 929, 893, 817, 792, 693 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₆H₆FO₅S, 208.9915, Found 208.9917.

4-allyl-2-methoxyphenyl sulfurofluoridate (3af)^[1]

Compound **3af** was prepared according to the general **A**. Yellow oil (159.5 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (dd, J = 8.28, 1.12 Hz, 1H), 6.86 (d, J = 1.8 Hz, 1H), 6.80 (dd, J = 8.28, 1.96 Hz, 1H), 5.99-5.88 (m, 1H), 5.14 (t, J=1.32 Hz, 1H),

5.12-5.08 (m, 1H), 3.88 (s, 3H), 3.39 (d, J = 6.72 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 142.2, 137.4, 136.2, 122.1, 120.8, 116.8, 113.6, 56.1, 40.0.

(E)-4-(3, 5-dimethoxystyryl)phenyl sulfurofluoridate $(3ag)^{[3]}$

Compound **3ag** was prepared according to the general **A**. White solid (238.7 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.55 (m, 2H), 7.34-7.30 (m, 2H), 7.05 (d, *J* = 1.0 Hz, 2H), 6.67 (d, *J* = 2.24 Hz, 2H), 6.43 (t, *J* = 2.24 Hz, 1H), 3.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 149.1, 138.6, 137.9, 131.0, 128.2, 127.0, 121.2, 104.8, 100.5, 55.4.

4-(2-(dimethylamino)ethyl)phenyl sulfurofluoridate (3ah)

Compound **3ah** was prepared according to the general **A**. Yellow oil (105.0 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.27-7.23 (m, 2H), 2.84-2.78 (m, 2H), 2.56-2.51 (m, 2H), 2.29 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 141.4, 130.5, 120.7, 61.0, 45.4, 33.6; IR (KBr, thin film): 2953, 1505, 1447, 1282, 1233, 1136, 1077, 919, 738 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₀H₁₅FNO₃S, 248.0751, Found 248.0753.

pyridin-4-yl sulfurofluoridate (3am)

Compound **3am** was prepared according to the general **B**. White solid (46.6 mg, 33% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.73 (m, 2H), 6.40-6.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 178.2, 134.0, 120.4; IR (KBr, thin film): 3057, 1667, 1572, 1475, 1337, 1232, 1202, 1076, 987, 869, 783 cm⁻¹; mp: 116.2-116.5 °C; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₅H₅FNO₃S, 177.9969, Found 177.9969.

3-methyl-1-phenyl-1H-pyrazol-5-yl sulfurofluoridate (3an)

3an

Compound **3an** was prepared according to the general C. Yellow oil (155.5 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.37 (m, 2H), 7.29-7.25 (m, 2H), 6.19 (s, 1H), 2.40 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 141.1, 138.5, 134.2, 130.0, 123.4, 95.8, 21.1, 14.5; IR (KBr, thin film): 2929, 1558, 1518, 1463, 1235, 1137, 1109, 1036, 1017, 885, 820, 749 cm⁻¹; HRMS (ESI) *m/z*: [M+H]⁺ Calcd. for C₁₁H₁₂FN₂O₃S, 271.0547, Found 271.0548.

4-phenylpiperazine-1-sulfonyl fluoride $(7a)^{[11]}$

Compound **7a** was prepared according to the general **D**. White solid (148.0 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 2H), 7.05-6.98 (m, 3H), 3.70-3.65 (m, 4H), 3.35-3.29 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 129.4, 121.4, 117.2, 48.9, 47.0.

4-phenylpiperidine-1-sulfonyl fluoride (7b)^[11]

Compound **7b** was prepared according to the general **D**. White solid (157.8 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.16 (m, 5H), 4.06-3.97 (m, 2H), 3.14-3.03 (m, 2H), 2.70-2.60 (m, 1H), 1.96-1.75 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 128.8, 126.9, 126.7, 47.9, 41.4, 32.0.

(4-methoxybenzyl)(methyl)sulfamoyl fluoride (7c)

Compound **7c** was prepared according to the general **D**. Colorless oil (122.5 mg, 58% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.23 (m, 2H), 6.93-6.89 (m, 2H), 4.41 (s, 2H), 3.82 (s, 3H), 2.87 (d, J = 2.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 130.1, 125.6, 114.3, 55.3, 54.6, 34.9; IR (KBr, thin film): 2939, 1612, 1514, 1457, 1408, 1033, 1295, 988, 923, 823, 781, 729 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd. for C₉H₁₂FNO₃SNa, 256.0414, Found 256.0414.

3,4-dihydroisoquinoline-2(1H)-sulfonyl fluoride (7d)^[11]

Compound **7d** was prepared according to the general **D**. Colorless oil (133.9 mg, 68% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.04 (m, 4H), 4.60 (s, 2H), 3.71 (td, *J* = 6.0, 1.8 Hz, 2H), 2.98 (t, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 132.5, 130.3, 129.1, 127.4, 126.9, 126.2, 48.2, 45.0, 28.0.

benzylsulfamoyl fluoride $(7e)^{[12]}$

Compound 7e was prepared according to the general **D**. Colorless oil (68.1 mg, 45% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 5.34 (s, 1H), 4.39 (dd, *J* = 5.76, 1.32 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 134.8, 129.1, 128.8, 128.1, 48.4.

(4-fluorophenethyl)sulfamoyl fluoride (7f)

Compound **7f** was prepared according to the general **D**. Colorless oil (31.9 mg, 18% yield);¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.14 (m, 2H), 7.06 – 6.99 (m, 2H), 5.05 (s, 1H), 3.56-3.50 (m, 2H), 2.90 (t, *J* = 6.96 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, *J* = 244.2 Hz), 132.4 (d, *J* = 3.2 Hz), 130.3 (d, *J* = 7.9 Hz), 115.9 (d, *J* = 21.2 Hz), 45.6, 34.7. IR (KBr, thin film): 2923, 1490, 1409, 1250, 1209, 1138, 1064, 1009, 950, 832, 754, 709 cm⁻¹; HRMS (ESI) *m/z*: [M+Na]⁺ Calcd. for C₈H₉F₂NO₂SNa, 244.0214, Found 244.0214.

5. References

- [1] J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* **2014**, *53*, 9430-9448.
- [2] W. Yan, H. Zhou, H. Li, H. Hu, Y. Yu, S. Guo, H. Cai, Synlett. 2021, 32, 1453-1456.
- [3] M. Lin, J. Luo, Y. Xie, G. Du, Z. Cai, B. Dai, L. He, ACS Catal. 2023, 13, 14503-14512.
- [4] C. Liu, C. Yang, S. Hwang, S. L. Ferraro, J. P. Flynn, J. Niu, Angew. Chem. Int. Ed. 2020, 59, 18435-18441.
- [5] H. Yao, Q. Guo, M. Wang, R. Wang, Z. Xu, Bioorg. Med. Chem., 2021, 46, 116344.
- [6] Q. Liang, P. Xing, Z. Huang, J. Dong, K. B. Sharpless, X. Li, B. Jiang, Org. Lett. 2015, 17, 1942-1945.
- [7] Y. Zhang, W. Chen, T. Tan, Y. Gu, S. Zhang, J. Li, Y. Wang, W. Hou, G. Yang, P. Ma, H. Xu, *Chem. Commun.* 2021, 57, 4588-4591.
- [8] Z.-M. Li, B. Shuai, C. Ma, P. Fang, T.-S. Mei, Chin. J. Chem. 2022, 40, 2335-2344.
- [9] G. Ren, Q. Zheng, H. Wang, Org. Lett. 2017, 19, 1582-1585.
- [10] Y.-D. Kwon, M. H. Jeon, N. K. Park, J. K. Seo, J. Son, Y. H. Ryu, S. Y. Hong, J.-H. Chun, Org. Lett. 2020, 22, 5511-5516.
- [11] M. H. Jeon, Y.-D. Kwon, M. P. Kim, G. B. Torres, J. K. Seo, J. Son, Y. H. Ryu, S. Y. Hong, J.-H. Chun, Org. Lett. 2021, 23, 2766-2771.
- [12] T. Guo, G. Meng, X. Zhan, Q. Yang, T. Ma, L. Xu, K. B. Sharpless, J. Dong, Angew. Chem. Int. Ed. 2018, 57, 2605-2610.

6. ¹H and ¹³C NMR Spectra for all products

¹H NMR Spectrum for Compound **3a** (400 MHz, CDCl₃)

S18

¹H NMR Spectrum for Compound 3e (400 MHz, CDCl₃)

¹H NMR Spectrum for Compound **3f** (400 MHz, CDCl₃)

¹H NMR Spectrum for Compound **3**g (400 MHz, CDCl₃)

¹H NMR Spectrum for Compound **3h** (400 MHz, CDCl₃)

¹H NMR Spectrum for Compound **3i** (400 MHz, CDCl₃)

S27

S28

S30

S31

¹H NMR Spectrum for Compound **3t** (400 MHz, CDCl₃)

¹H NMR Spectrum for Compound **3z** (400 MHz, CDCl₃)

80

60

40

¹H NMR Spectrum for Compound **3aa** (400 MHz, CDCl₃)

S45

¹H NMR Spectrum for Compound **3ad** (400 MHz, CDCl₃)

S47

¹H NMR Spectrum for Compound **3am** (400 MHz, CDCl₃)

S52

¹H NMR Spectrum for Compound 7b (400 MHz, CDCl₃)

S55

