Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Micelle-enabled Bromination of α-Oxo Ketene Dithioacetals: Mild and Scalable Approach via Enzymatic Catalysis

Thao Nguyen Thanh Huynh,^a Khuyen Thu Nguyen,^a Chisanu Krongyut,^b Rung-Yi Lai,^b Mongkol Sukwattanasinitt,^a and Sumrit Wacharasindhu^{*a,c}

 ^aNanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
^b School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
^c Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of

Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330

sumrit.w@chula.ac.th

Electronic Supplementary Information

Table of Contents

Title page	S 1
Protein overexpression and purification	S2-S3
Starting materials preparation	S3–S13
Enzymatic bromination of α -oxo ketene dithioacetals	S13-S24
Picture of experiment set up: Figure S2-S4	S24
Copy of ¹ H/ ¹³ C NMR spectrum: Figure S5-S98	S25 – S72
Copy of mass spectrum: Figure S99-S120	S73 – S79
References	S79

Experimental Section

Materials and methods

All chemicals and solvents were obtained from commercially available suppliers such as Sigma-Aldrich and TCI (Japan) and were used without further purification, unless otherwise stated. Analytical thin layer chromatography (TLC) was performed with precoated Merck silica gel 60 F254 plates (0.25 mm for thick layer) and visualized at 254 nm using an ultraviolet lamp. Column chromatography was performed with Silicycle silica gel 60-200 µm (70-230 mesh). ¹H- and ¹³C-NMR spectra were obtained with JEOL JNM-ECZ500R/S1 NMR spectrometers operating at 500 MHz for ¹H or 125 MHz for ¹³C nuclei. High-resolution electrospray ionization mass spectrometry (HR-ESIMS) was performed by using an ESI QTOF 6540 Agilent Tecnologies.

Protein overexpression and purification

Ten milliliters of an overnight culture of *E. coli* BL21(DE3) containing the overexpression plasmid pET30-*Ci*VCPO were inoculated into 1 liter of Luria-Bertani (LB) broth containing a final concentration of 50 µg/mL kanamycin. The culture was incubated at 37 °C with shaking at 200 rpm until the OD600 reached approximately 0.6. The protein overexpression was induced by adding isopropyl- β -D-1-thiogalactopyranoside (IPTG) to a final concentration of 200 µM. The protein was overexpressed as a fusion protein with an *N*-terminal His tag. The culture was then incubated at 20 °C with shaking at 200 rpm for an additional 16 h. The cells were harvested by centrifugation at 5000 rpm at 8 °C for 25 min. The pellet was resuspended in lysis buffer (300 mM NaCl, 50 mM Na₂HPO₄, and 10 mM imidazole, pH 8.0). The cells in the ice bath were lysed by sonication (1.5 s cycle, 50 % duty) for 30 seconds three times. The lysate was clarified by centrifugation at 12,000 rpm and 4 °C for 40 min. The supernatant was applied to a Ni-NTA column (QIAGEN), and the protein were purified according to the manufacturer's instructions. The purified protein was incubated with

two equivalents of Na₃VO₄. Finally, the protein was desalted using a 10-DG column (BioRad) pre-equilibrated with the desalting buffer (100 mM potassium phosphate buffer, 20% glycerol, pH 7.5). The purified proteins were aliquoted and stored at -80 °C.

Amino acid sequence of CiVCPO (The His-tag sequence is underlined.):

<u>MSSHHHHHHSSGENLYFQGGG</u>MGSVTPIPLPKIDEPEEYNTNYILFWNHVGLELNRV THTVGGPLTGPPLSARALGMLHLAIHDAYFSICPPTDFTTFLSPDTENAAYRLPSPNG ANDARQAVAGAALKMLSSLYMKPVEQPNPNPGANISDNAYAQLGLVLDRSVLEAP GGVDRESASFMFGEDVADVFFALLNDPRGASQEGYHPTPGRYKFDDEPTHPVVLIPV DPNNPNGPKMPFRQYHAPFYGKTTKRFATQSEHFVADPPGLRSNADETAEYDDAVR VAIAMGGAQALNSTKRSPWQTAQGLYWAYDGSNLIGTPPRFYNQIVRRIAVTYKKE EDLANSEVNNADFARLFALVDVACADAGIFSWKEKWEFEFWRPLSGVRDDGRPDH GDPFWLTLGAPATNTNDIPFKDPFPAYPSGHATFGGAVFQMVRRYYNGRVGTWKD DEPDNIAIDMMISEELNGVNRDLRQPYDPTAPIEDQPGIVRTRIVRHFDSAWELMFEN AISRIFLGVHWRFDAAAARDILIPTTTKDVYAVDNNGATVFQNVEDIRYTRGTRED PEGLFPIGGVPLGIEIADEIFNNGLKPTPPEIQPMPQETPVQKPVGQQPVKGMWEEEQ APVVKEAP

Figure S1. 10% SDS-PAGE analysis of CiVCPO purification.

Starting materials preparation

General procedure for synthesis of α -oxo ketene dithioacetals 1a-1t (General Procedure A)

The synthesis of compounds **1a-1t** followed the previous report with some modifications¹. To a stirred suspension of freshly prepared potassium *tert*-butoxide (3.4 eq.) in dry THF (3.5 mL) at 0 $^{\circ}$ C, a solution of aryl ketones (1.0 eq.) and carbon disulfide (1.5 eq.) in

dry THF (5 mL) was added, and the mixture was vigorously stirred at 0 °C for 120 min. The color of the reaction was changed to reddish after the addition of aryl ketone and carbon disulfide indicating the formation of disodium salt of 1-aryl-3,3-bissulfanyl-2-propen-1-ones. To this suspension, a solution of methyl iodide (2.4 eq.) in dry THF (2.5 mL) was added, and the reaction mixture was stirred at 0 °C for 120 min. After completion of the reaction, the mixture was transferred into a 100 mL beaker containing 50 g of crushed ice, and the resulting solution was continually stirred. A light yellow colored solid formed, filtered, and washed with water (20 mL \times 3). The crude solid was recrystallized from 5% DCM in EtOH.

General procedure for synthesis of α -oxo ketene dithioacetals 1u-1w (General Procedure B)

The synthesis of compounds 1u-1w followed the previous report with some modifications¹. To a stirred suspension of freshly prepared potassium *tert*-butoxide (3.4 eq.) in dry THF (3.5 mL) at 0 °C, a solution of ketone (1.0 eq.) and carbon disulfide (1.5 eq.) in dry THF (5 mL) was added, and the mixture was vigorously stirred at 0 °C for 120 min. The color of the reaction was changed to reddish after the addition of ketone and carbon disulfide indicated the formation of disodium salt of 1-aryl-3,3-bissulfanyl-2-propen-1-ones. To this suspension, a solution of methyl iodide or ethyl bromide or 1,3-dibromopropane (2.4 eq.) in dry THF (2.5 mL) was added, and the reaction mixture continued to stir at 0 °C to room temperature (28-32 °C) overnight. After completion of the reaction, the mixture was transferred into a 100 mL beaker containing 50 g of crushed ice, and the resulting solution was continually stirred. Then, the solution was extracted with EtOAc (50 mL x 3), evaporated the solvent, and performed column chromatography (H:EA 9:1, v/v) to obtain the desired products.

3,3-bis(methylthio)-1-phenylprop-2-en-1-one (1a) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), acetophenone (540.7 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford 1a (735.8 mg, 73%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.92-7.91 (m, 2H), 7.50-7.48 (m, 1H), 7.45-7.42 (m, 2H), 6.77 (s, 1H), 2.56 (s, 3H), 2.53 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 185.8, 166.6, 139.5, 131.9, 128.6, 127.9, 109.6, 17.5, 15.2.

1-(4-fluorophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**1b**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4-fluoroacetophenone (621.6 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1b** (764.1 mg, 70%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.94-7.90 (m, 2H), 7.12-7.07 (m, 2H), 6.70 (s, 1H), 2.56 (s, 3H), 2.52 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 184.3, 167.2, 166.0, 164.0, 135.7, 130.3, 130.2, 115.7, 115.5, 109.0, 17.5, 15.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -107.5.

1-(4-chlorophenyl)-3,3-bis(methylthio)prop-2-en-1-one (1c) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4chloroacetophenone (695.7 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford 1c (923.0 mg, 79%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.84 (d, J = 8.6, 2H), 7.39 (d, J = 8.6, 2H), 6.69 (s, 1H), 2.55 (s, 3H), 2.51 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): *δ* ppm 184.3, 167.7, 138.1, 137.7, 129.2, 128.8, 108.9, 17.5, 15.2.

1-(4-bromophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**1d**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4-bromoacetophenone (895.7 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1d** (703.4 mg, 52%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.77 (d, *J* = 8.6, 2H), 7.56 (d, *J* = 8.3, 2H), 6.88 (s, 1H), 2.56 (s, 3H), 2.53 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 184.5, 167.9, 138.2, 131.8, 129.4, 126.7, 108.8, 17.5, 15.2.

1-(4-iodophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**1e**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4-iodoacetophenone (1107.2 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1e** (815.0 mg, 52%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.78 (d, *J* = 8.6, 2H), 7.62 (d, *J* = 8.6, 2H), 6.67 (s, 1H), 2.55 (s, 3H), 2.52 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 184.7, 167.9, 138.8, 137.8, 129.4, 108.8, 99.3, 17.5, 15.2.

3,3-bis(methylthio)-1-(p-tolyl)prop-2-en-1-one (**1f**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4-methylacetophenone

(603.8 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1f** (728.6 mg, 68%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.82 (d, J = 8.3, 2H), 7.23 (d, J = 8.6, 2H), 6.75 (s, 1H), 2.55 (s, 3H), 2.52 (s, 3H), 2.39 (s, 3H).¹³C NMR (125 MHz, CDCl₃): δ ppm 185.6, 165.8, 142.5, 136.8, 129.3, 128.0, 109.6, 21.7, 17.5, 15.2.

1-(4-methoxyphenyl)-3,3-bis(methylthio)prop-2-en-1-one (**1g**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4-methoxylacetophenone (675.8 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1g** (276.5 mg, 24%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.91 (d, J = 9.1, 2H), 6.92 (d, J = 8.9, 2H), 6.74 (s, 1H), 3.85 (s, 3H), 2.55 (s, 3H), 2.51 (s, 3H).¹³C NMR (125 MHz, CDCl₃): δ ppm 184.7, 165.1, 162.6, 132.2, 130.0, 113.8, 109.5, 55.5, 17.4, 15.2.

3,3-bis(methylthio)-1-(4-(methylthio)phenyl)prop-2-en-1-one (**1h**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(4-(methylthio)phenyl)ethan-1-one (485.0 mg, 2.9 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1h** (628.5 mg, 80%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.84 (d, *J* = 8.6, 2H), 7.25 (d, *J* = 8.6, 2H), 6.73 (s, 1H), 2.55 (s, 3H), 2.52 (s, 3H), 2.50 (s, 3H).¹³C NMR (125 MHz, CDCl₃): δ ppm 184.8, 166.2, 144.1, 135.7, 128.3, 125.2, 109.3, 17.5, 15.2, 15.0.

1-([1,1'-biphenyl]-4-yl)-3,3-bis(methylthio)prop-2-en-1-one (**1i**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-([1,1'-biphenyl]-4-yl)ethan-1-one (883.1 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1i** (955.2 mg, 71%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.99 (d, J = 8.6, 2H), 7.67 (d, J = 8.6, 2H), 7.63 (d, J = 8.6, 2H), 7.46 (t, J = 7.2, 2H), 7.38 (t, J = 7.5, 1H), 6.81 (s, 1H), 2.58 (s, 3H), 2.54 (s, 3H).¹³C NMR (125 MHz, CDCl₃): δ ppm 185.3, 166.6, 144.5, 140.2, 138.2, 129.0, 128.4, 128.1, 127.3 (x2), 109.5, 17.5, 15.2.

3,3-bis(methylthio)-1-(4-nitrophenyl)prop-2-en-1-one (1j) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4-nitroacetophenone (743.2 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1j** (635.7 mg, 53%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.28 (d, J = 8.9, 2H), 8.03 (d, J = 8.9, 2H), 6,71 (s, 1H), 2.6 (s, 3H), 2.56 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 183.4, 170.7, 149.5, 144.6, 128.7, 123.8, 108.5, 17.6, 15.3.

4-(3,3-bis(methylthio)acryloyl)benzonitrile (1k) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 4-acetylbenzonitrile (653.0 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford 1k (249 mg, 74%) as yellow solid: ¹H NMR (500 MHz, DMSO) δ ppm 8.1 (d,

J = 8.6, 2H), 7.97 (d, *J* = 8.3, 2H), 6.87 (s, 1H), 2.68 (s, 3H), 2.50 (s, 3H). ¹³C NMR (125 MHz, DMSO): δ ppm 182.8, 169.0, 142.3, 132.7, 128.4, 118.4, 114.0, 108.9, 16.9, 14.5.

1-(2-iodophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**11**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(2-iodophenyl)ethan-1-one (1107.2 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **11** (921.1 mg, 58%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.87 (d, *J* = 8.9, 1H), 7.41-7.38 (m, 2H), 7.09-7.06 (m, 1H), 6.37 (s, 1H), 2.54 (s, 3H), 2.51 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 189.0, 167.3, 146.4, 140.1, 131.0, 128.7, 128.2, 112.2, 92.4, 17.4 15.1.

1-mesityl-3,3-bis(methylthio)prop-2-en-1-one (**1m**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-mesitylethan-1-one (730.0 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1m** (533.1 mg, 45%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 6.84 (s, 2H), 6.15 (s, 1H), 2.53 (s, 3H), 2.40 (s, 3H), 2.28 (s, 3H), 2.23 (s, 6H) .¹³C NMR (125 MHz, CDCl₃): δ ppm 193.2, 165.1, 140.3, 138.1, 133.8, 128.5, 114.3, 21.2, 19.6, 17.4 15.0.

1-(benzo[d][1,3]dioxol-5-yl)-3,3-bis(methylthio)prop-2-en-1-one (**1n**) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(benzo[d][1,3]dioxol-5-yl)ethan-1-one (738.7 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5

mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1n** (827.1 mg, 66%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.48 (dd, J = 8.0, 1.7, 1H), 7.42 (d, J = 1.8, 1H), 6.83 (d, J = 8.3, 1H), 6.67 (s, 1H), 6.02 (s, 2H), 2.54 (s, 3H), 2.51 (s, 3H) . ¹³C NMR (125 MHz, CDCl₃): δ ppm 184.1, 165.7, 150.8, 148.1, 134.1, 123.3, 109.3, 108.1, 107.9, 101.7, 17.5, 15.2.

1-(4-(benzyloxy)phenyl)-3,3-bis(methylthio)prop-2-en-1-one (10) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(4-(benzyloxy)phenyl)ethan-1-one (766.0 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1q** (422 mg, 34%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.91 (d, J = 8.9, 2H), 7.44-7.34 (m, 5H), 7.00 (d, J = 8.9, 2H), 6.74 (s, 1H), 5.12 (s, 2H), 2.55 (s, 3H), 2.52 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 184.7, 165.2, 161.8, 136.5, 132.4, 130.0, 128.8, 128.3, 127.6, 114.7, 109.6, 70.2, 17.5, 15.2.

1-(4-(allyloxy)phenyl)-3,3-bis(methylthio)prop-2-en-1-one (1p) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(4-(allyloxy)phenyl)ethan-1-one (510.9 mg, 3.0 mmol), carbon disulfide (342.7 mg, 4.5 mmol), methyl iodide (1.021 g, 7.2 mmol) to afford **1p** (403.2 mg, 48%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.90 (d, J = 8.9, 2H), 6.94 (d, J = 8.9, 2H), 6.75 (s, 1H), 6.09-6.02 (m, 1H), 5.45-5.40 (m, 1H), 5.33-5.30 (m, 1H), 4.60-4.58 (m, 2H), 2.56 (s, 3H), 2.52 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 184.9, 165.1, 161.7, 132.8, 132.3, 130.0, 118.3, 114.5, 109.6, 69.0, 17.5, 15.2.

(*E*)-1,1-bis(methylthio)-5-phenylpenta-1,4-dien-3-one (1q) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), (*E*)-4-phenylbut-3-en-2-one (657.9 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford 1q (358.2 mg, 32%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.62 (d, *J* = 15.8, 1H), 7.57-7.55 (m, 2H), 7.38-7.36 (m, 3H), 6.83 (d, *J* = 15.8, 1H), 6.24 (s, 1H), 2.53 (s, 3H), 2.52 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 183.9, 165.7, 141.2, 135.3, 129.9, 128.9, 128.2, 127.4, 113.3, 17.4, 15.2.

3,3-bis(methylthio)-1-(naphthalen-2-yl)prop-2-en-1-one (1r) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(naphthalen-2-yl)ethan-1-one (766.0 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1r** (422 mg, 34%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.4 (s, 1H), 8.02 (dd, J = 8.3, 1.7, 1H), 7.95 (d, J = 8.0, 1H), 7.90-7.85 (m, 2H), 7.58-7.51 (m, 2H), 6.92 (s, 1H), 2.62 (s, 3H), 2.55 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 185.7, 166.7, 136.8, 135.1, 132.8, 129.5, 128.6, 128.4, 127.9, 126.7, 124.5, 109.7, 17.6, 15.3.

3,3-bis(methylthio)-1-(thiophen-2-yl)prop-2-en-1-one (1s) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(thiophen-2-yl)ethan-1-one (567.8 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1s** (514.2 mg, 50%) as yellow solid: ¹H NMR (500 MHz, CDCl₃)

δ ppm 7.64-7.63 (m, 1H), 7.53-7.52 (m, 1H), 7.09-7.07 (m, 1H), 6.60 (s, 1H), 2.54 (s, 3H), 2.50 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 178.3, 166.1, 146.3, 132.1, 129.6, 128/0, 109.2, 17.4, 15.2.

3,3-bis(methylthio)-1-(pyridin-3-yl)prop-2-en-1-one (1t) Synthesized according to the General procedure A using potassium *tert*-butoxide (3.479 g, 31 mmol), 1-(pyridin-3-yl)ethan-1-one (545.1 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1t** (605.7 mg, 60%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 9.1 (d, J = 2.3, 1H), 8.69 (dd, J = 4.9, 1.8, 1H), 8.22-8.19 (m, 1H), 7.40-7.37 (m, 1H), 6.70 (s, 1H), 2.57 (s, 3H), 2.53 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 183.6, 169.2, 152.2, 148.9, 135.6, 134.7, 123.8, 108.5, 17.5, 15.2.

4,4-bis(methylthio)but-3-en-2-one (**1u**) Synthesized according to the General procedure B using potassium *tert*-butoxide (3.479 g, 31 mmol), acetone (261.0 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), methyl iodide (1.532 g, 10.8 mmol) to afford **1u** (373.7 mg, 51%) as yellow solid: ¹H NMR (500 MHz, CDCl₃) δ ppm 6.02 (s, 1H), 2.45 (s, 3H), 2.43 (s, 3H), 2.18 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 192.9, 163.5, 113.0, 30.5, 17.2, 14.8.

3,3-bis(ethylthio)-1-phenylprop-2-en-1-one (**1v**) Synthesized according to the General procedure B using potassium *tert*-butoxide (3.479 g, 31 mmol), acetophenone (540.7 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), ethyl bromide (1.177 g, 10.8 mmol) to

afford **1u** (747.5 mg, 66%) as yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 6.02 (s, 1H), 2.45 (s, 3H), 2.43 (s, 3H), 2.18 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 192.9, 163.5, 113.0, 30.5, 17.2, 14.8.

2-(1,3-dithian-2-ylidene)-1-phenylethan-1-one (**1w**) Synthesized according to the General procedure B using potassium *tert*-butoxide (3.479 g, 31 mmol), acetophenone (261.0 mg, 4.5 mmol), carbon disulfide (1.027 g, 13.5 mmol), 1,3-dibrompropanoe (1.532 g, 10.8 mmol) to afford **1u** (370.3 mg, 35%) as yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 6.02 (s, 1H), 2.45 (s, 3H), 2.43 (s, 3H), 2.18 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 192.9, 163.5, 113.0, 30.5, 17.2, 14.8.

Enzymatic bromination of α -oxo ketene dithioacetals

General procedure for the enzymatic bromination of *a*-oxo ketene dithioacetals under on-water process (General Procedure C)

The α -oxo ketene dithiolacetals (**1a-1w**, 20 mM) were freshly dissolved in DMSO (1.0 mL, 20% v/v), then KBr (80 mM), 400 nM enzyme *Ci*VCPO, and H₂O₂ (85 mM) were added in sequence in a 100 mM citrate buffer solution (100 mM, pH 5.0) to obtain the final reaction volume of reaction solution 5.0 mL. The above-mentioned concentration represents the final concentration of each ingredient. Then, the mixture was allowed to stir at the speed of 1000 rpm at room temperature (28-32 °C) for 24 h. After the reaction, the crude mixture was extracted with water and ethyl acetate. The organic layer was evaporated under reduced pressure to give the crude product, which was further purified by column chromatography (eluted with ethyl acetate/hexane) to afford the desired compoundproduct.

General procedure for the enzymatic bromination of *a*-oxo ketene dithioacetals under in-water process (General Procedure D)

The α -oxo ketene dithiolacetal (**1a-1w**, 20 mM) freshly dissolved in acetone (500 μ L,), KBr (80 mM), 400 nM *Ci*VCPO, and H₂O₂ (85 mM) were added in sequence in a 2%wt TPGS-750-M/citrate buffer solution (100 mM, pH 5.0) to obtain the final reaction volume of 5.0 mL. The above-mentioned concentration represents the final concentration of each ingredient. Then, the mixture was allowed to stir at the speed of 1000 rpm at room temperature (28-32 °C) for 24 h. After the reaction, the crude mixture was extracted with water and ethyl acetate. The organic layer was evaporated under reduced pressure to give the crude product, which was further purified by column chromatography (eluted with ethyl acetate/hexane) to afford the product.

2-bromo-3,3-bis(methylthio)-1-phenylprop-2-en-1-one (**2a**) Synthesized according to the General procedure C using **1a** (22.4 mg, 0.1 mmol) to afford **2a** (30.0mg, 99%) and General procedure D using **1a** (22.4 mg, 0.1 mmol) to afford **2a** (30.0mg, 99%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.91-7.89 (m, 2H), 7.60-7.57 (m, 1H), 7.49-7.46 (m, 2H), 2.47 (s, 3H), 2.13 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 189.4, 138.5, 134.8, 134.0, 129.9, 128.9, 118.0, 19.0, 16.4. ESI-MS: m/z: 302.9501 [M+H]⁺ (calcd for [C₁₁H₁₂BrOS₂]⁺ 302.9513).

For gram-scale synthesis of **2a**: α -oxo ketene dithiolacetals **1a** (1.12g, 50 mM) were freshly dissolved in acetone (10 mL, 10% v/v), then KBr (1.19 g, 2.0 eq.), 400 nM enzyme *CiVCPO*, and H₂O₂ (1.086 mL, 2.1 eq.) were added in sequence in a 2%wt TPGS-750-M/citrate buffer solution (100mM, pH 5.0) to obtain the final volume of reaction solution 100.0 mL. The above-mentioned concentration represents the final concentration of each ingredient. Then, the mixture was allowed to stir at room temperature at the speed 1000 rpm for 36h. After the reaction, the crude mixture was extracted with water and ethyl acetate. The organic layer was evaporated under reduced pressure to give the crude product, which was further purified by column chromatography (eluted with ethyl acetate/hexane) to afford the desired compound **2a** (1.422 g, 94%).

2-bromo-1-(4-fluorophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**2b**) Synthesized according to the General procedure C using **1b** (24.2 mg, 0.1 mmol) to afford **2b** (28.8 mg, 90%) and General procedure D using **1b** (24.2 mg, 0.1 mmol) to afford **2b** (31.9 mg, 99%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.95-7.91 (m, 2H), 7.18-7.14 (m, 2H), 2.48 (s, 3H), 2.16 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 187.8, 167.3, 165.3, 138.7, 132.6, 132.5, 131.3, 117.4, 116.3, 116.1, 19.0, 16.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -103.2 ESI-MS: m/z: 320.9385 [M+H]⁺, 322. 9368 [M+H+2]⁺ (calcd for [C₁₁H₁₁BrFOS₂]⁺ 320.9419).

2-bromo-1-(4-chlorophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**2c**) Synthesized according to the General procedure C using **1c** (25.9 mg, 0.1 mmol) to afford **2c** (32.8 mg, 97%) and General procedure D using **1c** (25.9 mg, 0.1 mmol) to afford **2c** (27.7 mg, 82%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.86-7.83 (m, 2H), 7.47-7.45 (m, 2H), 2.48 (s, 3H), 2.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.2, 140.5, 139.1, 133.2, 131.2, 129.3, 117.2, 19.1, 16.4. ESI-MS: m/z: 336.9105 [M+H]⁺, 338.9077 [M+H+2]⁺, 340.9060 [M+H+4]⁺ (calcd for [C₁₁H₁₁BrClOS₂]⁺ 336.9123).

2-bromo-1-(4-bromophenyl)-3,3-bis(methylthio)prop-2-en-1-one (2d) Synthesized according to the General procedure C using 1d (30.3 mg, 0.1 mmol) to afford 2d (26.8 mg, 70%) and General procedure D using 1d (30.3 mg, 0.1 mmol) to afford 2d (27.8 mg, 73%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.78-7.75 (m, 2H), 7.64-7.62 (m, 2H), 2.48 (s, 3H), 2.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.4, 139.2, 133.6, 132.3, 131.2, 129.3, 117.1, 19.1, 16.4. ESI-MS: m/z: 402.8431 [M+H]⁺, 402.8410 [M+H+2]⁺, 404.8391 [M+H+4]⁺ (calcd for [C₁₁H₁₁Br₂OS₂]⁺ 336.9123).

2-bromo-1-(4-iodophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**2e**) Synthesized according to the General procedure D using **1e** (35.0 mg, 0.1 mmol) to afford **2e** (24.3 mg, 57%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) *δ* ppm 7.87-7.84 (m, 2H), 7.62-7.59 (m, 2H), 2.48 (s, 3H), 2.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): *δ* ppm 188.6, 139.2, 138.3, 134.2, 131.1, 117.1, 102.3, 19.1, 16.4. ESI-MS: m/z: 428.8448 [M+H]⁺, 430.8421 [M+H+2]⁺(calcd for [C₁₁H₁₁BrIOS₂]⁺ 428.8479).

2-bromo-3,3-bis(methylthio)-1-(p-tolyl)prop-2-en-1-one (**2f**) Synthesized according to the General procedure C using **1f** (23.8 mg, 0.1 mmol) to afford **2f** (23.6 mg, 74%) and General procedure D using **1f** (23.8 mg, 0.1 mmol) to afford **2f** (31.5 mg, 99%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.81 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 2.47 (s, 3H),

2.43 (s, 3H), 2.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 189.0, 145.2, 137.8, 132.1, 130.1, 129.7, 118.3, 22.0, 19.0, 16.4. ESI-MS: m/z: 338.9485 [M+H]⁺, 340. 9469 [M+H+2]⁺ (calcd for [C₁₂H₁₄BrOS₂]⁺ 320.9419).

2-bromo-1-(4-methoxyphenyl)-3,3-bis(methylthio)prop-2-en-1-one (**2g**) Synthesized according to the General procedure C using **1g** (25.4 mg, 0.1 mmol) to afford **2g** (28.5 mg, 86%) and General procedure D using **1g** (25.4 mg, 0.1 mmol) to afford **2g** (33.1 mg, 99%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.90-7.88 (m, 2H), 6.98-6.95 (m, 2H), 3.88 (s, 3H), 2.47 (s, 3H), 2.17 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.3, 164.4, 137.4, 132.4, 127.4, 118.4, 114.3, 55.7, 19.0, 16.4. ESI-MS: m/z: 322.9613 [M+H]⁺, 324. 9596 [M+H+2]⁺ (calcd for [C₁₂H₁₄BrO₂S₂]⁺ 322.9619).

2-bromo-3,3-bis(methylthio)-1-(4-(methylthio)phenyl)prop-2-en-1-one (**2h**) Synthesized according to the General procedure C using **1h** (27.0 mg, 0.1 mmol) to afford **2h** (23.5 mg, 67%) and General procedure D using **1h** (27.0 mg, 0.1 mmol) to afford **2h** (13.9 mg, 40%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.83-7.80 (m, 2H), 7.29-7.26 (m, 2H), 2.53 (s, 3H), 2.47 (s, 3H), 2.17 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.4, 150.9, 147.5, 138.0, 130.8, 130.3, 125.1, 118.0, 19.0, 16.4, 14.8. ESI-MS: m/z: 348.9378 [M+H]⁺, 350. 9337 [M+H+2]⁺ (calcd for [C₁₂H₁₄BrOS₃]⁺ 348.9390).

1-([1,1'-biphenyl]-4-yl)-2-bromo-3,3-bis(methylthio)prop-2-en-1-one (2i) Synthesized according to the General procedure C using **1i** (30.0 mg, 0.1 mmol) to afford **2i** (8.1 mg, 21%) and General procedure D using **1i** (30.0 mg, 0.1 mmol) to afford **2i** (27.2 mg, 72%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.00-7.98 (m, 2H), 7.73-7.70 (m, 2H), 7.65-7.63 (m, 2H), 7.50-7.46 (m, 2H), 7.43-7.40 (m, 1H), 2.50 (s, 3H), 2.19 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 189.0, 146.7, 139.9, 138.3, 133.4, 130.5, 129.1, 128.6, 127.6, 127.5, 118.1, 19.1, 16.4. ESI-MS: m/z: 378.9834 [M+H]⁺, 380. 9817 [M+H+2]⁺ (calcd for [C₁₇H₁₆BrOS₂]⁺ 378.9826).

2-bromo-3,3-bis(methylthio)-1-(4-nitrophenyl)prop-2-en-1-one (**2j**) Synthesized according to the General procedure D using **1j** (26.9 mg, 0.1 mmol) to afford **2j** (15.1 mg, 43%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.34-8.32 (m, 2H), 8.06-8.03 (m, 2H), 2.50 (s, 3H), 2.14 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 187.5, 150.7, 141.1, 130.5, 124.1, 116.2, 19.1, 16.6. ESI-MS: m/z: 347.9357 [M+H]⁺, 349. 9338 [M+H+2]⁺ (calcd for [C₁₁H₁₀BrNO₃S₂]⁺ 347.9364).

4-(2-bromo-3,3-bis(methylthio)acryloyl)benzonitrile (**2k**) Synthesized according to the General procedure C using **1k** (24.9 mg, 0.1 mmol) to afford **2k** (5.6 mg, 99%) and General procedure D using **1k** (24.9 mg, 0.1 mmol) to afford **2k** (9.3 mg, 28%) as a yellow oil: ¹H NMR

(500 MHz, CDCl₃) δ ppm 7.97 (d, J = 8.3 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 2.49 (s, 3H0, 2.13 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 187.7, 141.0, 138.5, 132.7, 130.0, 118.0, 116.9, 116.3, 19.1, 16.5. ESI-MS: m/z: 327.9443 [M+H]⁺, 329. 9432 [M+H+2]⁺ (calcd for [C₁₂H₁₁BrNOS₂]⁺ 327.9465).

2-bromo-1-(2-iodophenyl)-3,3-bis(methylthio)prop-2-en-1-one (**2l**) Synthesized according to the General procedure D using **1l** (35.0 mg, 0.1 mmol) to afford **2l** (34.3 mg, 99%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.97 (dd, J = 8.1, 1.2, 1H), 7.51 (dd, J = 7.8, 1.7, 1H), 7.39 (dt, J = 7.5, 1.2, 1H), 7.12 (dt, J = 7.8, 1.8, 1H), 2.50 (s, 3H), 2.05 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 139.7, 146.8, 142.2, 141.3, 132.3, 130.5, 127.8, 119.0, 94.2, 18.9, 17.1. ESI-MS: m/z: 428.8436 [M+H]⁺, 430. 8354 [M+H+2]⁺ (calcd for [C₁₁H₁₁BrIOS₂]⁺ 320.9419).

2-bromo-1-mesityl-3,3-bis(methylthio)prop-2-en-1-one (2m) Synthesized according to the General procedure C using **1m** (26.6 mg, 0.1 mmol) to afford **2m** (6.8 mg, 20%) and General procedure D using **1m** (26.6 mg, 0.1 mmol) to afford **2m** (31.9 mg, 93%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 6.82 (s, 2H), 2.51 (s, 3H), 2.28 (s, 3H), 2.24 (s, 6H), 2.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 193.0, 150.1, 139.2, 135.4, 131.0, 128.7, 123.2, 21.3, 20.2, 18.9, 17.8. ESI-MS: m/z: 366.9797 [M+Na]⁺, 368. 9775 [M+Na+2]⁺ (calcd for [C₁₄H₁₇BrOS₂Na]⁺ 320.9419).

1-(benzo[*d*][1,3]dioxol-5-yl)-2-bromo-3,3-bis(methylthio)prop-2-en-1-one (2n) Synthesized according to the General procedure C using 1n (26.8 mg, 0.1 mmol) to afford 2n (11.1 mg, 32%) and General procedure D using 1n (26.8 mg, 0.1 mmol) to afford 2n (20.5 mg, 59%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.48 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.41 (d, *J* = 1.8 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.07 (s, 2H), 2.47 (s, 3H), 2.18 (s, 3H) . ¹³C NMR (125 MHz, CDCl₃): δ ppm 187.8, 152.8, 148.6, 137.8, 129.3, 127.0, 118.1, 109.1, 108.3, 102.3, 19.1, 16.4. ESI-MS: m/z: 346.9406 [M+H]⁺, 348. 9385 [M+H+2]⁺ (calcd for [C₁₂H₁₂BrO₃S₂]⁺ 346.9411).

1-(4-(benzyloxy)phenyl)-2-bromo-3,3-bis(methylthio)prop-2-en-1-one (20) Synthesized according to the General procedure C using **1o** (33.0 mg, 0.1 mmol) to afford **2o** (9.9 mg, 24%) and General procedure D using **1o** (33.0 mg, 0.1 mmol) to afford **2o** (12.8 mg, 31%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.91-7.88 (m, 2H), 7.44-7.35 (m, 5H), 7.05-7.02 (m, 2H), 5.14 (s, 2H), 2.47 (s, 3H), 2.17 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.1, 163.5, 137.5, 136.1, 132.3, 128.8, 128.4, 127.6 (x2), 118.4, 115.0, 70.4, 19.0, 16.4. ESI-MS: m/z: 408.9928 [M+H]⁺, 410. 9858 [M+H+2]⁺ (calcd for [C₁₈H₁₈BrO₂S₂]⁺ 408.9932).

1-(4-(allyloxy)phenyl)-2-bromo-3,3-bis(methylthio)prop-2-en-1-one (2p) Synthesized according to the General procedure C using 1p (28.0 mg, 0.1 mmol) to afford 2p (24.0 mg,

67%) and General procedure D using **1p** (28.0 mg, 0.1 mmol) to afford **2p** (20.0 mg, 56%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) *δ* ppm 7.89-7.86 (m, 2H), 6.89-6.85 (m, 2H), 6.09-6.01 (m, 1H), 5.45-5.41 (m, 1H), 5.34-5.31 (m, 1H), 4.62-4.61 (m, 2H), 2.47 (s, 3H), 2.17 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): *δ* ppm 188.1, 163.4, 134.5, 132.5, 132.3, 127.5, 118.5, 118.4, 114.9, 69.1, 19.0, 16.4. ESI-MS: m/z: 320.9385 [M+H]⁺, 322. 9368 [M+H+2]⁺ (calcd for [C₁₄H₁₅BrO₂S₂]⁺ 320.9419).

(*E*)-2-bromo-1,1-bis(methylthio)-5-phenylpenta-1,4-dien-3-one (2q) Synthesized according to the General procedure C using 1q (25.0 mg, 0.1 mmol) to afford 2q (12.2 mg, 37%) and General procedure D using 1q (25.0 mg, 0.1 mmol) to afford 2q (25.8 mg, 78%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.58-7.55 (m, 3H), 7.42-7.40 (m, 3H), 6.93 (d, *J* = 16.1, 1H), 2.49 (s, 3H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.3, 145.7, 140.9, 134.4, 131.0, 129.1, 128.7, 124.8, 119.4, 19.5, 16.8. ESI-MS: m/z: 350.9501 [M+Na]⁺, 352. 9420 [M+Na+2]⁺ (calcd for [C₁₃H₁₄BrOS₂Na]⁺ 350.9489).

2-bromo-3,3-bis(methylthio)-1-(naphthalen-2-yl)prop-2-en-1-one (**2r**) Synthesized according to the General procedure C using **1r** (27.4 mg, 0.1 mmol) to afford **2r** (10.0 mg, 28%) and General procedure D using **1r** (27.4 mg, 0.1 mmol) to afford **2r** (23.4 mg, 66%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 8.38 (s, 1H), 8.00-7.96 (m, 2H), 7.93-7.87 (m, 2H), 7.63-7.60 (m, 1H), 7.57-7.54 (m, 1H), 2.50 (s, 3H), 2.13 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 189.4, 138.6, 136.1, 132.6, 132.2, 132.1, 129.9, 129.1, 129.0, 128.1, 127.1,

124.8, 118.1, 19.1, 16.5. ESI-MS: m/z: 352.9662 [M+H]⁺, 354. 9650 [M+H+2]⁺ (calcd for [C₁₅H₁₄BrOS₂]⁺ 352.9669).

2-bromo-3,3-bis(methylthio)-1-(thiophen-2-yl)prop-2-en-1-one (**2s**) Synthesized according to the General procedure C using **1s** (23.0 mg, 0.1 mmol) to afford **2s** (30.6 mg, 99%) and General procedure D using **1s** (23.0 mg, 0.1 mmol) to afford **2s** (30.7 mg, 99%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.74-7.72 (m, 1H), 7.66-7.65 (m, 1H), 7.15-7.14 (m, 1H), 2.47 (s, 3H), 2.21 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 182.0, 141.8, 139.1, 135.7, 134.9, 128.5, 117.0, 19.3, 16.5. ESI-MS: m/z: 308.9071 [M+H]⁺, 310. 9044 [M+H+2]⁺ (calcd for [C₉H₁₀BrOS₃]⁺ 308.9077).

2-bromo-3,3-bis(methylthio)-1-(pyridin-3-yl)prop-2-en-1-one (**2t**) Synthesized according to the General procedure C using **1t** (22.5 mg, 0.1 mmol) to afford **2t** (28.4 mg, 94%) and General procedure D using **1t** (22.5 mg, 0.1 mmol) to afford **2t** (24.5 mg, 81%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 9.05-9.04 (m, 1H), 8.80-8.78 (m, 1H), 8.21-8.18 (m, 1H), 7.46-7.43 (m, 1H), 2.49 (s, 3H), 2.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.1, 154.0, 151.1, 140.7, 136.8, 130.7, 123.9, 116.4, 19.0, 16.5. ESI-MS: m/z: 303.9446 [M+H]⁺, 305. 9421 [M+H+2]⁺ (calcd for [C₁₀H₁₁BrNOS₂]⁺ 303.9465).

3-bromo-4,4-bis(methylthio)but-3-en-2-one (**2u**) Synthesized according to the General procedure C using **1u** (16.2 mg, 0.1 mmol) to afford **2u** (13.3 mg, 99%) and General procedure D using **1u** (16.2 mg, 0.1 mmol) to afford **2u** (5.4 mg, 22%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 2.49 (s, 3H), 2.46 (s, 3H), 2.35 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 195.0, 142.5, 120.5, 29.5, 19.8, 17.2.

2-bromo-3,3-bis(ethylthio)-1-phenylprop-2-en-1-one (**2v**) Synthesized according to the General procedure C using **1v** (25.2 mg, 0.1 mmol) to afford **2v** (26.0 mg, 79%) and General procedure D using **1v** (25.2 mg, 0.1 mmol) to afford **2v** (33.6 mg, 96%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.92-7.90 (m, 2H), 7.61-7.58 (m, 1H), 7.50-7.46 (m, 2H), 2.98 (q, *J* = 7.2 Hz, 2H), 2.67 (q, *J* = 7.4 Hz, 2H), 1.35 (t, *J* = 7.5 Hz, 3H), 1.09 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 189.6, 136.1, 134.7, 133.9, 129.9, 128.9, 120.0, 30.1, 28.0, 15.4, 14.2. ESI-MS: m/z: 330.9819 [M+H]⁺, 332. 9790 [M+H+2]⁺ (calcd for [C₁₃H₁₆BrOS₂]⁺ 330.9826).

2-bromo-2-(1,3-dithian-2-ylidene)-1-phenylethan-1-one (**2w**) Synthesized according to the General procedure C using **1w** (23.6 mg, 0.1 mmol) to afford **2w** (26.1 mg, 83%) and General procedure D using **1w** (23.6 mg, 0.1 mmol) to afford **2w** (29.3 mg, 93%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ ppm 7.85-7.82 (m, 2H), 7.55-7.52 (m, 1H), 7.46-7.43 (m, 2H), 3.10

(t, J = 6.6 Hz, 2H), 2.85 (t, J = 6.9 Hz, 2H), 2.18 (quin, J = 6.9 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ ppm 188.8, 149.3, 137.0, 132.9, 129.7, 128.4, 109.1, 29.8, 29.6, 23.4. ESI-MS: m/z: 336.9332 [M+Na]⁺, 338. 9321 [M+Na+2]⁺ (calcd for [C₁₂H₁₁BrOS₂Na]⁺ 336.9332).

Experiment set up

Figure S2. On-water reaction flask at 30 mM of 1a a) before the reaction and b) after the reaction

Figure S3. In-water reaction flask at 20 mM of 1a a) before the reaction and b) after the reaction

Figure S4. Gram-scale set up

Figure S6¹³C NMR spectra of 1a (CDCl₃, 125 MHz)

Figure S8¹³C NMR spectra of 1b (CDCl₃, 125 MHz)

Figure S9¹⁹F NMR spectra of 1b (CDCl₃, 470 MHz)

Figure S11 ¹³C NMR spectra of 1c (CDCl₃, 125 MHz)

Figure S13 ¹³C NMR spectra of 1d (CDCl₃, 125 MHz

Figure S15¹³C NMR spectra of 1e (CDCl₃, 125 MHz)

Figure S17 ¹³C NMR spectra of 1f (CDCl₃, 125 MHz)

Figure S19¹³C NMR spectra of 1g (CDCl₃, 125 MHz)

Figure S21¹³C NMR spectra of 1h (CDCl₃, 125 MHz)

Figure S22 ¹H NMR spectra of 1i (CDCl₃, 500 MHz)

Figure S23 ¹³C NMR spectra of 1i (CDCl₃, 125 MHz)

Figure S25¹³C NMR spectra of 1j (CDCl₃, 125 MHz)

Figure S26 ¹H NMR spectra of 1k (DMSO, 500 MHz)

Figure S27 ¹³C NMR spectra of 1k (DMSO, 125 MHz)

Figure S29¹³C NMR spectra of 11 (CDCl₃, 125 MHz)

Figure S31 ¹³C NMR spectra of 1m (CDCl₃, 125 MHz)

Figure S33 ¹³C NMR spectra of 1n (CDCl₃, 125 MHz)

Figure S37 ¹³C NMR spectra of 1p (CDCl₃, 125 MHz)

Figure S39 ¹³C NMR spectra of 1q (CDCl₃, 125 MHz)

Figure S41¹³C NMR spectra of 1r (CDCl₃, 125 MHz)

Figure S42 ¹H NMR spectra of 1s (CDCl₃, 500 MHz)

Figure S43 ¹³C NMR spectra of 1r (CDCl₃, 125 MHz)

Figure S45¹³C NMR spectra of 1t (CDCl₃, 125 MHz)

Figure S47 ¹³C NMR spectra of 1u (CDCl₃, 125 MHz)

Figure S49¹³C NMR spectra of 1v (CDCl₃, 125 MHz)

Figure S51 ¹³C NMR spectra of 1w (CDCl₃, 125 MHz)

Figure S53 ¹³C NMR spectra of 2a (CDCl₃, 125 MHz)

Figure S55 ¹³C NMR spectra of 2b (CDCl₃, 125 MHz)

Figure S56¹⁹F NMR spectra of 2b (CDCl₃, 470 MHz)

Figure S58 ¹³C NMR spectra of 2c (CDCl₃, 125 MHz)

Figure S60 ¹³C NMR spectra of 2d (CDCl₃, 125 MHz)

Figure S62 ¹³C NMR spectra of 2e (CDCl₃, 125 MHz)

Figure S64 ¹³C NMR spectra of 2f (CDCl₃, 125 MHz)

Figure S66 ¹³C NMR spectra of 2g (CDCl₃, 125 MHz)

Figure S67 ¹H NMR spectra of 2h (CDCl₃, 500 MHz)

Figure S68 ¹³C NMR spectra of 2h (CDCl₃, 125 MHz)

Figure S69 ¹H NMR spectra of 2i (CDCl₃, 500 MHz)

Figure S70¹³C NMR spectra of 2i (CDCl₃, 125 MHz)

Figure S72 ¹³C NMR spectra of 2j (CDCl₃, 125 MHz)

Figure S73 ¹H NMR spectra of 2k (CDCl₃, 500 MHz)

Figure S74¹³C NMR spectra of 2k (CDCl₃, 125 MHz)

Figure S76¹³C NMR spectra of 2l (CDCl₃, 125 MHz)

Figure S78 ¹³C NMR spectra of 2m (CDCl₃, 125 MHz)

Figure S80 ¹³C NMR spectra of 2n (CDCl₃, 125 MHz)

Figure S82 ¹³C NMR spectra of 20 (CDCl₃, 125 MHz)

Figure S84 ¹³C NMR spectra of 2p (CDCl₃, 125 MHz)

Figure S85 ¹H NMR spectra of 2q (CDCl₃, 500 MHz)

Figure S86 ¹³C NMR spectra of 2q (CDCl₃, 125 MHz)

Figure S87 ¹H NMR spectra of 2r (CDCl₃, 500 MHz)

Figure S88 ¹³C NMR spectra of 2r (CDCl₃, 125 MHz)

Figure S90 ¹³C NMR spectra of 2s (CDCl₃, 125 MHz)

Figure S92 ¹³C NMR spectra of 2t (CDCl₃, 125 MHz)

Figure S94 ¹³C NMR spectra of 2u (CDCl₃, 125 MHz)

Figure S96 ¹³C NMR spectra of 2v (CDCl₃, 125 MHz)

Figure S97 ¹H NMR spectra of 2w (CDCl₃, 500 MHz)

Figure S98 ¹³C NMR spectra of 2w (CDCl₃, 125 MHz)

Figure S100 Mass spectrum of 2b

Figure S104 Mass spectrum of 2f

Figure S105 Mass spectrum of 2g

Figure S106 Mass spectrum of 2h

Figure S108 Mass spectrum of 2j

Figure S110 Mass spectrum of 2l

Figure S111 Mass spectrum of 2m

Figure S112 Mass spectrum of 2n

Figure S113 Mass spectrum of 20

Figure S114 Mass spectrum of 2p

Figure S115 Mass spectrum of 2q

Figure S116 Mass spectrum of 2r

Figure S117 Mass spectrum of 2s

Figure S118 Mass spectrum of 2t

Figure S119 Mass spectrum of 2v

Figure S120 Mass spectrum of 2w

Reference

1. Rao, H. S. P.; Sivakumar, S., Condensation of a-aroylketene dithioacetals and 2-hydroxyarylaldehydes results in facile synthesis of a combinatorial library of 3-aroylcoumarins. *J. Org. Chem.* **2006**, **71**, 8715-8723.