Supporting Information

An Expedient Ruthenium(II) Catalyzed Multicomponent Access to Phthalazinones Bearing Trisubstituted Alkenes

Manikandan Sekar,[‡] Ramdas Sreedharan,[‡] Egambaram Premkumar, Rajeshwaran Purushothaman and Thirumanavelan Gandhi^{*a}

^aDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India. E-mail: <u>velan.g@vit.ac.in</u>

[‡]These authors contributed equally to this work.

Table of Contents

Section	Title	Page no.
1	Mechanistic studies	S3
2	Mass spectrometry studies for determining intermediates	S6
3	Computational Details	S9
4	Cartesian Coordinates and Z-matrices of the Structures	S9
5	Frontier Molecular Orbital surfaces	S31
6	Characterization data	S35
7	References	S45
8	Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of synthesized derivatives	S46

1. Mechanistic studies

1. 1. H/D exchange experiment without 4-octyne:

An oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with 2-carboxy benzaldehyde **1** (0.33 mmol, 1 equiv), phenyl hydrazine derivative **2a** (0.36 mmol, 1.1 equiv), $[RuCl_2(p-cymene)]_2$ (10 mol%), AgOTf (40 mol%), Cu(OAc)_2 (0.33 mmol, 1 equiv), D_2O (3.3 mmol, 10 equiv) and 1 mL of TFE was added. Then the tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield **6a-D**.

1. 2. Reaction between intermediate with 4-octyne:

An oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with **6** (0.33 mmol, 1 equiv), $[RuCl_2(p-cymene)]_2$ (10 mol%), AgOTf (40 mol%), Cu(OAc)_2 (0.33 mmol, 1 equiv), and 1 mL of TFE was added. Then to this solution alkyne derivative **3a** (0.66 mmol, 2 equiv) was added and the tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield **4a**.

1. 3. H/D exchange experiment with 4-octyne:

An oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with **6a-D** (0.33 mmol, 1 equiv), $[RuCl_2(p-cymene)]_2$ (10 mol%), AgOTf (40 mol%), Cu(OAc)_2 (0.33 mmol, 1 equiv), and 1 mL of TFE was added. Then to this solution alkyne derivative **3a** (0.66 mmol, 2 equiv) was added and the tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield **4a**.

1. 4. H/D exchange experiment with 4-octyne:

An oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with 2-carboxy benzaldehyde 1 (0.33 mmol, 1 equiv), phenyl hydrazine derivative 2a (0.36 mmol, 1.1 equiv), [RuCl₂(*p*-cymene)]₂ (10 mol%), AgOTf (40 mol%), Cu(OAc)₂ (0.33 mmol, 1 equiv), D₂O (3.3 mmol, 10 equiv) and 1 mL of TFE was added. Then to this solution alkyne derivative 3a (0.66 mmol, 2 equiv) was added and the tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 24 h. After the indicated time, the reaction mixture was cooled and concentrated. The crude material was purified by column chromatography on silica gel (100-200 mesh) using *n*-hexane – ethyl acetate as eluent, to yield 4a.

1. 5. Investigation of directing group:

An oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with 7 (0.33 mmol, 1 equiv), $[RuCl_2(p-cymene)]_2$ (10 mol%), AgOTf (40 mol%), Cu(OAc)_2 (0.33 mmol, 1 equiv), and 1 mL of TFE was added. Then to this solution alkyne derivative **3a** (0.66 mmol, 2 equiv) was added and the tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 24 h. No reaction occurred and the starting material recovered after the mentioned time.

2. Mass spectrometry studies for determining intermediates

An oven-dried Schlenk tube (15 mL) equipped with a stir bar was charged with 2-carboxy benzaldehyde **1** (0.33 mmol, 1 equiv), phenyl hydrazine derivative **2a** (0.36 mmol, 1.1 equiv), $[RuCl_2(p-cymene)]_2$ (50 mol%), AgOTf (100 mol%), Cu(OAc)_2 (0.33 mmol, 1 equiv), and 1 mL of TFE was added. Then to this solution alkyne derivative **3a** (0.66 mmol, 2 equiv) was added and the tube was flushed with nitrogen and screw capped under nitrogen flow and placed in a preheated oil bath at 90 °C for 30 min. This reaction mixture was subjected to mass spectrometry analysis (ESI-HRMS).

3. Computational details

DFT calculations were carried out employing 6-31G* basis set¹ at B3LYP level of theory² and using the Gaussian 16 software³. Images of frontier Molecular orbitals were generated using the Gaussview⁴ program.

4. Cartesian Coordinates and Z-matrices of the Structures

Cartesian coordinates for the optimized structures:

Table T1. Cartesian coordinates for 4a

Symbolic Z-matrix

Charge = 0 Multiplicity = 1

С	1.58694800	0.63058000	-1.85221400
С	2.77489400	0.41701500	-1.06717900
С	2.69736000	-0.52351500	-0.01997900
С	1.43329500	-1.23598300	0.23152000
Н	4.04866300	1.82051400	-2.10728500
Н	1.59155000	1.34293400	-2.67376900
С	3.98713400	1.09494300	-1.30025400
С	3.81777300	-0.78271800	0.78295800
С	5.00621800	-0.10806800	0.54214600
С	5.08941800	0.83198100	-0.50100700
Н	3.72418000	-1.51199800	1.58070100
Н	5.87723600	-0.30442200	1.16087800
Н	6.02451100	1.35520800	-0.68104500
0	1.26922600	-2.05898900	1.12631900
Ν	0.38990700	-0.89182400	-0.64337900
Ν	0.46176400	0.01466500	-1.66028700
С	-0.87963800	-1.57702300	-0.53593800
С	-1.96852100	-0.96855000	0.10895200
С	-0.99392900	-2.83722400	-1.12298100
С	-3.18013700	-1.67685500	0.13621600
С	-2.20575100	-3.52260100	-1.07961500

Н	-0.12776600	-3.27054600	-1.61367600
С	-3.30390100	-2.93555600	-0.45036700
Н	-4.03394300	-1.22223800	0.63127600
Н	-2.29091700	-4.50397600	-1.53740000
Н	-4.25630200	-3.45760400	-0.41281400
С	-1.86157400	0.35200500	0.81203400
С	-2.31552300	1.49155500	0.26760800
Н	-2.23838000	2.39988200	0.86229700
С	-2.93412800	1.66507600	-1.09495400
Н	-3.96601300	2.03252300	-0.97146100
Н	-3.00501700	0.69691500	-1.60053400
С	-2.17847400	2.65148600	-2.01233400
Н	-2.66339300	2.63736000	-2.99791900
Н	-1.15934100	2.27538200	-2.16103000
С	-2.13496800	4.09535200	-1.49958100
Н	-1.58430600	4.17740800	-0.55560400
Н	-1.64199500	4.75467800	-2.22366000
Н	-3.14583600	4.48800700	-1.32976800
С	-1.27849800	0.25422000	2.21481500
Н	-1.94856400	-0.38446200	2.81326500
Н	-0.33898700	-0.31345400	2.16819900
С	-1.04320600	1.57008500	2.96328300
Н	-0.39029900	2.21998900	2.36498700
Н	-1.99309600	2.10920600	3.07827800
С	-0.41888900	1.34784600	4.34533300
Н	-1.06320700	0.72332600	4.97618700
Н	0.55218000	0.84459200	4.26640100
Н	-0.26188400	2.29848600	4.86782800

Z-matrix

1 2 1.5 6 1.0 16 2.0

2 3 1.5 7 1.5
3 4 1.0 8 1.5
4 14 2.0 15 1.0
5 7 1.0
6
7 10 1.5
8 9 1.5 11 1.0
9 10 1.5 12 1.0
10 13 1.0
11
12
13
14
15 16 1.0 17 1.0
16
17 18 1.5 19 1.5
18 20 1.5 27 1.0
19 21 1.5 22 1.0
20 23 1.5 24 1.0
21 23 1.5 25 1.0
22
23 26 1.0
24
25
26
27 28 2.0 40 1.0
28 29 1.0 30 1.0
29
30 31 1.0 32 1.0 33 1.0
31
32

Table T2. Cartesian coordinates for 4b

Symbolic Z-matrix

Charge = 0 Multiplicity = 1

С	-2.18600300	-1.80936600	1.14194900
С	-3.07509800	-1.18479600	0.19798100
С	-2.49087900	-0.58145000	-0.93417000
С	-1.02899800	-0.61298800	-1.11151000
Н	-4.92582800	-1.62583000	1.22489700
Н	-2.58040400	-2.30853200	2.02388900
С	-4.47482100	-1.16040100	0.35224700
С	-3.29841500	0.03362300	-1.90221800
С	-4.67592400	0.05377500	-1.73661100
С	-5.26381900	-0.54449700	-0.60727400

Н	-2.81866600	0.48364100	-2.76484700
Н	-5.30533700	0.53239700	-2.48149700
Н	-6.34358300	-0.52455400	-0.48772600
0	-0.44877000	-0.16533700	-2.09460800
Ν	-0.32844100	-1.21664700	-0.05365700
Ν	-0.89395900	-1.82768100	1.02762500
С	1.10744200	-1.34920100	-0.11880900
С	1.95916900	-0.23735700	-0.02220200
С	1.62774600	-2.63987000	-0.24249900
С	3.34156300	-0.48111000	-0.08054500
С	3.00071000	-2.84714200	-0.28455100
Н	0.94012600	-3.47759700	-0.30405400
С	3.88402600	-1.76196200	-0.20562500
Н	4.01473300	0.36961900	-0.00493400
Н	3.38918200	-3.85808200	-0.38327600
С	1.48409900	1.17930500	0.10737900
С	0.95759600	1.66347300	1.24368600
Н	0.68048900	2.71583600	1.25650000
С	0.74288900	0.92973000	2.54222900
Н	1.50383600	1.26356700	3.26749200
Н	0.90153100	-0.14423300	2.40408800
С	-0.64663700	1.15972100	3.17411900
Н	-0.75467600	0.46881100	4.02088600
Н	-1.42318400	0.88151200	2.45006600
С	-0.89191900	2.59064400	3.66727900
Н	-0.86522900	3.31825000	2.84811800
Н	-1.87311600	2.67787300	4.14843000
Н	-0.13379600	2.89057600	4.40186800
С	1.72227700	2.02311200	-1.13692700
Н	2.80064200	2.00746200	-1.36297900
Н	1.24199500	1.50918100	-1.97887900

С	1.24831700	3.47904000	-1.09309000
Н	0.17159500	3.50641100	-0.87851100
Н	1.74246800	4.01123300	-0.26877700
С	1.52350900	4.21511400	-2.40903900
Н	2.59623700	4.23096500	-2.63857200
Н	1.01342000	3.72803000	-3.24868200
Н	1.17758000	5.25425900	-2.36411500
С	5.37909600	-1.97751400	-0.24073900
Н	5.91989400	-1.02684400	-0.27823700
Н	5.72490700	-2.52215900	0.64719900
Н	5.67659100	-2.56809200	-1.11562400

Z-matrix

50 51 52

Table T3. Cartesian coordinates for 4d

Symbolic Z-matrix

Charge = 0 Multiplicity = 1

С	-2.15152500	-1.95406200	1.23064800
С	-3.11354100	-1.53413300	0.24605900
С	-2.61450300	-0.91492700	-0.91782000
С	-1.16323600	-0.72806400	-1.08579700
Н	-4.88757300	-2.19905900	1.28797600
Н	-2.47621300	-2.45403100	2.14014900
С	-4.50203400	-1.72130800	0.39092100
С	-3.49386200	-0.49378100	-1.92626300
С	-4.85974000	-0.68166900	-1.77006800
С	-5.36325100	-1.29637900	-0.60914600
Н	-3.07753100	-0.02599500	-2.81206000
Н	-5.54531800	-0.35402600	-2.54643200
Н	-6.43444800	-1.43994300	-0.49703800
0	-0.64631500	-0.25164100	-2.09062400
Ν	-0.39095200	-1.15526900	0.00769600
Ν	-0.87059800	-1.77824000	1.12321300
С	1.04794200	-1.06789100	-0.04814400
С	1.72167700	0.16970500	0.00129200
С	1.76374400	-2.26058900	-0.11105200
С	3.11753400	0.14794200	-0.04255100
С	3.15716300	-2.27009300	-0.13951600
Н	1.21701200	-3.19807400	-0.13493800
С	3.84011400	-1.04991600	-0.10907100
Н	3.67643300	1.07780000	-0.00409300

Н	3.68519300	-3.21498900	-0.18868400
С	1.02958100	1.49931100	0.06853300
С	0.43823200	1.94684300	1.18768700
Н	-0.00277000	2.94122600	1.15617700
С	0.35040700	1.25029700	2.52116800
Н	1.05178000	1.73567300	3.22039800
Н	0.67890900	0.21028100	2.43080900
С	-1.05495900	1.28413500	3.15892200
Н	-1.04801500	0.62278700	4.03569300
Н	-1.77996700	0.85415200	2.45615100
С	-1.52293700	2.67799800	3.59364600
Н	-1.61413700	3.36475900	2.74452600
Н	-2.50441000	2.62939100	4.07973200
Н	-0.82024500	3.12555800	4.30794700
С	1.12886500	2.30986600	-1.21568000
Н	2.19588100	2.44634900	-1.45363500
Н	0.72764600	1.69082900	-2.02786200
С	0.43933700	3.67742800	-1.22928600
Н	-0.62797500	3.55093400	-1.00326500
Н	0.85147300	4.31376600	-0.43430800
С	0.59215900	4.38769700	-2.57884400
Н	1.64851500	4.55952900	-2.82016300
Н	0.16101600	3.79009000	-3.39093900
Н	0.08899900	5.36153900	-2.57572900
0	5.19812600	-0.91856500	-0.13212700
С	5.98450500	-2.09769300	-0.19448700
Н	5.78108100	-2.67117100	-1.10854200
Н	7.02378900	-1.76411400	-0.20249600
Н	5.81720200	-2.74134600	0.67935900

Table T4. Cartesian coordinates for 4e

Symbolic Z-matrix

Charge = 0 Multiplicity = 1

С	-2.50253000	-2.02747000	1.03920200
С	-3.43701000	-1.44343900	0.11335900
С	-2.90068300	-0.72006300	-0.97109400
С	-1.44085200	-0.59490100	-1.12112500

Н	-5.24800100	-2.12944700	1.07467300
Н	-2.85654200	-2.61361500	1.88400800
С	-4.83401100	-1.57095900	0.23905500
С	-3.75237100	-0.13611700	-1.92039900
С	-5.12700500	-0.26584300	-1.78298700
С	-5.66745600	-0.98473300	-0.70128700
Н	-3.30845400	0.40859500	-2.74684500
Н	-5.79084300	0.18807200	-2.51331300
Н	-6.74523600	-1.08190600	-0.60370200
0	-0.89574600	-0.04054800	-2.06924200
Ν	-0.69751800	-1.18064100	-0.08249200
Ν	-1.21396200	-1.90697500	0.95134100
С	0.74534200	-1.16857500	-0.12717400
С	1.48461800	0.01897200	0.02027100
С	1.39131400	-2.39535100	-0.27953200
С	2.88292200	-0.08600100	-0.01884900
С	2.78080600	-2.46429600	-0.30104100
Н	0.79191700	-3.29499100	-0.37785000
С	3.55365800	-1.30499400	-0.17351400
Н	3.46036800	0.82784100	0.09734700
Н	3.26823900	-3.42880900	-0.42211300
С	0.87189000	1.37827000	0.18467900
С	0.27953500	1.77225200	1.32356300
Н	-0.09871600	2.79189500	1.36297100
С	0.10958500	0.97894200	2.59316100
Н	0.79413200	1.38386500	3.35723800
Н	0.40754300	-0.06226700	2.43534800
С	-1.32113900	1.01446700	3.17233200
Н	-1.37216500	0.29449500	4.00009300
Н	-2.02672000	0.65756400	2.41127800
С	-1.76682900	2.38964900	3.68307600

Н	-1.80347700	3.13439500	2.87997000
Н	-2.76844300	2.33880900	4.12585400
Н	-1.08185000	2.76607600	4.45346500
С	1.05240500	2.28296700	-1.02635400
Н	2.13186800	2.38791200	-1.22121000
Н	0.65004300	1.74984800	-1.89643600
С	0.42566300	3.67838700	-0.95152400
Н	-0.65207200	3.58366500	-0.76305500
Н	0.84218700	4.23337000	-0.09988300
С	0.64852200	4.48221600	-2.23743700
Н	1.71803000	4.62111300	-2.43909400
Н	0.21288500	3.97061500	-3.10401000
Н	0.19112500	5.47611900	-2.17036200
С	5.66505000	-0.60408000	-1.39336600
Н	5.44499900	0.46769600	-1.32263800
Н	6.75512700	-0.71879200	-1.42618600
Н	5.25395800	-0.96670200	-2.34167000
С	5.69466000	-0.90013100	1.12911400
Н	5.47911800	0.15916800	1.31227600
Н	5.30314100	-1.47188800	1.97750900
Н	6.78455100	-1.01920300	1.11000500
С	5.07484400	-1.37617200	-0.19823200
Н	5.34404800	-2.43376800	-0.32506100

Z-matrix

Table T5. Cartesian coordinates for 4f

Symbolic Z-matrix

Charge = 0 Multiplicity = 1

С	-2.58052300	-2.08345200	1.11213100
С	-3.54616400	-1.61238900	0.15446200
С	-3.05429400	-0.89784200	-0.95663000
С	-1.60654200	-0.66887200	-1.10087200
Н	-5.31083900	-2.39186000	1.13073700
Н	-2.89878700	-2.65725300	1.97931400

С	-4.93088500	-1.84006900	0.27473400
С	-3.93696200	-0.42183000	-1.93733700
С	-5.29928000	-0.64977600	-1.80520900
С	-5.79564800	-1.36023700	-0.69711300
Н	-3.52600600	0.11889800	-2.78320200
Н	-5.98749400	-0.27991600	-2.55995700
Н	-6.86399300	-1.53499700	-0.60384400
0	-1.09435300	-0.11492800	-2.06744500
Ν	-0.83240300	-1.15328700	-0.03295700
Ν	-1.30366200	-1.87073600	1.02818100
С	0.60546500	-1.03342800	-0.06808300
С	1.25293800	0.21040700	0.03584400
С	1.34716000	-2.20832500	-0.16641900
С	2.65416300	0.20803600	0.00784300
С	2.73938900	-2.17472300	-0.17849200
Н	0.82176800	-3.15606900	-0.23167300
С	3.42727200	-0.95781700	-0.09531700
Н	3.15264000	1.16981800	0.09073200
Н	3.27843800	-3.11164600	-0.25847400
С	0.54008000	1.52576400	0.14574300
С	-0.08631000	1.91711300	1.26722200
Н	-0.53967900	2.90640500	1.26703600
С	-0.20426600	1.16145900	2.56545000
Н	0.44869600	1.64064400	3.31408900
Н	0.16531000	0.13814400	2.44668400
С	-1.63567100	1.11992000	3.14256700
Н	-1.64047200	0.42700900	3.99460400
Н	-2.31364500	0.69069500	2.39388800
С	-2.17407800	2.47893300	3.60547800
Н	-2.25750000	3.19161000	2.77721300
Н	-3.17160200	2.37644000	4.04855100

Н	-1.51834300	2.92622800	4.36327800
С	0.65953600	2.39505800	-1.09815000
Н	1.72965700	2.56445200	-1.29914000
Н	0.29452900	1.80430800	-1.94732800
С	-0.05878500	3.74730800	-1.07359800
Н	-1.12869500	3.58846000	-0.88331600
Н	0.31700700	4.35810000	-0.24139900
С	0.11414500	4.51847300	-2.38693100
Н	1.17240800	4.72302700	-2.59194700
Н	-0.28220800	3.94801900	-3.23544700
Н	-0.41027600	5.48054800	-2.35595200
С	5.63464600	-2.24221000	-0.23531700
Н	5.35024200	-2.75039400	-1.16373700
Н	6.72396500	-2.12341500	-0.24422700
Н	5.38145900	-2.89762600	0.60585100
С	5.41392900	0.00440700	-1.31016400
Н	5.08854900	-0.44027500	-2.25748000
Н	5.00302400	1.01806400	-1.25915200
Н	6.50746100	0.08798400	-1.33087100
С	4.96398300	-0.86118700	-0.10906600
С	5.45264300	-0.20742800	1.20547400
Н	5.15440300	-0.80441600	2.07488900
Н	6.54670900	-0.12733200	1.20710800
Н	5.04489900	0.80017500	1.33667100

Z-matrix

1 2 1.5 6 1.0 16 2.0 2 3 1.5 7 1.5 3 4 1.0 8 1.5 4 14 2.0 15 1.0 5 7 1.0

Table T6. Cartesian coordinates for 4g

Symbolic Z-matrix Charge = 0 Multiplicity = 1 C -2.18656100 -1.78778200 1.13963200 C -3.06683900 -1.15065900 0.19543400

С	-2.47472500	-0.55359900	-0.93606500
С	-1.01352800	-0.60333500	-1.11240500
Н	-4.92322400	-1.56902000	1.22150800
Н	-2.58829300	-2.28301700	2.02043800
С	-4.46601600	-1.10855700	0.34949600
С	-3.27388400	0.07258600	-1.90383100
С	-4.65111700	0.11007600	-1.73832600
С	-5.24681000	-0.48160600	-0.60971000
Н	-2.78853900	0.51738900	-2.76602100
Н	-5.27418800	0.59735700	-2.48287200
Н	-6.32621400	-0.44794500	-0.49038000
0	-0.42521300	-0.16205000	-2.09334500
Ν	-0.32150700	-1.21716600	-0.05420100
Ν	-0.89488200	-1.82268800	1.02706100
С	1.11123700	-1.36685600	-0.12059900
С	1.97482200	-0.25964100	-0.02306600
С	1.61285800	-2.66484800	-0.24485400
С	3.35445800	-0.50850600	-0.08359800
С	2.98305100	-2.90094900	-0.28871300
Н	0.91372100	-3.49250300	-0.30424900
С	3.83249200	-1.80470700	-0.21010000
Н	4.06368600	0.30929600	-0.01014000
Н	3.39004300	-3.90154500	-0.38539300
С	1.51185900	1.16069900	0.10854600
С	0.98564300	1.64374100	1.24524000
Н	0.71771600	2.69831000	1.26013100
С	0.76148600	0.90865300	2.54119500
Н	1.52763600	1.23025200	3.26628000
Н	0.90519700	-0.16714400	2.40080000
С	-0.62440500	1.15678700	3.17424700
Н	-0.74215800	0.46369700	4.01778300

Н	-1.40519400	0.89327300	2.44922000
С	-0.84776300	2.58899600	3.67399000
Н	-0.81019100	3.32023400	2.85847700
Н	-1.82753900	2.68859700	4.15545700
Н	-0.08534400	2.87374400	4.41006200
С	1.76426600	2.00585300	-1.13207700
Н	2.84409200	1.98532900	-1.35054600
Н	1.28673000	1.49786200	-1.97911900
С	1.29821600	3.46426600	-1.08590600
Н	0.22040700	3.49697000	-0.87765500
Н	1.79081800	3.99077700	-0.25711500
С	1.58565600	4.20272600	-2.39787200
Н	2.65973500	4.21321000	-2.62086000
Н	1.07758900	3.72158400	-3.24210700
Н	1.24545100	5.24358000	-2.35110400
F	5.16645800	-2.00499400	-0.24997800

Z-matrix

45 46 1.0 47 1.0 48 1.0 46 47 48 49

5. Frontier Molecular Orbital surfaces

4a HOMO

4a LUMO

4b HOMO

4b LUMO

4d HOMO

4d LUMO

4e HOMO

4e LUMO

4f HOMO

4f LUMO

4g HOMO

4g LUMO

6. Characterization Data:

2-(2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4a):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 82 mg, 74%; 1506 mg, 68%, pale-yellow oil.

¹**H NMR (400 MHz, CDCl₃) δ:** 8.39 (d, *J* = 7.76 Hz, 1H), 8.12 (s, 1H), 7.76 (t, *J* = 7.3 Hz, 1H), 7.70 (t, *J* = 7.52 Hz, 1H), 7.65

(d, *J* = 7.68 Hz, 1H), 7.32-7.25 (m, 4H), 5.33 (t, *J* = 7.4 Hz, 1H), 2.05 (t, *J* = 7.8 Hz, 2H), 1.85 (q, *J* = 7.29 Hz, 2H), 1.30-1.20 (m, 2H), 1.05-0.95 (m, 2H), 0.73 (t, *J* = 7.32 Hz, 3H), 0.58 (t, *J* = 7.36 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 158.4, 141.6, 138.6, 136.26, 136.20, 132.2, 130.6, 130.4, 129.1, 128.7, 127.5, 127.4, 127.0, 126.2, 126.0, 124.9, 32.0, 29.1, 21.5, 20.6, 13.1, 12.5 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₂H₂₅N₂O, 333.1961; found, 333.1960; mass error : 0.30 ppm.

2-(4-methyl-2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4b):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 86 mg, 74%; pale-yellow oil.

Me¹H NMR (400 MHz, CDCl₃) δ : 8.40 (d, J = 7.76 Hz, 1H), 8.11(s, 1H), 7.76 (t, J = 7.38 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.66(d, J = 7.68 Hz, 1H), 7.17 (d, J = 7.92 Hz, 1H), 7.11-7.07 (m, 2H), 5.32 (t, J = 7.42 Hz, 1H),2.33 (s, 3H), 2.05 (t, J = 7.82 Hz, 2H), 1.85 (q, J = 7.29 Hz, 2H), 1.31-1.22 (m, 2H), 1.05-0.96(m, 2H), 0.74 (t, J = 7.3 Hz, 3H), 0.59 (t, J = 7.34 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.5, 142.3, 138.3, 137.3, 137.2, 133.1, 131.6, 131.2, 130.6, 129.7, 128.5, 128.0, 127.7, 127.1, 125.9, 33.1, 30.1, 22.5, 21.7, 21.2, 14.1, 13.5 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₃H₂₇N₂O, 347.2118; found, 347.2120; mass error : 0.57 ppm.

2-(2-(dec-5-en-5-yl)-5-methylphenyl)phthalazin-1(2H)-one (4c):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 83 mg, 66%; pale-yellow oil.

¹H NMR (400 MHz, CDCl3) δ: 8.40 (d, *J* = 7.76 Hz, 1H), 8.12 (s, 1H), 7.76 (td, *J* = 7.42 Hz, 1H), 7.71 (td, *J* = 6.96 Hz, 1H), 7.66 (d, *J* = 7.84 Hz, 1H), 7.16-7.11 (m, 2H), 7.10 (s,

1H), 5.26 (t, *J* = 7.46 Hz, 1H), 2.30 (s, 3H), 2.07 (t, *J* = 7.64 Hz, 2H), 1.85 (q, *J* = 7.08 Hz, 2H), 1.21-1.13 (m, 4H), 0.95-0.87 (m, 4H), 0.75-0.73 (m, 3H), 0.52 (t, *J* = 6.98 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.4, 139.7, 139.4, 137.1, 136.9, 133.1, 131.6, 131.0, 129.84, 129.80, 129.4, 128.5, 128.4, 127.1, 125.9, 31.6, 30.8, 30.7, 27.7, 22.8, 22.0, 20.8, 13.9, 13.8 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₅H₃₁N₂O, 375.2431, found, 375.2431; mass error : 0.00 ppm.
2-(4-methoxy-2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4d):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 88/12)

Yield: 94 mg, 78%; pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ: 8.39 (d, *J* = 7.8 Hz, 1H), 8.10 (s, 1H), 7.75 (td, *J* = 7.4 Hz, 1H), 7.70 (td, *J* = 7.58 Hz, 1H), 7.65 (d, *J* = 7.88 Hz, 1H), 7.20-7.18 (m, 1H), 6.83 (dd, *J* = 8.56 Hz,

1H), 6.78 (d, *J* = 2.84 Hz, 1H), 5.33 (t, *J* = 7.42 Hz, 1H), 3.78 (s, 3H), 2.04 (t, *J* = 7.82 Hz, 2H), 1.84 (q, *J* = 7.30 Hz, 2H), 1.31-1.22 (m, 2H), 1.04-0.95 (m, 2H), 0.73 (t, *J* = 7.32 Hz, 3H), 0.57 (t, *J* = 7.36 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 158.6, 158.3, 142.9, 136.2, 132.1, 131.8, 130.6, 130.3, 128.7, 127.9, 127.5, 126.1, 124.9, 114.5, 111.3, 54.4, 32.0, 29.0 28.6, 21.5, 20.6, 13.1, 12.5 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₃H₂₇N₂O₂, 363.2067, found, 363.2068; mass error : 0.27 ppm.

2-(4-isopropyl-2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4e):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 90 mg, 72%; colourless oil.

¹H NMR (400 MHz, CDCl₃) δ: 8.39 (dd, *J* = 7.76 Hz, 1H), 8.10 (s, 1H), 7.75 (td, *J* = 7.4 Hz, 1H), 7.69 (td, *J* = 7.56 Hz, 1H), 7.64 (dd, *J* = 7.8 Hz, 1H), 7.20-7.18 (m, 1H), 7.15-7.13 (m, 1H), 7.09

(d, J = 1.96 Hz, 1H), 5.31 (t, J = 7.42 Hz, 1H), 2.93-2.82 (m, 1H), 2.05 (t, J = 7.82 Hz, 2H), 1.84 (q, J = 7.29 Hz, 2H), 1.30-1.23 (m, 2H), 1.21 (d, J = 6.92 Hz, 1H), 1.04-0.95 (m, 2H), 0.73 (t, J = 7.32 Hz, 3H), 0.58 (t, J = 7.36 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.5, 149.1, 142.2, 137.5, 137.3, 137.1, 133.1, 131.6, 131.1, 129.7, 128.5, 128.2, 127.7, 127.1, 125.9, 125.3, 33.9, 33.1, 30.1, 23.9, 22.6, 21.7, 14.2, 13.6 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₅H₃₁N₂O, 375.2431, found, 375.2432; mass error : 0.26 ppm.

2-(4-(tert-butyl)-2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4f):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 89/11)

Yield: 89 mg, 69%; colourless oil.

¹H NMR (400 MHz, CDCl₃) δ: 8.40 (d, *J* = 7.8 Hz, 1H), 8.10 (s, 1H), 7.75 (t, *J* = 7.38 Hz, 1H), 7.70 (t, *J* = 7.46 Hz, 1H), 7.65 (d, *J* = 7.68 Hz, 1H), 7.31 (dd, *J* = 8.24 Hz, 1H), 7.24 (s, 1H),

7.20-7.18 (m, 1H), 5.32 (t, *J* = 7.4 Hz, 1H), 2.06 (t, *J* = 7.78 Hz, 2H), 1.85 (q, *J* = 7.28 Hz, 2H), 1.28 (s, 9H), 1.25-1.21 (m, 2H), 1.04-0.95 (m, 2H), 0.74 (t, *J* = 7.3 Hz, 3H), 0.58 (t, *J* = 7.34 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.5, 151.3, 141.8, 137.6, 137.1, 133.1, 131.6, 131.0, 129.7, 128.5, 127.3, 127.1, 127.0, 125.9, 124.4, 34.6, 33.2, 31.3, 30.1, 22.6, 21.7, 14.1, 13.5 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₆H₃₃N₂O, 389.2587, found, 389.2602; mass error : 3.85 ppm.

2-(4-fluoro-2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4g):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 75 mg, 64%; pale-yellow oil.

¹**H NMR (400 MHz, CDCl₃) δ:** 8.38 (d, *J* = 7.8 Hz, 1H), 8.11 (s, 1H), 7.77 (td, *J* = 7.34 Hz, 1H), 7.71 (td, *J* = 7.48 Hz, 1H),

7.66 (d, *J* = 7.72 Hz, 1H), 7.27-7.23 (m, 1H), 7.00-6.95 (m, 2H), 5.34 (t, *J* = 7.42 Hz, 1H), 2.04 (t, *J* = 7.84 Hz, 2H), 1.84 (q, *J* = 7.29 Hz, 2H), 1.30-1.21 (m, 2H), 1.04-0.95 (m, 2H), 0.74 (t, *J* = 7.32 Hz, 3H), 0.57 (t, *J* = 7.36 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 163.4 (d, J = 246.45 Hz), 159.5, 145.0 (d, J = 8.29 Hz),
137.5, 136.4, 135.7 (d, J = 2.96 Hz), 133.3, 132.1, 131.8, 129.8, 129.7, 128.4, 127.1, 126.0,
116.8 (d, J = 22.3 Hz), 114.2 (d, J = 22.65 Hz), 32.8, 30.1, 22.4, 21.6, 14.1, 13.5 ppm.

¹⁹F NMR (376 MHz, CDCl₃) δ: -113.3 ppm

HR-MS: $[M+H]^+$ calculated for C₂₂H₂₄FN₂O, 351.1867, found, 351.1857; mass error : 2.84 ppm.

2-(2-(dec-5-en-5-yl)-5-fluorophenyl)phthalazin-1(2H)-one (4h):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 76 mg, 60%; pale-yellow oil.

¹**H NMR (400 MHz, CDCl3) δ:** 8.39 (d, *J* = 7.76 Hz, 1H), 8.12 (s, 1H), 7.77 (td, *J* = 7.38 Hz, 1H), 7.72 (td, *J* = 7.56 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 1H), 7.23-7.19 (m, 1H), 7.06-7.01 (m, 2H),

5.27 (t, *J* = 7.44 Hz, 1H), 2.05 (t, *J* = 7.56 Hz, 2H), 1.85 (q, *J* = 7.05 Hz, 2H), 1.21-1.10 (m, 4H), 0.96-0.86 (m, 4H), 0.74 (t, *J* = 7.08 Hz, 3H), 0.53 (t, *J* = 6.96 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 161.3 (d, J = 245.42 Hz), 158.2, 139.5 (d, J = 9.54 Hz), 137.9 (d, J = 3.62 Hz), 136.5, 135.3, 132.4, 130.8, 130.7, 130.2 (d, J = 8.49 Hz), 128.7, 127.3, 126.1, 125.0, 114.7 (d, J = 20.51 Hz), 114.5 (d, J = 22.79 Hz), 30.5, 29.7, 28.6, 26.7, 21.7, 21.0, 12.8, 12.7 ppm.

¹⁹F NMR (376 MHz, CDCl₃) δ: -115.1 ppm

HR-MS: $[M+H]^+$ calculated for C₂₄H₂₈FN₂O, 379.2180, found, 379.2180; mass error : 0.00 ppm.

2-(5-chloro-2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4i):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 89/11)

Yield: 64 mg, 52%; pale-yellow oil.

¹**H NMR (400 MHz, CDCl3) δ:** 8.38 (d, *J* = 7.8 Hz, 1H), 8.12 (s, 1H), 7.77 (td, *J* = 7.42 Hz, 1H), 7.72 (td, *J* = 7.58 Hz, 1H), 7.66 (d, *J* = 7.88 Hz, 1H), 7.30-7.27 (m, 2H), 7.20-7.18 (m, 1H),

5.32 (t, *J* = 7.44 Hz, 1H), 2.02 (t, *J* = 7.84 Hz, 2H), 1.84 (q, *J* = 7.30 Hz, 2H), 1.28-1.18 (m, 2H), 1.04-0.95 (m, 2H), 0.72 (t, *J* = 7.32 Hz, 3H), 0.58 (t, *J* = 7.36 Hz, 3H) ppm.

¹³C{1H} NMR (100 MHz, CDCl3) δ: 159.2, 141.3, 140.4, 137.6, 136.3, 133.5, 132.3, 132.0, 131.9, 131.1, 129.7, 128.8, 128.4, 128.3, 127.1, 126.1, 32.9, 30.1, 22.5, 21.6, 14.1, 13.5 ppm.
HR-MS: [M+H]⁺ calculated for C₂₂H₂₄ClN₂O, 367.1572, found, 367.1572; mass error : 0.00

ppm.

2-(4,5-dichloro-2-(dec-5-en-5-yl)phenyl)phthalazin-1(2H)-one (4j):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 66 mg, 46%; pale-yellow oil.

¹**H NMR (400 MHz, CDCl₃) δ:** 8.34 (d, *J* = 7.68 Hz, 1H), 8.09 (s, 1H), 7.73 (t, *J* = 7.16 Hz, 1H), 7.68 (t, *J* = 7.56 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.40-7.37 (m, 1H), 7.31 (s, 1H),

5.28 (t, *J* = 7.48 Hz, 1H), 2.02 (t, *J* = 7.58 Hz, 2H), 1.83 (q, *J* = 6.97 Hz, 2H), 1.19-1.10 (m, 4H), 0.94-0.89 (m, 4H), 0.72 (t, *J* = 7.02 Hz, 3H), 0.51 (t, *J* = 6.78 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.3, 142.9, 138.9, 137.9, 135.5, 133.6, 132.8, 132.5, 132.0, 131.3, 130.5, 130.2, 129.6, 128.2, 127.0, 126.2, 31.4, 30.6, 30.4, 27.7, 22.7, 22.0, 13.8, 13.7 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₄H₂₇Cl₂N₂O, 429.1495, found, 429.1495; mass error : 0.00 ppm.

2-(5-chloro-2-(dec-5-en-5-yl)-4-methylphenyl)phthalazin-1(2H)-one (4k):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 76 mg, 56%; pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ: 8.38 (d, J = 7.48 Hz, 1H),
8.11 (s, 1H), 7.76 (td, J = 7.38 Hz, 1H), 7.71 (td, J = 7.56 Hz, 1H),
7.66 (d, J = 7.8 Hz, 1H), 7.29 (s, 1H), 7.11 (s, 1H), 5.28

(t, *J* = 7.44 Hz, 1H), 2.34 (s, 3H), 2.06 (t, *J* = 7.58 Hz, 2H), 1.85 (q, *J* = 7.04 Hz, 2H), 1.24-1.09 (m, 4H), 0.97-0.90 (m, 4H), 0.75 (t, *J* = 7.08 Hz, 3H), 0.54 (t, *J* = 6.92 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 158.3, 140.1, 137.1, 136.4, 135.4, 135.3, 132.3, 131.3, 130.9, 130.77, 130.74, 128.6, 127.5, 127.3, 126.0, 125.0, 30.5, 29.6, 28.6, 26.7, 21.7, 21.0, 18.8, 12.8, 12.7 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₅H₃₀ClN₂O, 409.2041, found, 409.2046; mass error : 1.22 ppm.

2-(4-bromo-2-(dec-5-en-5-yl)phenyl)phthalazin-1(2H)-one (4l):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 101 mg, 69%; pale-yellow oil.

¹H NMR (400 MHz, CDCl3) δ: 8.38 (d, J = 7.76 Hz, 1H),
8.11 (s, 1H), 7.77 (td, J = 7.36 Hz, 1H), 7.71 (t, J = 7.52 Hz, 1H),
7.66 (d, J = 7.72 Hz, 1H), 7.42-7.40 (m, 2H), 7.18-7.14

(m, 1H), 5.30 (t, *J* = 7.46 Hz, 1H), 2.05 (t, *J* = 7.56 Hz, 2H), 1.86 (q, *J* = 7.00 Hz, 2H), 1.26-1.09 (m, 4H), 0.99-0.88 (m, 4H), 0.75 (t, *J* = 7.06 Hz, 3H), 0.54 (t, *J* = 6.86 Hz, 3H) ppm.

¹³C{1H} NMR (100 MHz, CDCl3) δ: 159.3, 144.8, 138.7, 137.6, 136.2, 133.4, 132.9, 132.4, 131.8, 130.3, 129.77, 129.73, 128.3, 127.1, 126.1, 122.4, 31.5, 30.6, 30.5, 27.7, 22.7, 22.0, 13.87, 13.80 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₄H₂₈BrN₂O, 439.1380, found, 439.1380; mass error : 0.00 ppm.

2-(5-bromo-2-(oct-4-en-4-yl)phenyl)phthalazin-1(2H)-one (4m):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 75 mg, 55%; pale-yellow oil.

¹H NMR (400 MHz, CDCl3) δ: 8.36 (d, *J* = 7.72 Hz, 1H), 8.10 (s, 1H), 7.76 (td, *J* = 7.38 Hz, 1H), 7.70 (td, *J* = 7.5 Hz, 1H), 7.65 (d, *J* = 7.76 Hz, 1H), 7.43-7.40 (m, 2H), 7.13 (d, *J* = 8.36 Hz,

1H), 5.31 (t, *J* = 7.44 Hz, 1H), 2.01 (t, *J* = 7.82 Hz, 2H), 1.82 (q, *J* = 7.30 Hz, 2H), 1.26-1.17 (m, 2H), 1.03-0.94 (m, 2H), 0.71 (t, *J* = 7.32 Hz, 3H), 0.56 (t, *J* = 7.36 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.2, 141.8, 140.7, 137.7, 136.3, 133.5, 132.0, 131.9, 131.7, 131.4, 131.2, 129.7, 128.3, 127.0, 126.1, 120.0, 32.8, 30.1, 22.5, 21.6, 14.1, 13.5 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₂H₂₄BrN₂O, 411.1067, found, 411.1067; mass error : 0.00 ppm.

2-(2-(dec-5-en-5-yl)-4-(trifluoromethoxy)phenyl)phthalazin-1(2H)-one (4n):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 88/12)

Yield: 101 mg, 68%; pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ: 8.37 (d, J = 7.72 Hz, 1H),
8.12 (s, 1H), 7.76 (t, J = 7.42 Hz, 1H), 7.70 (t, J = 7.38 Hz, 1H),
7.66 (d, J = 7.52 Hz, 1H), 7.32 (d, J = 8.48 Hz, 1H), 7.13-

7.10 (m, 2H), 5.31 (t, *J* = 7.44 Hz, 1H), 2.07 (t, *J* = 7.54 Hz, 2H), 1.86 (q, *J* = 6.96 Hz, 2H), 1.25-1.09 (m, 4H), 0.97-0.92 (m, 4H), 0.74 (t, *J* = 7.04 Hz, 3H), 0.52 (t, *J* = 6.82 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.4, 148.8 (d, J = 1.4 Hz), 144.8, 138.1, 137.6, 136.2, 133.4, 132.4, 131.9, 129.7, 129.6, 128.3, 127.0, 126.1, 122.3, 121.7 (q, J = 255.99 Hz), 119.4, 31.4, 30.5, 30.4, 27.7, 22.6, 22.0, 13.78, 13.73 ppm.

¹⁹F NMR (376 MHz, CDCl₃) δ: -57.7 ppm

HR-MS: $[M+H]^+$ calculated for $C_{25}H_{28}F_3N_2O_2$, 445.2097, found, 445.2097; mass error : 0.00 ppm.

2-(2-(dec-5-en-5-yl)phenyl)phthalazin-1(2H)-one (4o):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 90/10)

Yield: 100 mg, 83%; pale-yellow oil.

¹H NMR (400 MHz, CDCl3) δ: 8.39 (d, *J* = 7.72 Hz, 1H),

8.12 (s, 1H), 7.75 (t, *J* = 7.44 Hz, 1H), 7.70 (t, *J* = 6.94 Hz, 1H), 7.65 (d, *J* = 7.68 Hz, 1H), 7.33-7.25 (m, 4H), 5.29 (t, *J* = 7.42 Hz, 1H), 2.08 (t, *J* = 7.64 Hz, 2H), 1.86 (q, *J* = 7.02 Hz, 2H), 1.25-1.09 (m, 4H), 0.98-0.86 (m, 4H), 0.74 (t, *J* = 7.1 Hz, 3H), 0.52 (t, *J* = 6.9 Hz, 3H) ppm.

¹³C{1H} NMR (100 MHz, CDCl3) δ: 159.4, 142.7, 139.7, 137.3, 137.1, 133.2, 131.7, 131.3, 130.0, 129.8, 128.6, 128.5, 128.1, 127.2, 127.0, 126.0, 31.6, 30.8, 30.7, 27.7, 22.8, 22.1, 13.9, 13.8 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₄H₂₉N₂O, 361.2274, found, 361.2274; mass error : 0.00 ppm.

2-(2-(1,2-diphenylvinyl)phenyl)phthalazin-1(2H)-one (4p):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 88/12

Yield: 51 mg, 38%; orange-coloured solid.

¹**H NMR (400 MHz, CDCl₃) δ:** 8.14 (d, *J* = 7.88 Hz, 1H), 7.90 (s, 1H), 7.63 (td, *J* = 7.46 Hz, 1H), 7.56 (td, *J* = 8.14 Hz, 1H), 7.50-7.47 (m, 1H), 7.46 (d, *J* = 7.52 Hz, 1H), 7.42-7.38 (m, 2H), 7.35-7.32 (m, 1H), 6.99-6.96 (m, 3H), 6.92-6.90 (m, 2H), 6.88-6.86 (m, 2H), 6.74-6.71 (m, 4H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 158.6, 141.7, 140.2, 140.0, 138.9, 137.6, 137.2, 132.9, 131.4, 131.3, 131.0, 129.59, 129.51, 129.4, 128.8, 128.5, 128.1, 127.7, 127.6, 126.9, 126.8, 126.7, 125.5 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₈H₂₁N₂O, 401.1648, found, 401.1654; mass error : 1.49 ppm.

2-(2-(1-phenylbut-1-en-2-yl)phenyl)phthalazin-1(2H)-one (4q):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 88/12

Yield: 69 mg, 59%; pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ : 8.40 (d, *J* = 7.72 Hz, 1H), 8.22 (d, *J* = 7.84 Hz, 1H), 8.13 (s, 1H), 7.94 (s, 1H), 7.76-7.67 (m, 3H), 7.64-7.58 (m, 2H), 7.53 (d, *J* = 7.76 Hz, 1H), 7.38-7.37 (m, 4H), 7.33-7.28 (m, 4H), 7.14-7.11 (m, 2H), 7.05 (t, *J* = 7.22 Hz, 1H), 6.97 (d, *J* = 7.64 Hz, 2H), 6.93-6.82 (m, 5H), 6.38 (s, 1H), 5.74 (t, *J* = 7.4 Hz, 1H), 2.34 (q, *J* = 7.46 Hz, 2H), 2.04-1.96 (m, 2H), 0.91 (t, *J* = 7.5 Hz, 3H), 0.68 (t, *J* = 7.44 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 159.5, 158.8, 141.7, 141.65, 141.63, 139.86, 139.83, 139.2, 138.0, 137.8, 137.49, 137.45, 135.2, 133.3, 133.0, 131.8, 131.3, 131.2, 130.1, 129.9, 129.7, 129.6, 129.1, 128.7, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 127.8, 127.3, 127.1, 126.9, 126.5, 126.3, 126.1, 125.6, 24.7, 22.7, 14.1, 13.1 ppm.

HR-MS: $[M+H]^+$ calculated for C₂₄H₂₁N₂O, 353.1638, found, 353.1639; mass error : 0.28 ppm.

2,2,2-trifluoroethyl-2-(-((4-(-oct-4-en-4-yl)-3-(1-oxophthalazin-2(1H)yl)phenyl)imino)methyl)benzoate (5):

Purified by column chromatography on silica gel using (hexane/ethyl acetate = 70/30

Yield: 45 mg, 48%; orange coloured solid

¹H NMR (400 MHz, CDCl₃) δ : 8.38 (d, J = 7.84 Hz, 1H), 8.20-8.16 (m, 3H), 7.85-7.79 (m, 2H), 7.75 (t, J = 7.52 Hz, 1H), 7.70-7.66 (m, 2H), 7.59-7.55 (m, 2H), 7.43 (d, J = 8.48 Hz, 1H), 6.38 (s, 1H), 5.41 (t, J = 7.42 Hz, 1H), 4.13-4.05 (m, 2H), 2.08 (t, J = 7.82 Hz, 2H), 1.88

(q, *J* = 7.26 Hz, 2H), 1.29-1.18 (m, 2H), 1.07-0.98 (m, 2H), 0.74 (t, *J* = 7.28 Hz, 3H), 0.60 (t, *J* = 7.32 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 167.7, 159.3, 149.8, 146.6, 143.6, 140.3, 138.2, 136.2, 134.8, 133.8, 133.6, 132.2, 131.4, 130.9, 129.7, 128.1, 127.1, 126.8, 126.3, 125.7, 124.6 (q, J = 276.25 Hz), 124.2, 123.6, 123.4, 101.2, 66.0 (q, J = 35.24 Hz), 32.6, 30.2, 22.3, 21.7, 14.0, 13.5 ppm.

¹⁹F NMR (376 MHz, CDCl₃) δ: -74.15 ppm

HR-MS: $[M+H]^+$ calculated for $C_{32}H_{31}F_3N_3O_3$, 562.2312, found, 562.2316; mass error : 0.71 ppm.

11. References

- Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.* 72, 650-654 (1980).
- Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 93, 5648-5652 (1993).
- Gaussian 16, Revision A.03, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Williams, J. L., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Ragavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. Gaussian, Inc., Wallingford CT (2016).
- GaussView, Version 5, Dennington, R., Keith, T. A. & Millam, J. M. Semichem Inc. Shawnee Mission, KS (2009).

¹H NMR spectra of **4a**

$^{13}C{^{1}H}$ NMR spectra of 4a

¹H NMR spectra of **4b**

$^{13}C{^{1}H}$ NMR spectra of **4b**

¹H NMR spectra of 4c

$^{13}C{^{1}H}$ NMR spectra of 4c

¹H NMR spectra of **4d**

$^{13}C{^{1}H}$ NMR spectra of 4d

¹H NMR spectra of **4e**

$^{13}C{^{1}H}$ NMR spectra of 4e

¹H NMR spectra of **4**f

$^{13}C\{^{1}H\}$ NMR spectra of 4f

¹H NMR spectra of **4g**

$^{13}C{^{1}H}$ NMR spectra of 4g

¹⁹F NMR spectra of **4g**

Signature SIF VIT VELLORE PTH-4F

¹H NMR spectra of **4h**

 $^{13}C\{^{1}H\}$ NMR spectra of 4h

¹⁹F NMR spectra of **4h**

Signature SIF VIT VELLORE 3FPHT

¹H NMR spectra of **4i**

$^{13}C{^{1}H}$ NMR spectra of 4i

¹H NMR spectra of **4**j

$^{13}C{^{1}H} NMR$ spectra of 4j

Signature SIF VIT VELLORE 3,4-OICL-PTHDA

\mathcal{C}	Ч	\sim	9		8		5	9	0		\sim	∞	0	S	
(*)	0	0	0	<u>с</u>)	0.	ω.	<u>с</u>)	0	4.	<u>с</u>)	~	9.	~	0	~
σ	\sim	∞	5	S	m	\sim	\sim	\sim	L	0	0	σ	∞	5	6
ഹ	4	$^{\circ}$	$^{\circ}$	$^{\circ}$	\sim	\sim	\sim	\sim							
1	Η	Η	Η	T-	Η	Ч	1	Η	Η	Η	Η	Ξ	Η	H	H
5				5	5	5	~	1	1	/	1	1	1	_	_
``				_				1/1							

00 '	4 00	00	ഹ	∞	9	σ
4 (04	5	5	0	∞	
•	• •	• •	•	•	•	•
		7	\sim	\sim	$^{\circ}$	$^{\circ}$
(m)	mm	\sim	\sim	\sim	Ч	L I
$\overline{\ }$	\searrow	1	V	\rangle	V	$\mathbf{\mathcal{I}}$

¹H NMR spectra of 4k

 $^{13}C{^{1}H}$ NMR spectra of 4k

¹H NMR spectra of **4**I

$^{13}C\{^{1}H\}$ NMR spectra of 41

¹H NMR spectra of **4m**

$^{13}C\{^{1}H\}$ NMR spectra of 4m

¹H NMR spectra of **4n**

$^{13}C{^{1}H}$ NMR spectra of **4n**

¹⁹F NMR spectra of **4n**

Signature SIF VIT VELLORE 4-OCF3-PH-DEL

¹H NMR spectra of **40**

Signature SIF VIT VELLORE PHDEC

DEPT-135 NMR spectra of 40

¹H-¹³C (DEPT-135) HSQC NMR spectra of **40**

$^{1}\text{H-}^{13}\text{C}\{^{1}\text{H}\}$ HMBC NMR spectra of **40**

¹H NMR spectra of **4p**

$^{13}C{^{1}H}$ NMR spectra of **4p**

¹H NMR spectra of **4q**

$^{13}C{^{1}H}$ NMR spectra of 4q

¹H NMR spectra of **5**

$^{13}C{^{1}H}$ NMR spectra of 5

¹⁹F NMR spectra of **5**

Signature SIF VIT VELLORE PTH-S-NO2

