SUPPORTING INFORMATION I FOR:

ANRORC type rearrangement/intermolecular cyclocondensation cascade of 5,6-dicyano-3-(2-oxo-2ethyl)pyrazin-2(1*H*)-ones with hydrazine hydrate for the synthesis of 2-(pyrazol-3-yl)imidazo[4,5-*d*]pyridazines

Vakhid A. Mamedov,*^a Venera R. Galimullina,^a Zheng-Wang Qu,*^b Hui Zhu,^b Victor V. Syakaev,^a Dariya V. Nikolaeva,^a Il'dar Kh. Rizvanov,^a Aidar T. Gubaidullin,^a Oleg G. Sinyashin,^a and Stefan Grimme^b

^a A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation E-mail: mamedov@iopc.ru

^b Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany E-mail: <u>qu@thch.uni-bonn.de</u>

FXPERIMENTAL SECTION S6GeneralS6GeneralS6General Procedure for the Preparation of Pyrazin-2(1 <i>H</i>)-one-5,6-dicarbonitriles 1S6General Procedure for the Preparation of S-6-Dirano-S-wpl-St/E-inidazo[4,5-d]pyridazine-2,3-pyrazol]-3(4 <i>H</i>)-one-5S11General Procedure for the Preparation of S-6-Dirano-S-avpl-St/E-inidazo[4,5-d]pyridazine-2,3-pyrazol]-3(4 <i>H</i>)-onesS11General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1/ <i>I</i> -pyrazol-5-v)]pyrrolo[3,4-d]imidazo[4,5-d]pyridazine-2,3-pyrazol]-3(4 <i>H</i>)-dinon hydrates 5a,bS22General Procedure for the Preparation of 2-(5-Aryl)-1/ <i>H</i> -pyrazol-3-yl)-5 <i>H</i> -imidazo[4,5-d]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazine]S24General Procedure for the Preparation of 2-(5-Aryl)-1/ <i>H</i> -pyrazol-3-yl)-5 <i>H</i> -imidazo[4,5-d]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazine]S25ReferencesS25ReferencesS25Figure S1. D1 ¹ H NMR spectrum of 11, 1'' and 1'' in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S1. D1 ¹ H NMR spectrum of 12, 1''g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 50.1 MHz).S27Figure S1. D1 ¹ H NMR spectrum of 13, 1''g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 50.1 MHz).S28Figure S1. D1 ¹ H NMR spectrum of 14, 1''g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 50.1 MHz).S30Figure S1. D1 ¹ H NMR spectrum of 13, 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 50.1 MHz).S31Figure S1. D1 ¹	Table of Contents	Page
GeneralS6GeneralS6General Procedure for the Preparation of Pyrazin-2(<i>LH</i>)-one-5,6-dicarbonitriles 1S6General Procedure for the Preparation of S.8-Diamino-5'-aryl(tethyl)-1/L*pyrazol-3-vl)-5/L+imidazol(4,5-d]pyridazine-2,3*pyrazol]-3(4L)-ones 3S17General Procedure for the Preparation of S.8-Diamino-5'-aryl(tethyl)-1/L*pyrazol-3-vl)-5/L+imidazol(4,5-d]pyridazine-2,3*pyrazol]-3(4L)-ones 4S12General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1/L+pyrazol-5-yl)pyrrolo[3,4-d]imidazol-4,6(1H,5H)-dione hydrates 5a,bS24General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1/L+pyrazol-5-yl)pyrrolo[3,4-d]imidazol-4,6(1H,5H)-dione hydrates 5a,bS24General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1/L-pyrazol-5-yl)pyrrolo[3,4-d]imidazol-4,6(1H,5H)-dione hydrates 5a,bS24General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1/L-pyrazol-5-yl)pyrrolo[3,4-d]imidazol-4,6(1H,5H)-dione hydrates 5a,bS25MR spectra of the synthesized compoundsS25Figure S1. D H NMR spectrum of H, 1'f and 1'f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S2. D H NMR spectrum of H, 1'f and 1'f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S28Figure S4. D H NMR spectrum of H, 1'f and 1'f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S4. D H NMR spectrum of H, 1'f and 1'f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S4. D H NMR spectrum of H in DMSO-d, at T = 303 K. Chemical shifts	EXPERIMENTAL SECTION	S6
General Procedure for the Preparation of Pyrazin-2(1/I)-ones.5.6-dicarbonitriles 156General Procedure for the Preparation of 5.4-S-Diamino-5'-aryl(ethyl)-14'-gyrazol-3-yl)-5H-indiazo[4,5-d]pyridazine-2,3'-pyrazol]-3(4H)-ones 3\$11General Procedure for the Preparation of 5'-Aryl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4H)-ones.5.6-dicarbonitrile\$22General Procedure for the Preparation of 2-(5-Aryl)-1/I-pyrazol-3-yl)-5H-indiazo[4,5-d]pyridazine-4,7-diamine hydrates 5a_b\$24General Procedure for the Preparation of 2-(5-Aryl)-1/I-pyrazol-3-yl)-5H-indiazo[4,5-d]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazine](2,3-\$25MR spectra of the synthesized compounds\$25Signe S1. D ¹⁴ NMR spectrum of 11, 1'f and 1'f' in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$26Figure S2. D ¹⁴ NMR spectrum of 12, 1'g and 1'f' in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$27Figure S3. D ¹⁴ NMR spectrum of 12, 1'g and 1'f' in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$28Figure S4. D ¹⁴ NMR spectrum of 12, 1'g and 1'f' in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$29Figure S5. D ¹⁴ NMR spectrum of 11, and 1'f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$29Figure S5. D ¹⁴ NMR spectrum of 11 h and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$31Figure S1. D ¹⁴ NMR spectrum of 11 h and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$	General	<u>S6</u>
General Procedure for the Preparation of 2-(5-Aryl(ethyl)-1 <i>H</i> -pyraze)-3-yl)-5 <i>H</i> -imidazo[4,5- <i>d</i>]pyridazine-4,7-diamine hydrate 2\$11General Procedure for the Preparation of 5.8-Diamino-5'-aryl(ethyl)-1.4'-dihydrospiro[pyrazine]2,3- <i>d</i>]pyridazine-2,3'-pyrazo][-3(<i>H</i>])-ones 5,6-dicarbonitrile\$22General Procedure for the Preparation of 2-(5-Aryl)-1 <i>H</i> -pyrazol-3-yl)-5 <i>H</i> -imidazo[4,5- <i>d</i>]pyridazine-4,7-diamine hydrates 5a,b\$24General Procedure for the Preparation of 2-(5-Aryl)-1 <i>H</i> -pyrazol-3-yl)-5 <i>H</i> -imidazo[4,5- <i>d</i>]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazine]2,3-\$24General Procedure for the Preparation of 2-(5-Aryl)-1 <i>H</i> -pyrazol-3-yl)-5 <i>H</i> -imidazo[4,5- <i>d</i>]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazine]2,3-\$25Mir Spectra of the synthesized compounds\$25Figure S1. D'H NMR spectrum of II, 1'f and 1''f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$26Figure S2. D'H NMR spectrum of Ig, 1'g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$27Figure S4. D'H NMR spectrum of Ig, 1'g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$28Figure S5. D'(1H) NMR spectrum of I g, 1'g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$29Figure S5. D'(1H) NMR spectrum of I h and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$31Figure S5. D'(1H) NMR spectrum of I h and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$32Figure S1. D'H NMR spectrum of I h and 1'h in DM	General Procedure for the Preparation of Pyrazin-2(1 <i>H</i>)-one-5,6-dicarbonitriles 1	<u>S6</u>
General Procedure for the Preparation of 5.8-Diamino-5'-aryl(ethyl)-1.4'-dihydrospiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-ones 3S17General Procedure for the Preparation of 5'-Aryl-1.4'-dihydrospiro[pyrazin5-2,3'-pyrazol]-3(4H)-ones,5-dicatronitrileS22General Procedure for the Preparation of 2-(3-Phenyll(and 1.3-diphenyl)-1/L-pyrazol-5-yl)pyriolo[3.4-d]mid2ol-4.6(11/5)(J)-dione hydrates 5a,bS24General Procedure for the Preparation of 2-(3-Phenyll(and 1.3-diphenyl)-1/L-pyrazol-5-yl)pyriolazine-4,7-diamine hydrates 2a,g from Spiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-ones 4a,bS25SteferencesS25NMR spectra of the synthesized compoundsS26Figure S1. D' H NNR spectrum of 1f, 1'f and 1''f in DMSO-d ₆ at T = 303 K. Chemical shifts are given in Ppm (Bruker spectrometer at 500.1 MHz).S26Figure S2. D' H NNR spectrum of 1g, 1'g and 1''g in DMSO-d ₆ at T = 303 K. Chemical shifts are given in Ppm (Bruker spectrometer at 500.1 MHz).S29Figure S5. D' H NNR spectrum of 1g, 1'g and 1''g in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S5. D' H NNR spectrum of 1g, 1'g and 1''g in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S5. D' H NNR spectrum of 1g, 1'g and 1''g in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S1. D' H NNR spectrum of of 1h and 1'h in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S32Figure S1. D' H NNR spectrum of of 1h and 1'h in DMSO-d ₆ at T = 303 K.S33Figure S1. D' H NNR spectrum of 1 I han 1'h in DMSO-d	General Procedure for the Preparation of 2-(5-Aryl(ethyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate 2	
General Procedure for the Preparation of 5'-Aryl-1.4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4H)-one-5,6-dicarbonitrileS22General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1/H-pyrazol-5-yl)pyrtolo[3,4-d]imidazol-4,6/1/diamine hydrates 2a,g from Spiro[pyrazine],2,3-S25General Procedure for the synthesized compoundsS25ReferencesS25Figure S1, 1D ¹ H NMR spectrum of 11, 1'f and 1''f in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S2, 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S3, D ² (1H) NMR spectrum of 1g, 1'g and 1''g in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S4, 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S4, 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S30Figure S5, ^{1D} C ¹ (H) NMR spectrum of 1g, 1'g and 1''g in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S5, ^{1D} C ¹ (H) NMR spectrum of 1h and 1'h in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S32Figure S1, D ¹ H NMR spectrum of 1 H and 1'h in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S33Figure S1, D ¹ H NMR spectrum of 1 H and 1'h in DMSO-d ₀ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).<	General Procedure for the Preparation of 5,8-Diamino-5'-aryl(ethyl)-1,4'-dihydrospiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-ones 3	
General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1 <i>H</i> -pyrazol-5-yl)pyrrolo[3,4- <i>d</i>]imidazol-4,6(1 <i>H</i> ,5 <i>H</i>)-dione hydrates 5a,b S24General Procedure for the Preparation of 2-(3-Aryl)-1 <i>H</i> -pyrazol-3-yl)-5 <i>H</i> -imidazo[4,5- <i>d</i>]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazin0[2,3-S25ReferencesS25 NMR spectra of the synthesized compounds S25Figure S1. 10 ¹ H NMR spectrum of If, 1'f and 1''f in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S2. 1D ¹ H NMR spectrum of If, 1'f and 1''f in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S27Figure S3. ¹⁰ C(¹ H) NMR spectrum of Ig, 1'g and 1''g in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S28Figure S5. 1D ¹ H NMR spectrum of Ig, 1'g and 1''g in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S5. 1D ¹ H NMR spectrum of Ig, 1'g and 1''g in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S7. 1D ¹ H NMR spectrum of I h and 1'h in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S1. 1D ¹ H NMR spectrum of 1 h and 1'h in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S34Figure S1. 1D ¹ H NMR spectrum of 1 h and 1'h in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S34Figure S1. 1D ¹ H NMR spectrum of 1 h and 1'h in DMSO- <i>d₆</i> at T = 303 K. Chemical shifts are given in ppm (Bruker spec	General Procedure for the Preparation of 5'-Aryl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4H)-one-5,6-dicarbonitrile	
General Procedure for the Preparation of 2-(5-Aryl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrates 2a.g from Spiro[pyrazino[2,3- d]pyridazine-2,3'-pyrazol]-3(4H)-ones 4a.bS25MR spectra of the synthesized compoundsS25Figure S1. 1D 'H NMR spectrum of If, 1f' and 1''f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S3. 1b' ('H) NMR spectrum of If, 1f' and 1''f in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S27Figure S3. 1b' ('H) NMR spectrum of Ig, 1'g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S4. 1D 'H NMR spectrum of Ig, 1'g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S30Figure S5. 1D' ('H) NMR spectrum of 1g, 1'g and 1''g in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S5. 1D' H NMR spectrum of 1 h and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S32Figure S8. 1D 'H NMR spectrum of 1 h and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S33Figure S10. 2D 'H-H COSY NMR spectrum of of 1 h and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S34Figure S13. 1D 'H NMR spectrum of 1 i, 1' and 1'' in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S35Figure S14. DD 'H-MR spectrum of 1 i and 1'h in DMSO-d, at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S34 <t< td=""><td>General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1H-pyrazol-5-yl)pyrrolo[3,4-d]imidazol-4,6(1H,5H)-dione hydrates 5a,b</td><td>S24</td></t<>	General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1H-pyrazol-5-yl)pyrrolo[3,4-d]imidazol-4,6(1H,5H)-dione hydrates 5a,b	S24
d]pyridazine-2.3'-pyrazol]-3(4H)-ones 4a,bS25ReferencesS25NMR spectra of the synthesized compoundsS26Figure S1. 1D 'H NMR spectrum of 1f, 1f and 1'f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S2. 1D 'H NMR spectrum of 1 f, 1f and 1'f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S27Figure S3. 1D 'H NMR spectrum of 1 g, 1'g and 1'g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S28Figure S4. 1D 'H NMR spectrum of 1 g, 1'g and 1'g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S30Figure S5. 1D 'H NMR spectrum of 1 g, 1'g and 1'g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S7. 1D 'H NMR spectrum of 1 h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S32Figure S10. 2D 'H-1'H NMR spectrum of of 1 h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S33Figure S11. D' H-MBC NMR spectrum of of 1 h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S33Figure S12. D' H-1'H CMBC NMR spectrum of 1 h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S34Figure S12. D' H-1'H CMBC NMR spectrum of 1 h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S13. D' H NMR spectrum of 1 h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S14. D' H NMR spectrum of 1 h and 1'h in DM	General Procedure for the Preparation of 2-(5-Arvl)-1H-pyrazol-3-vl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazino	[2.3-
ReferencesS25NMR spectra of the synthesized compoundsS26Figure S1. 1D ¹ H NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S26Figure S2. 1D ¹ H NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S27Figure S3. ¹⁵ C ¹ H, NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S4. 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S30Figure S4. ¹⁵ C ¹ H, NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S31Figure S5. ¹⁵ C ¹ H, NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S32Figure S9. ¹⁵ C ¹ H, NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S33Figure S1. D ¹¹ H NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K.S48S35Figure S1. D ¹¹ H ¹¹ C OXY NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K.S5S35Figure S1. D ¹¹ H ¹¹ C OXY NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K.S6S36Figure S1. D ¹¹ H NMR spectrum of 11, 1' and 1'' in DMSO- d_6 at T = 303 K.S36S35Figure S1. ¹² C ¹⁴ H NMR spectrum of 11, 1' and 1'' in DMSO- d_6 at T = 303 K.S36S36Figure S1. D ¹¹ H NMR spectrum of 11, 1' and 1'' in	<i>d</i>]pvridazine-2.3'-pvrazol]-3(4 <i>H</i>)-ones 4a.b	S25
NMR spectra of the synthesized compounds326Figure S1. 1D 'H NMR spectrum of 1I, 1I' and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S26Figure S3. ¹⁵ C {'H} NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S27Figure S4. 1D 'H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S28Figure S4. 1D 'H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S30Figure S5. 1D 'H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S31Figure S7. 1D 'H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S32Figure S9. ¹⁰ C {'H} NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S33Figure S1. 2D 'H- ¹⁰ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S1. 2D 'H- ¹⁰ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S1. 2D 'H- ¹⁰ C HMBC NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S1. 2D 'H- ¹⁰ C HMBC NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S1. 1D 'H NMR spectrum of 1i hand 1'h in DMSO- d_6 at T = 303 K.S36Figure S13. 1D 'H NMR spectrum of 1i hand 1'h in DMSO- d_6 at T = 303 K.S36Figure S14. 1D 'H NMR spectrum of 1i, 1'' and 1'' in DMSO- d_6 at T =	References	<u></u> <u>S25</u>
Figure S1. 1D 'H NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).526Figure S2. 1D 'H NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).527Figure S3. 1C {'H} NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).528Figure S4. 1D 'H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).530Figure S5. 1D 'H NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).531Figure S7. 1D 'H NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).532Figure S8. 1D 'H NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).533Figure S1. 2D 'H-1'C OSY NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).534Figure S1. 2D 'H-1'C OSY NMR spectrum of 0 f h and 1'h in DMSO- d_6 at T = 303 K.535Figure S1. 2D 'H-1'C MMS contram of 0 f h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).536Figure S1. 1D 'H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).536Figure S1. 1D 'H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz). </td <td>NMR spectra of the synthesized compounds</td> <td><u> </u></td>	NMR spectra of the synthesized compounds	<u> </u>
Figure S2.ID ¹ H NMR spectrum of 1f , 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S27Figure S3. ^{1/2} C{ ¹ H} NMR spectrum of 1f , 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S28Figure S4.ID ¹ H NMR spectrum of 1g , 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S30Figure S5.ID ¹ H NMR spectrum of 1g , 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S31Figure S7.ID ¹ H NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S32Figure S9. ¹⁰ C{ ¹ H} NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S33Figure S10.2D ¹ H- ¹ C CMSC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S33Figure S11.2D ¹ H- ¹ C CMSC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S34Figure S12.2D ¹ H- ¹ C CMSC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S36S36Figure S13.1D ¹ H NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K.S36S37Figure S14.1D ¹ H NMR spectrum of 1i , 1'i and 1'' in DMSO- d_6 at T = 303 K.S36S37Figure S13.1D ¹ H NMR spectrum of 1i , 1'i and 1'' in DMSO	Figure S1. 1D ¹ H NMR spectrum of 1f. 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	<u> </u>
Figure S3. $^{13}C\{^{1H}\}$ NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S28Figure S4. ID 'H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S29Figure S5. ID 'H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in thz (Bruker spectrometer at 500.1 MHz).S30Figure S6. $^{13}C\{^{11}H\}$ NMR spectrum of 1 h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in thz (Bruker spectrometer at 500.1 MHz).S31Figure S7. ID 'H NMR spectrum of of h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S33Figure S10. 2D 'H-H COSY NMR spectrum of of h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S34Figure S11. 2D 'H-1 ¹³ C HMBC NMR spectrum of of h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S12. 2D IH-1 ¹³ C HSQC NMR spectrum of of h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S13. 1D 'H NMR spectrum of 1, 1' and 1'' in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S39Figure S14. 1D 'H NMR spectrum of 1, 1' and 1'' in DMSO- d_6 at T = 303 K. Chemical shifts are given in thz (Bruker spectrometer at 500.1 MHz).S39Figure S15. ID 'H NMR spectrum of 1, 1' and 1'' in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S39Figure S15. $^{10}C HB$ NMR spectrum of 1, 1' and 1'' in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S40Figure S15. $^{10}C HB$ NMR spectrum of 1, 1' and 1'' in DM	Figure S2. 1D ¹ H NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S27
Figure S4. 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$29Figure S5. 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).\$30Figure S7. 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$31Figure S7. 1D ¹ H NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Ppm (Bruker spectrometer at 500.1 MHz).\$32Figure S9. ¹ D ¹ H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).\$33Figure S10. 2D ¹ H ¹ H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).\$34Figure S12. 2D ¹ H ¹ H COSY NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.\$35Figure S12. 2D ¹ H ¹ H COSY NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.\$36Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$38Figure S14. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$39Figure S15. ¹³ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$39Figure S15. ¹³ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$40Figure S16. ¹⁰ C {	Figure S3. ¹³ C{ ¹ H} NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S28
Figure S5. 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).\$30Figure S6. ¹³ C { ¹ H} NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$32Figure S8. 1D ¹ H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).\$33Figure S9. ¹³ C { ¹ H} NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).\$34Figure S10. 2D ¹ H- ¹³ C NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.\$35Figure S11. 2D ¹ H- ¹³ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.\$36Figure S12. 2D ¹ H- ¹³ C HMS NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.\$37Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$38Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$39Figure S14. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$39Figure S13. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).\$39Figure S15. ¹³ C { ¹¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).\$40Figure S14. D ¹⁴ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts a	Figure S4. 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S29
Figure S6. ^{13}C { ^{11}H } NMR spectrum of 1g, 1'g and 1'g in DMSO-d ₆ at T = 303 K. (Bruker spectrometer at 125.7 MHz).S31Figure S7. 1D ¹ H NMR spectrum of 1h and 1'h in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S33Figure S8. 1D ^{11}H NMR spectrum of 1h and 1'h in DMSO-d ₆ at T = 303 K. (Bruker spectrometer at 125.7 MHz).S33Figure S10. 2D ¹ H- ¹ H NMR spectrum of of 1h and 1'h in DMSO-d ₆ at T = 303 K. (Bruker spectrometer at 125.7 MHz).S34Figure S10. 2D ¹ H- ¹⁴ C HMBC NMR spectrum of of 1h and 1'h in DMSO-d ₆ at T = 303 K.S35Figure S11. 2D ¹ H- ¹⁴ C HMBC NMR spectrum of of 1h and 1'h in DMSO-d ₆ at T = 303 K.S36Figure S12. 2D 1H- ¹³ C HMQC NMR spectrum of of 1h and 1'h in DMSO-d ₆ at T = 303 K.S36Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S14. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S15. ^{13}C (¹ H) NMR spectrum of 1j and 1'j in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S39Figure S15. ^{13}C (¹ H) NMR spectrum of 1j and 1'j in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S40Figure S15. ^{13}C (¹ H) NMR spectrum of 1j and 1'j in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S15. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO-d ₆ at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S42<	Figure S5. 1D ¹ H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S30
Figure S7. 1D ¹ H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S32Figure S8. 1D ¹ H NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S33Figure S9. $^{13}C\{^{1}H\}$ NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S34Figure S10. 2D ¹ H- ¹ H COSY NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S12. 2D 1H- ¹³ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S14. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in hz (Bruker spectrometer at 500.1 MHz).S39Figure S15. ¹³ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S40Figure S15. ¹³ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S41Figure S15. ¹³ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S14. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S41Figure S15. ¹³ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S20. 2D ¹⁴ H NMR spectr	Figure S6. ¹³ C{ ¹ H} NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S31
Figure S8. 1D ¹ H NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S33Figure S10. 2D ¹ H- ¹ H COSY NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. (Bruker spectrometer at 125.7 MHz).S35Figure S11. 2D ¹ H- ¹³ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S12. 2D ¹ H- ¹³ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S37Figure S13. 1D ¹ H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S37Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S14. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S39Figure S15. 1 ¹² C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in the (Bruker spectrometer at 500.1 MHz).S40Figure S16. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S19. 1 ¹² C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in thz (Bruker spectrometer at 500.1 MHz).S42Figure S19. 1 ²⁰ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in thz (Bruker spectrometer at 500.1 MHz).S42Figure S19. 1 ²⁰ C { ¹ H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S43Figure S20. 2D ¹ H- ¹⁴ C OSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Fi	Figure S7. 1D ¹ H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S32
Figure S9. 13 C [1 H] NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S34Figure S10. 2D 11 H- ¹³ C CMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S11. 2D 11 H- ¹³ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S13. 1D 11 H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S14. 1D 11 H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S39Figure S15. 13 C (11 H) NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S40Figure S16. 1D 11 NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S18. 13 C (11 H) NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in thz (Bruker spectrometer at 500.1 MHz).S41Figure S18. 13 C (11 H) NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S19. 2D 11 H- ¹⁴ C CMSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S20. 2D 11 H- ¹³ C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S21. 2D 1H- 13 C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S22. 1D 11 H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S22. 1D 11 -H COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T	Figure S8. 1D ¹ H NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S33
Figure S10. 2D ¹ H- ¹ H COSY NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S35Figure S11. 2D ¹ H- ¹³ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S12. 2D 1H- ¹³ C HSQC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S37Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K.S38Figure S14. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Pm (Bruker spectrometer at 500.1 MHz).S39Figure S15. ¹³ C (¹ H) NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S40Figure S16. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in pm (Bruker spectrometer at 500.1 MHz).S41Figure S17. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S18. ¹³ C (¹ H) NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S43Figure S19. 2D ¹ H- ¹ H COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S20. 2D ¹ H- ¹³ C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 2D ¹ H- ¹³ C HSQC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S21. 2D ¹ H- ¹³ C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S21. 2D ¹ H- ¹³ C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 2D ¹ H- ¹³ C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46<	Figure S9. ¹³ C{ ¹ H} NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S34
Figure S11. 2D $^{11-12}$ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S36Figure S12. 2D $^{11-13}$ C HSQC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S37Figure S13. 1D 11 H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S14. 1D 11 H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S39Figure S15. 13 C { 11 H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S40Figure S16. 1D 11 H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S17. 1D 11 H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S19. 2D 11 H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S43Figure S20. 2D 11 H 11 C OSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S21. 2D 11 H 11 C NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 1D 11 H NMR spectrum of 1i, 1'i an DMSO- d_6 at T = 303 K.S46Figure S21. 2D 11 H 13 C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S21. 1D 11 H NMR spectrum of 1i, 1'i an DMSO- d_6 at T = 303 K.S46Figure S22. 1D 11 H NMR spectrum of 1i, 1'k and 1''k in DMSO- d_6 at T = 303 K.S47Figure S23. 1D 11 N	Figure S10. 2D ¹ H- ¹ H COSY NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.	S35
Figure S12. 2D 1H-13C HSQC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.S37Figure S13. 1D 14 NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S14. 1D 14 NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S39Figure S15. 13C {1H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S40Figure S16. 1D 14 NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S17. 1D 14 NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S18. 13C {1H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S19. 2D 1H-14C OSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S20. 2D 1H-13C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 2D 1H-13C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S22. 1D 1H-13C HSQC NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K.S46Figure S23. 1D 1H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K.S47Figure S23. 1D 14 NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K.S46Figure S24. 13C {1H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K.S47Figure S24. 13C {14} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K.S48<	Figure S11. 2D ¹ H- ¹³ C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.	S36
Figure S13. ID 'H NMR spectrum of Ii, 1' and 1'' in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S38Figure S14. ID 'H NMR spectrum of Ii, 1' and 1'' in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S39Figure S15. $^{13}C{}^{1H}$ NMR spectrum of Ii, 1' in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S40Figure S16. ID 'H NMR spectrum of Ij and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S17. ID 'H NMR spectrum of I j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S18. $^{13}C{}^{1H}$ NMR spectrum of I j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S43Figure S19. 2D 'H-'H COSY NMR spectrum of I j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S20. 2D 'H-'H COSY NMR spectrum of I j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S21. 2D 1H-'I3C HMBC NMR spectrum of I j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S22. 1D 'H NMR spectrum of I k, 1'k and 1'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. $^{13}C{}^{1H}$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given	Figure S12. 2D 1H- ¹³ C HSQC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.	S37
Figure S14. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at 1 = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S39Figure S15. ${}^{13}C{}^{1H}$ NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. (Bruker spectrometer at 125.7 MHz).S40Figure S16. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S17. 1D ¹ H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S18. ${}^{13}C{}^{1H}$ NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. (Bruker spectrometer at 125.7 MHz).S43Figure S19. 2D ${}^{1}H{}^{-1}H$ COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S20. 2D ${}^{1}H{}^{-1}H$ COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 2D 1H- ${}^{13}C$ HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S22. 1D ${}^{1}H$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K.S46Figure S23. 1D ${}^{1}H$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S47Figure S24. ${}^{13}C{}^{1}H$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S47Figure S25. 1D ${}^{1}H$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S25. 1D ${}^{1}H$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49 <td>Figure S13. 1D ¹H NMR spectrum of 1i, 1'i and 1''i in DMSO-d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).</td> <td>S38</td>	Figure S13. 1D ¹ H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S38
Figure S15. ${}^{13}C{}^{11}$ NMR spectrum of 11, 11 and 111 in DMSO- a_6 at $T = 303$ K (Bruker spectrometer at 125.7 MHz).S40Figure S16. 1D 11 NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S17. 1D 11 NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S18. ${}^{13}C{}^{11}$ NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K (Bruker spectrometer at 125.7 MHz).S43Figure S19. 2D 11 H- 11 COSY NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K.S44Figure S20. 2D 11 H- 13 C HMBC NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K.S45Figure S21. 2D 11 H- 13 C HMBC NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K.S46Figure S22. 1D 11 H- 13 C HMBC NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K.S46Figure S22. 1D 11 H- 13 C HMBC NMR spectrum of 1j and 1'j in DMSO- a_6 at $T = 303$ K.S46Figure S23. 1D 11 H NMR spectrum of 1k, 1'k and 1''k in DMSO- a_6 at $T = 303$ K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D 11 H NMR spectrum of 1k, 1'k and 1''k in DMSO- a_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S25. 1D 11 H NMR spectrum of 1k in DMSO- a_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 11 H NMR spectrum of 1l in DMSO- a_6 at $T = 303$ K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49 <t< td=""><td>Figure S14. ID ¹H NMR spectrum of II, I'I and I''I in DMSO-d_6 at $I = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).</td><td>S39</td></t<>	Figure S14. ID ¹ H NMR spectrum of II, I'I and I''I in DMSO- d_6 at $I = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S39
Figure S16. 1D 'H NMR spectrum of 1j and 1'j in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S41Figure S17. 1D 'H NMR spectrum of 1j and 1'j in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S42Figure S18. ${}^{13}C{}^{1H}$ NMR spectrum of 1j and 1'j in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S43Figure S19. 2D 'H-'H COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at $T = 303$ K.S44Figure S20. 2D 'H-'BC NMR spectrum of 1j and 1'j in DMSO- d_6 at $T = 303$ K.S45Figure S21. 2D 1H-'BC NMR spectrum of 1j and 1'j in DMSO- d_6 at $T = 303$ K.S46Figure S22. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. ${}^{13}C{}^{1H}$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S47Figure S25. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S25. 1D 'H NMR spectrum of 1l in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 'H NMR spectrum of 1l in DMSO- d_6 at $T = 303$ K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49	Figure S15. ¹⁵ C{ ¹ H} NMR spectrum of II, I'I and I''I in DMSO- a_6 at I = 303 K (Bruker spectrometer at 125.7 MHz).	S40
Figure S17. 1D 'H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 300.1 MHz).S42Figure S18. ${}^{13}C{}^{1}H{}$ NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S43Figure S19. 2D 'H- ¹ H COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S20. 2D 'H- ¹³ C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 2D 1H- ¹³ C HSQC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S22. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. ${}^{13}C{}^{1}H{}$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S25. 1D 'H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 'H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 'H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 'H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S50	Figure S16. 1D 'H NMR spectrum of 1 and 1' in DMSO- a_6 at $T = 303$ K. Chemical shifts are given in Eq. (Bruker spectrometer at 500.1 MHz).	541 S42
Figure S18.C $\{11\}$ HMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S44Figure S19. 2D ¹ H- ¹ H COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S44Figure S20. 2D ¹ H- ¹³ C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 2D 1H- ¹³ C HSQC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S22. 1D ¹ H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D ¹ H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. ¹³ C { ¹ H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S49Figure S25. 1D ¹ H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49S50	Figure S17. 1D 'H NWR spectrum of 1 and 1 i in DWSO- u_6 at T = 303 K. Chemical sints are given in Hz (Bruker spectrometer at 500.1 WHz). Figure S18 ¹³ C (1H) NMP spectrum of 1 and 1'i in DMSO d at T = 303 K (Bruker spectrometer at 125.7 MHz)	542 \$43
Figure S12. 2D 1H-13C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.Figure S21. 2D 1H-13C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S45Figure S21. 2D 1H-13C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S22. 1D 1H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D 1H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. 13C {1H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 1H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 1H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49Figure S25. 1D 1H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S50	Figure S10. C_{11} NMR spectrum of 1 and 1 in DMSO- <i>u</i> ₆ at $T = 303$ K (Druker spectrum let at 125.7 MHZ).	S43
Figure S20. 2DIIC HMBC HMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S21. 2D1H-13C HSQC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.S46Figure S22. 1D1H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D1H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. 13C {1H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S49Figure S25. 1D1H NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49	Figure S10: 2D 11-11 COST With spectrum of 1 and 1' in DMSO- d_c at T = 303 K. Figure S20 2D ¹ H- ¹³ C HMBC NMR spectrum of 1 and 1' in DMSO- d_c at T = 303 K.	S45
Figure S22. 1D ¹ H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S47Figure S23. 1D ¹ H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. ¹³ C { ¹ H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S49Figure S25. 1D ¹ H NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S50	Figure S21, 2D 1H ⁻¹³ C HSOC NMR spectrum of 1 i and 1'i in DMSO- d_c at T = 303 K	S46
Figure S23. 1D ¹ H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).S48Figure S24. ¹³ C{ ¹ H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in the spectrometer at 125.7 MHz).S49Figure S25. 1D ¹ H NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S49S50	Figure S21, 2D III \sim End \sim Figure S21, 2D III \sim End \sim	S47
Figure S24. ${}^{13}C{}^{1}H$ NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).S49Figure S25. 1D ${}^{1}H$ NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).S50	Figure S23. 1D ¹ H NMR spectrum of 1k. 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S48
Figure S25. 1D ¹ H NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz). S50	Figure S24. ¹³ C{ ¹ H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S49
	Figure S25. 1D ¹ H NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S50

Figure S26. 1D ¹ H NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S51
Figure S27. ¹³ C{ ¹ H} NMR spectrum of 1l in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S52
Figure S28. 1D ¹ H NMR spectrum of 2a in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S53
Figure S29. 1D ¹ H NMR spectrum of 2a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S54
Figure S30. ¹³ C{ ¹ H} NMR spectrum of 2a in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S55
Figure S31. 1D ¹ H NMR spectrum of 2b and 2'b in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S56
Figure S32. 1D ¹ H NMR spectrum of 2b and 2'b in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S57
Figure S33. ¹³ C{ ¹ H} NMR spectrum of 2b and 2'b in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S58
Figure S34. 1D ¹ H NMR spectrum of 2c in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S59
Figure S35. 1D ¹ H NMR spectrum of 2c in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S60
Figure S36. ¹³ C{ ¹ H} NMR spectrum of 2c in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S61
Figure S37. 1D ¹ H NMR spectrum of 2d in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S62
Figure S38. 1D ¹ H NMR spectrum of 2d in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S63
Figure S39. ¹³ C{ ¹ H} NMR spectrum of 2d in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S64
Figure S40. 2D ¹ H- ¹ H COSY NMR spectrum of 2d in DMSO- d_6 at T = 303 K.	S65
Figure S41. 2D ¹ H- ¹³ C HMBC NMR spectrum of 2d in DMSO- d_6 at T = 303 K.	S66
Figure S42. 2D 1H- ¹³ C HSQC NMR spectrum of 2d in DMSO- d_6 at T = 303 K.	S67
Figure S43. 1D ¹ H NMR spectrum of 2e in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S68
Figure S44. 1D ¹ H NMR spectrum of 2e in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S69
Figure S45. ¹³ C{ ¹ H} NMR spectrum of 2e in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S70
Figure S46. 1D ¹ H NMR spectrum of 2f and 2'f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S71
Figure S47. 1D ¹ H NMR spectrum of 2f and 2'f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S72
Figure S48. ¹³ C{ ¹ H} NMR spectrum of 2f and 2'f in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S73
Figure S49. 1D ¹ H NMR spectrum of 2g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S74
Figure S50. 1D ¹ H NMR spectrum of 2g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S75
Figure S51. ¹³ C{ ¹ H} NMR spectrum of 2g in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S76
Figure S52. 1D ¹ H NMR spectrum of 2h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S77
Figure S53. 1D ¹ H NMR spectrum of 2h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S78
Figure S54. ¹³ C{ ¹ H} NMR spectrum of 2h in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S79
Figure S55. 1D ¹ H NMR spectrum of 2i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S80
Figure S56. 1D ¹ H NMR spectrum of 2i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S81
Figure S57. ¹³ C{ ¹ H} NMR spectrum of 2i in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S82
Figure S58. 1D ¹ H NMR spectrum of 2j and 2'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S83
Figure S59. 1D ¹ H NMR spectrum of 2j and 2'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S84
Figure S60. ¹³ C{ ¹ H} NMR spectrum of 2j and 2'j in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S85
Figure S61. 1D ¹ H NMR spectrum of 2k and 2'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S86
Figure S62. 1D ¹ H NMR spectrum of 2k and 2'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S87
Figure S63. ¹³ C{ ¹ H} NMR spectrum of 2k and 2'k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S88

Figure S64. 1D ¹ H NMR spectrum of 2l and 2'l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S89
Figure S65. 1D ¹ H NMR spectrum of 2l and 2'l in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S90
Figure S66. ¹³ C{ ¹ H} NMR spectrum of 2l and 2'l in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S91
Figure S67. 1D ¹ H NMR spectrum of 3a in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S92
Figure S68. 1D ¹ H NMR spectrum of 3a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S93
Figure S69. ¹³ C{ ¹ H} NMR spectrum of 3a in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S94
Figure S70. 1D ¹ H NMR spectrum of 3b in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S95
Figure S71. 1D ¹ H NMR spectrum of 3b in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S96
Figure S72. ¹³ C{ ¹ H} NMR spectrum of 3b in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S97
Figure S73. 1D ¹ H NMR spectrum of 3c in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S98
Figure S74. 1D ¹ H NMR spectrum of 3c in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S99
Figure S75. ¹³ C{ ¹ H} NMR spectrum of 3c in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S100
Figure S76. 1D ¹ H NMR spectrum of 3d in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S101
Figure S77. 1D ¹ H NMR spectrum of 3d in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S102
Figure S78. ¹³ C{ ¹ H} NMR spectrum of 3d in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S103
Figure S79. 2D ¹ H- ¹ H COSY NMR spectrum of 3d in DMSO- d_6 at T = 303 K.	S104
Figure S80. 2D ¹ H- ¹³ C HMBC NMR spectrum of 3d in DMSO- d_6 at T = 303 K.	S105
Figure S81. 2D ¹ H- ¹⁵ N HMBC NMR spectrum of 3d in DMSO- d_6 at T = 303 K.	S106
Figure S82. 2D 1H- ¹³ C HSQC NMR spectrum of 3d in DMSO-d ₆ at $T = 303$ K.	S107
Figure S83. 1D ¹ H NMR spectrum of 3e in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S108
Figure S84. 1D ¹ H NMR spectrum of 3e in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S109
Figure S85. ¹³ C{ ¹ H} NMR spectrum of 3e in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S110
Figure S86. 1D ¹ H NMR spectrum of 3f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S111
Figure S87. 1D ¹ H NMR spectrum of 3f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S112
Figure S88. ¹³ C{ ¹ H} NMR spectrum of 3f in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S113
Figure S89. 1D ¹ H NMR spectrum of 3g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S114
Figure S90. 1D ¹ H NMR spectrum of 3g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S115
Figure S91. ¹³ C{ ¹ H} NMR spectrum of 3g in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S116
Figure S92. 1D ¹ H NMR spectrum of 3h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S117
Figure S93. 1D ¹ H NMR spectrum of 3h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S118
Figure S94. ¹³ C{ ¹ H} NMR spectrum of 3h in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S119
Figure S95. 1D ¹ H NMR spectrum of 3i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S120
Figure S96. 1D ¹ H NMR spectrum of 3i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S121
Figure S97. ¹³ C{ ¹ H} NMR spectrum of 3i in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S122
Figure S98. 1D ¹ H NMR spectrum of 3j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S123
Figure S99. 1D ¹ H NMR spectrum of 3j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S124
Figure S100. ${}^{13}C{}^{1}H{}$ NMR spectrum of 3j in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S125
Figure S101. 1D ¹ H NMR spectrum of 3 k and 3'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S126

Figure S102. 1D ¹ H NMR spectrum of 3k and 3'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S127
Figure S103. ¹³ C{ ¹ H} NMR spectrum of 3k and 3'k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S128
Figure S104. 1D ¹ H NMR spectrum of 3I in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S129
Figure S105. 1D ¹ H NMR spectrum of 3I in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S130
Figure S106. ¹³ C{ ¹ H} NMR spectrum of 3 l in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S131
Figure S107. 1D ¹ H NMR spectrum of 4a in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S132
Figure S108. 1D ¹ H NMR spectrum of 4a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S133
Figure S109. ¹³ C{ ¹ H} NMR spectrum of 4a in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S134
Figure S110. 1D ¹ H NMR spectrum of 4b in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S135
Figure S111. 1D ¹ H NMR spectrum of 4b in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S136
Figure S112. ¹³ C{ ¹ H} NMR spectrum of 4b in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S137
Figure S113. 1D ¹ H NMR spectrum of 4c in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S138
Figure S114. 1D ¹ H NMR spectrum of 4c in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S139
Figure S115. ¹³ C{ ¹ H} NMR spectrum of 4c in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S140
Figure S116. 1D ¹ H NMR spectrum of 5a in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S141
Figure S117. 1D ¹ H NMR spectrum of 5a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S142
Figure S118. ¹³ C{ ¹ H} NMR spectrum of 5a in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S143
Figure S119. 1D ¹ H NMR spectrum of 5b in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).	S144
Figure S120. 1D ¹ H NMR spectrum of 5b in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).	S145
Figure S121. ¹³ C{ ¹ H} NMR spectrum of 5b in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).	S146

EXPERIMENTAL SECTION

General. Melting points were determined on a Boetius melting point apparatus. IR spectra were recorded on a Tensor 27 (Bruker) FT-IR spectrometer with KBr pellets. The elemental analysis was carried out on a CHNS analyzer EuroEA3028-HT-OM (Eurovector SpA, Italy). The samples were weighed on Sartorius CP2P (Germany) microbalances in tin capsules. Callidus 4.1 software was used to perform quantitative measurements and evaluate the data received. NMR experiments were carried out with Bruker spectrometers AVANCE*III*-500 (500 MHz for ¹H, 126 MHz for ¹³C, and 51 MHz for ¹⁵N, respectively) equipped with a pulsed gradient unit capable of producing magnetic field pulse gradients in the z-direction of 53.5 G cm⁻¹. All the spectra were obtained in a 5-mm gradient inverse broad band probehead. Chemical shifts are reported on the δ (ppm) scale and are relative to the residual ¹H and ¹³C signal of DMSO- d_6 (δ 2.50 ppm for ¹H and 39.5 ppm for ¹³C). ¹⁵N chemical shifts were referred to the ¹⁵N signal of MeCN (δ 235.50 ppm). The pulse programs for all NMR experiments were taken from the Bruker software library. The relative error in determining the exact mass values was no more than 3 ppm. Silica gel "Kieselgel, 0.060-0.200 mm, 40 A" (Acros) was used for column chromatography. All solvents were of regent grade and were dried and distilled before use.

General Procedure for the Preparation of Pyrazin-2(1*H*)-one-5,6-dicarbonitriles 1. Pyrazin-2(1*H*)-one-5,6-dicarbonitriles 1 were synthesized according to the published procedure.¹To a stirred solution of diaminomaleonitrile (9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) was added corresponding ethyl 2,4-dioxo-4-aryl(ethyl)lbutanoate (9.08 mmol, 1.0 equiv) at room temperature and the mixture was stirred at rt for 3 days. Precipitate produced during the reaction was filtered, washed by chloroform (3×5 mL) and was dried in air to give product as a tautomeric mixture $1 \neq 1'$.

3-(2-(Phenyl)-2-oxoethyl)pyrazin-2(1*H*)-one-5,6-dicarbonitrile (1a) and (*E*)-3-(2-(phenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1*H*)-one-5,6-dicarbonitrile (1'a). The compound was obtained by the same procedure starting from diaminomaleonitrile (0.98 g, 9.08 mmol, 1.0 equiv) and ethyl 2,4-dioxo-4-phenylbutanoate (2.0 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Data for 1b and 1'b: yield 2.23 g, 93%; brown solid; mp 265–266 °C (compare with lit. 242–244 °C¹, 243 °C², >300 °C³). Spectroscopic data for the title compound were consistent with those reported in the literature.¹⁻³

3-(2-(2-Chlorophenyl)-2-oxoethyl)pyrazin-2(1*H*)-one-5,6-dicarbonitrile (1b) and (*E*)-3-(2-(2chlorophenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1*H*)-one-5,6-dicarbonitrile (1'b). The compound was obtained by the same procedure starting from diaminomaleonitrile (0.98 g, 9.08 mmol, 1.0 equiv) and ethyl 4-(4-chlorophenyl)-2,4-dioxobutanoate (2.31 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Data for 1b and 1'b: yield 2.44 g, 90%; brown solid; mp 283–284 °C (compare with lit. 262–264 °C¹, 271–272 °C³). Spectroscopic data for the title compound were consistent with those reported in the literature.^{1,3}

3-(2-(2-Bromophenyl)-2-oxoethyl)pyrazin-2(1*H*)-one-5,6-dicarbonitrile (1c) and (*E*)-3-(2-(2-bromophenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1*H*)-one-5,6-dicarbonitrile (1'c). The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 4-(4-bromophenyl)-2,4-dioxobutanoate (2.72 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Data for 1c and 1'c: yield 2.78 g, 89%; yellow solid; mp 278–279 °C (compare with lit. 270–272 °C¹). Spectroscopic data for the title compound were consistent with those reported in the literature.¹

3-(2-(*P*-tolyl)-2-oxoethyl)pyrazin-2(1*H*)-one-5,6-dicarbonitrile (1d) and (*E*)-3-(2-(*p*-tolyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1*H*)-one-5,6-dicarbonitrile (1'd). The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 2,4-dioxo-4-(*p*-tolyl)butanoate (2.13 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Data for 1d and 1'd: yield 2.90 g, 93%; brown solid; mp 279–280 °C (compare with lit. 267 °C², 264–266 °C³). Spectroscopic data for the title compound were consistent with those reported in the literature.^{2, 3}

3-(2-(4-Methoxyphenyl)-2-oxoethyl)pyrazin-2(1*H*)-one-5,6-dicarbonitrile (1e) and (*E*)-3-(2-(4-methoxyphenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1*H*)-one-5,6-dicarbonitrile (1'e). The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 4-(4-methoxyphenyl)-2,4-dioxobutanoate (2.27 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Data for 1e and 1'e: yield 2.46 g, 92%; brown solid; mp 266–267 °C (compare with lit. 266 °C²). Spectroscopic data for the title compound were consistent with those reported in the literature.²

3-(2-(4-Hydroxyphenyl)-2-oxoethyl)pyrazin-2(1*H***)-one-5,6-dicarbonitrile (1f), (***E***)-3-(2-(4-hydroxyphenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1***H***)-one-5,6-dicarbonitrile (1'f) and (***Z***)-3-(2-(4-hydroxyphenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1***H***)-one-5,6-dicarbonitrile (1'f) were obtained and characterized as the mixture of tautomers in percentage ratio 45:32:23, respectively. The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 4-(4-hydroxyphenyl)-2,4-dioxobutanoate (2.14 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Yield 2.21 g, (87%); brown powder; mp 240–241 °C. IR (KBr, cm⁻¹): v_{max} 3439, 3347, 3066, 2896, 2230, 1698, 1629, 1590, 1543, 1519, 1478, 1458, 1355, 1247, 1207, 1178, 1157, 1118, 1057, 852, 809, 648, 513. Anal. Calcd. for C₁₄H₈N₄O₃: C, 60.00; H, 2.88; N, 19.99. Found: C, 60.04; H, 2.85; N, 19.95%. NMR data for 1f**: ¹H NMR (500.1 MHz, DMSO-*d*₆): *δ* 7.88 (d, *J* = 8.8 Hz, 2H, H3/H5-Ar), 4.41 (s, 2H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): *δ* 193.4 (Cβ), 162.5 (C4-Ar), 160.5 (C2-Pyr), 152.2 (C3-Pyr), 130.9 (C2/C6-Ar), 129.9 (C6-

Pyr), 127.8 (C1-Ar), 115.7 (CN6-Pyr), 115.4 (C3/C5-Ar), 114.9 (C5-Pyr), 113.7 (CN5-Pyr), 43.1 (Cα). NMR data for **1'f** (*trans*-(N4Pyr-C5Pyr-Cα-Cβ)): ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 10.45 (s, 1H, N(4)H), 7.81 (d, *J* = 8.8 Hz, 2H, H2/H6-Ar), 6.87 (d, *J* = 8.8 Hz, 2H, H3/H5-Ar), 6.61 (s, 1H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 176.9 (Cβ), 162.0 (C4-Ar), 158.6 (C2-Pyr), 154.6 (C3-Pyr), 129.3 (C6-Pyr), 129.1 (C2/C6-Ar), 127.8 (C1-Ar), 115.7 (C3/C5-Ar), 115.1 (CN5-Pyr), 113.9 (C5-Pyr), 113.7 (CN6-Pyr), 90.9 (Cα). NMR data for **1''f** (*cis*-(N4Pyr-C5Pyr-Cα-Cβ)): ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 7.81 (d, *J* = 8.8 Hz, 2H, H2/H6-Ar), 6.88 (d, *J* = 8.8 Hz, 2H, H3/H5-Ar), 6.01 (s, 1H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 7.81 (d, *J* = 8.8 Hz, 2H, H2/H6-Ar), 6.88 (d, *J* = 8.8 Hz, 2H, H3/H5-Ar), 6.01 (s, 1H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): in this case the signals cannot be accurately assigned.

3-(2-(4-Nitrophenyl)-2-oxoethyl)pyrazin-2(1H)-one-5,6-dicarbonitrile (E)-3-(2-(4-(1g), nitrophenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1H)-one-5,6-dicarbonitrile (1'g) and (Z)-3-(2-(4nitrophenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1H)-one-5,6-dicarbonitrile (1"g) were obtained and characterized as the mixture of tautomers in percentage ratio 28:56:16, respectively. The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 4-(4-nitrophenyl)-2,4-dioxobutanoate (2.41 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Yield 2.56 g, (91%); orange solid; mp 253-254 °C. IR (KBr, cm⁻¹): v_{max} 3439, 3080, 2925, 2231, 1705, 1628, 1604, 1560, 1522, 1485, 1459, 1343, 1247, 1212, 1063, 816, 710, 643. Anal. Calcd. for C₁₄H₇N₅O₄: C, 54.38; H, 2.28; N, 22.65. Found: C, 54.35; H, 2.30; N, 22.69%. NMR data for **1g**: ¹H NMR (500.1 MHz, DMSO- d_6): δ 8.36 (d, J = 8.8 Hz, 2H, H3/H5-Ar), 7.71 (d, J = 8.8 Hz, 2H, H2/H6-Ar), 4.69 (s, 2H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ155.2 (Cβ), 153.2 (C2-Pyr), 151.1 (C3-Pyr), 148.5 (C4-Ar), 141.8 (C1-Ar), 129.0 (C2/C6-Ar), 124.0(C3/C5-Ar), 120.1 (C6-Pyr), 114.7 (CN6-Pyr), 113.6 (CN5-Pyr), 112.6 (C5-Pyr), 44.0 (Cα). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ331.2 (NO₂4-Ar). The signals of (N1-Pyr), (N4-Pyr), (CN5-Pyr), (CN6-Pyr) have not been observed. NMR data for 1'g $(trans-(N4Pyr-C5Pyr-C\alpha-C\beta))$:¹H NMR (500.1 MHz, DMSO- d_6): δ 8.28 (d, J = 9.0 Hz, 2H, H3/H5-Ar), 8.13 (d, J = 9.0 Hz, 2H, H2/H6-Ar), 6.65 (s, 1H, H α). ¹³C{¹H} NMR (125.8 MHz, DMSO- d_6): δ 168.9 (Cβ), 157.7 (C2-Pyr), 155.2 (C3-Pyr), 148.7 (C4-Ar), 141.0 (C1-Ar), 127.6 (C2/C6-Ar), 123.9 (C3/C5-Ar), 114.7 (CN5-Pyr), 114.2 (C6-Pyr), 113.6 (CN6-Pyr), 113.0 (C5-Pyr), 94.9 (Ca). ¹⁵N NMR (50.7 MHz, DMSO-d₆): the signals of (NO₂4-Ar), (N4-Pyr), (N1-Pyr), (CN5-Pyr) and (CN6-Pyr) have not been observed. NMR data for 1"g (cis-(N4Pyr-C5Pyr-Cα-Cβ)): ¹H NMR (500.1 MHz, DMSO-d₆): δ10.22 (s, 1H, N4H) (hydrogen bounded and therefore is not lost), 8.36 (d, J = 9.0 Hz, 2H, H3/H5-Ar), 8.24 (d, J =9.0 Hz, 2H, H2/H6-Ar), 6.04 (s, 1H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 197.2 (Cβ), 155.2 (C2-Pyr), 153.2 (C3-Pyr), 150.3 (C4-Ar), 141.8 (C1-Ar), 129.6 (C2/C6-Ar), 124.1 (C3/C5-Ar), 116.5 (C5-Pyr),), 114.7 (CN5-Pyr), 113.6 (CN6-Pyr), 113.0 (C6-Pyr), 95.6 (Cα). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ 101.1 (N4-Pyr), 284.3 (N1-Pyr). The signals of (NO₂4-Ar), (CN5-Pyr), (CN6-Pyr) have not been observed.

3-(2-(2-Nitrophenyl)-2-oxoethyl)pyrazin-2(1*H*)-one-5,6-dicarbonitrile (1h) and (*E*)-3-(2-(2-nitrophenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1*H*)-one-5,6-dicarbonitrile (1'h) were obtained and characterized as the mixture of tautomers in percentage ratio 40:60, respectively. The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 4-(2-nitrophenyl)-2,4-dioxobutanoate (2.41 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Yield 2.50 g, (89%); orange solid; mp 197–198 °C. IR (KBr, cm⁻¹): v_{max} 3437, 3206, 3126, 3100, 2927, 2236, 1710, 1630, 1616, 1601, 1588, 1568, 1532, 1483, 1368, 1341, 1247, 1212, 1042, 777, 739, 636. Anal. Calcd. for C₁₄H₇N₅O₄: C, 54.38; H, 2.28; N, 22.65. Found: C, 54.33; H, 2.31; N, 22.61%. NMR data for **1h**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 8.11 (dd, *J* = 8.3, *J* = 1.0, Hz, 1H,

H6-Ar), 7.91-7.92 (m, 1H, H3-Ar), 7.89-7.90 (m, 1H, H4-Ar), 7.71-7.73 (m, 1H, H5-Ar), 4.55 (s, 2H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 196.2 (Cβ), 159.4 (C2-Pyr), 149.5 (C3-Pyr), 146.2 (C2-Ar), 134.2 (C4-Ar), 132.4 (C5-Ar), 129.1 (C1-Ar), 128.7 (C3-Ar), 124.3 (C6-Ar), 119.8 (C6-Pyr), 114.6 (CN6-Pyr), 114.0 (C5-Pyr), 113.3 (CN5-Pyr), 46.0 (Cα). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ 371.7 (NO₂2-Ar), 334.2 (N4-Pyr). The signals of (N1-Pyr), (C<u>N</u>5-Pyr) and (C<u>N</u>6-Pyr) have not been observed. NMR data for **1'h**:¹H NMR (500.1 MHz, DMSO-*d*₆): δ 7.97 (brd, J = 7.8 Hz, 1H, H6-Ar), 7.81-7.83 (m, 1H, H4-Ar), 7.79-7-82 (m, 1H, H3-Ar), 7.73-7.75 (m, 1H, H5-Ar), 6.34 (s, 1H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 179.1 (Cβ), 156.2 (C2-Pyr), 147.9 (C2-Ar), 147.3 (C3-Pyr), 134.1 (C3-Ar), 133.2 (C4-Ar), 132.8 (C1-Ar), 131.7 (C5-Ar), 129.3 (C6-Pyr), 124.3 (C6-Ar), 112.8 (CN6-Pyr), 112.3 (CN5-Pyr), 109.8 (C5-Ar), 95.5 (Cα). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ 375.3 (NO₂2-Ar), 192.1 (N4-Pyr). The signals of (N1-Pyr), (C<u>N</u>5-Pyr) and (C<u>N</u>6-Pyr) have not been observed.

3-(2-(3-Nitrophenyl)-2-oxoethyl)pyrazin-2(1H)-one-5,6-dicarbonitrile (E)-3-(2-(3-(1i). nitrophenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1H)-one-5,6-dicarbonitrile (1'i) and (Z)-3-(2-(3nitrophenyl)-2-oxoethylidene)-3,4-dihydropyrazin-2(1H)-one-5,6-dicarbonitrile (1"i) were obtained and characterized as the mixture of tautomers in percentage ratio 30:60:10, respectively. The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 4-(3-nitrophenyl)-2,4-dioxobutanoate (2.41 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Yield 2.44 g, (87%); orange solid; mp 215-216 °C. IR (KBr, cm⁻¹): v_{max} 3442, 3087, 2921, 2227, 1703, 1627, 1613, 1584, 1554, 1531, 1480, 1453, 1349, 1267, 1248, 1205, 1163, 1112, 1055, 807, 742, 712, 690, 653, 638. Anal. Calcd. for C₁₄H₇N₅O₄: C, 54.38; H, 2.28; N, 22.65. Found: C, 54.35; H, 2.31; N, 22.69%. NMR data for 1i: ¹H NMR (500.1 MHz, DMSO- d_6): δ 8.70 (dd, J = 2.0 Hz, *J* = 2.2 Hz, 1H, H2-Ar), 8.51 (ddd, *J* = 8.0 Hz, *J* = 2.2 Hz, *J* = 1.0 Hz, 1H, H4-Ar), 8.46 (d, *J* = 8.0 Hz, 1H, H6-Ar), 7.89 (dd, J = 8.0 Hz, J = 8.0 Hz, 1H, H5-Ar), 4.72 (s, 2H, H α). ¹³C {¹H} NMR (125.8 MHz, DMSOd₆): δ 193.8 (Cβ), 159.4 (C2-Pyr), 150.6 (C3-Pyr), 148.2 (C3-Ar), 137.1 (C1-Ar), 134.5 (C6-Ar), 130.7 (C5-Ar), 127.3 (C4-Ar), 122.6 (C2-Ar), 119.1 (C6-Pyr), 116.6 (CN6-Pyr), 113.6 (C5-Pyr), 112.6 (CN5-Pyr), 43.7 (Ca). ¹⁵N NMR (50.7 MHz, DMSO- d_6): δ 331.4 (NO₂3-Ar). The signals of (N1-Pyr), (N4-Pyr), (CN5-Pyr) and (CN6-Pyr) have not been observed. NMR data for 1'i (*trans*-(N4Pyr-C5Pyr-C α -C β)): ¹H NMR (500.1 MHz, DMSO- d_6): δ 8.58 (dd, J = 2.0 Hz, J = 2.3 Hz, 1H, H2-Ar), 8.35-8.36 (m, 1H, H6-Ar), 8.34-8.35 (m, 1H, H4-Ar), 7.78 (dd, J = 7.8 Hz, J = 7.8 Hz, 1H, H5-Ar), 6.66 (s, 1H, H α). ¹³C{¹H} NMR (125.8 MHz, DMSO-d₆): δ 170.3 (Cβ), 157.7 (C2-Pyr), 148.1 (C3-Pyr), 147.8 (C3-Ar), 137.2 (C1-Ar), 132.6 (C6-Ar), 130.5 (C5-Ar), 125.6 (C4-Ar), 120.7 (C2-Ar), 114.8 (CN6-Pyr), 113.3 (CN5-Pyr), 112.3 (C5-Pyr), 106.1 (C6-Pyr), 94.1 (Cα). ¹⁵N NMR (50.7 MHz, DMSO-d₆): the signals of (NO₂3-Ar), (N1-Pyr), (N4-Pyr), (CN5-Pyr) and (CN6-Pyr) have not been observed. NMR data for 1"i (cis-(N4Pyr-C5Pyr- $(\alpha - C\beta)$: ¹H NMR (500.1 MHz, DMSO- d_6): δ 10.15 (s, 1H, N4H) (hydrogen bounded and therefore is not lost), 8.39 (ddd, *J* = 8.0 Hz, *J* = 2.2 Hz, *J* = 1.0 Hz, 1H, H4-Ar), 8.23 (dd, *J* = 2.0 Hz, *J* = 2.3 Hz, 1H, H2-Ar), 7.90-7.92 (m, 1H, H6-Ar), 7.84 (dd, J = 7.8 Hz, J = 7.8 Hz, 1H, H5-Ar), 6.06 (s, 1H, H α). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ170.3 (Cβ), 157.4 (C2-Pyr), 137.7 (C3-Pyr), 148.0 (C3-Ar), 137.0 (C1-Ar), 133.8 (C6-Ar), 130.8 (C5-Ar), 125.2 (C4-Ar), 122.0 (C2-Ar), 114.8 (CN6-Pyr), 113.3 (CN5-Pyr), 112.3 (C5-Pyr), 106.1 (C6-Pyr), 95.3 (Cα). ¹⁵N NMR (50.7 MHz, DMSO-d₆): δ 101.7 (N4-Pyr), 285.2 (N1-Pyr). The signals of (NO₂3-Ar), (CN5-Pyr) and (CN6-Pyr) have not been observed.

3-(2-Oxo-2-(pyridin-2-yl)ethyl)pyrazin-2(1H)-one-5,6-dicarbonitrile (1j) and (E)-3-(2-oxo-2-(pyridin-2-yl)ethylidene)-3,4-dihydropyrazin-2(1H)-one-5,6-dicarbonitrile (1'j) were obtained and

characterized as the mixture of tautomers in percentage ratio 25:75, respectively. The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 2,4-dioxo-4-(pyridin-2-yl)butanoate (2.01 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Yield 1.76 g, (73%); black powder; mp 257-259 °C. IR (KBr, cm⁻¹): v_{max} 3434, 3108, 2222, 1602, 1552, 1525, 1468, 1388, 1289, 1240, 1073, 952, 784, 667, 651, 603, 460. Anal. Calcd. for C₁₃H₇N₅O₅: C, 58.87; H, 2.66; N, 26.41. Found: C, 58.90; H, 2.64; N, 26.45%. NMR data for 1j: ¹H NMR (500.1 MHz, DMSO- d_6): δ 8.73 (ddd, J = 4.7 Hz, J = 1.6 Hz, J = 1.0 Hz, 1H, H3-Ar), 8.04 (ddd, J =7.7 Hz, J = 1.6 Hz, J = 1.6 Hz, 1H, H5-Ar), 8.00 (d, J = 7.7 Hz, 1H, H6-Ar), 7.70 (ddd, J = 7.4 Hz, J = 4.7 Hz, J = 1.4 Hz, 1H, H4-Ar), 4.70 (s, 2H, Hα). ¹³C{¹H} NMR (125.8 MHz, DMSO- d_6): δ196.1 (Cβ), 158.9 (C2-Pyr), 152.2 (C3-Pyr), 151.6 (C1-Ar), 149.2 (C3-Ar), 137.8 (C5-Ar), 128.2 (C4-Ar), 121.6 (C6-Ar), 119.7 (C6-Pyr), 114.0 (CN6-Pyr), 113.2 (CN5-Pyr), 112.6 (C5-Pyr), 42.5 (Ca). ¹⁵N NMR (50.7 MHz, DMSO-d₆): δ 331.9 (N2-Py). The signals of (N1-Pyr), (N4-Pyr), (CN5-Pyr) and (CN6-Pyr) have not been observed. NMR data for 1'i: ¹H NMR (500.1 MHz, DMSO- d_6): $\delta 8.71$ (ddd, J = 4.7 Hz, J = 1.6 Hz, J = 0.9Hz, 1H, H3-Ar), 8.06-8.08 (m, 1H, H6-Ar), 8.04-8.06 (m, 1H, H5-Ar), 7.62 (ddd, J = 7.4 Hz, J = 4.7 Hz, J = 0.9 Hz, 1H, H4-Ar), 7.19 (s, 1H, H α). ¹³C{¹H} NMR (125.8 MHz, DMSO- d_6): δ 171.9 (C β), 157.1 (C2-Pyr), 150.9 (C1-Ar), 150.3 (C3-Pyr), 148.4 (C3-Ar), 138.8 (C5-Ar), 126.3 (C4-Ar), 121.5 (C6-Ar), 116.3 (CN6-Pyr), 114.5 (CN5-Pyr), 113.7 (C6-Pyr), 112.7 (C5-Pyr), 94.2 (Cα). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): the signals of (N2-Py), (N1-Pyr), (N4-Pyr), (CN5-Pyr) and (CN6-Pyr) have not been observed.

3-(2-(Thien-2-yl)-2-oxoethyl)pyrazin-2(1H)-one-5,6-dicarbonitrile (1k), (E)-3-(2-(thien-2-yl)-2oxoethylidene)-3,4-dihydropyrazin-2(1H)-one-5,6-dicarbonitrile (1'k) and (Z)-3-(2-(thien-2-yl)-2oxoethylidene)-3,4-dihydropyrazin-2(1*H*)-one-5,6-dicarbonitrile were obtained (1''k)and characterized as the mixture of tautomers in percentage ratio 45:32:23, respectively. The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 2,4-dioxohexanoate (2.05 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Yield 2.38 g, (97%); brown solid; mp 230–231 °C. IR (KBr, cm⁻¹): v_{max} 3426, 3332, 3212, 2997, 2209, 1663, 1636, 1576, 1525, 1500, 1437, 1331, 1260, 1139, 1022, 733, 652, 556. Anal. Calcd. for C₁₂H₆N₄O₂S: C, 53.33; H, 2.24; N, 20.73; S, 11.86. Found: C, 53.37; H, 2.29; N, 20.75; S, 11.82%. NMR data for 1k: ¹H NMR (500.1 MHz, DMSO- d_6): δ 8.11 (d, J = 4.0 Hz, 1H, H3-Th), 8.06 (d, J = 4.8 Hz, 1H, H5-Th), 7.30 (dd, J = 4.8 Hz, J = 4.0 Hz, 1H, H4-Th), 4.58 (s, 2H, H α -Sp). The signals of (N(4)H) and (N(1)H) have not been observed. ${}^{13}C{}^{1}H{}$ NMR (125.8 MHz, DMSO- d_6): δ 187.7 (Cβ-Sp), 159.2 (C2-Pyr), 150.8 (C3-Pyr), 142.9 (C2-Th), 135.8 (C5-Th), 134.7 (C3-Th), 128.9 (C4-Th), 119.9 (C6-Pyr), 114.6 (C6a-Pyr), 113.3 (C5-Pyr), 111.9 (C5a-Pyr), 43.7(Cα-Sp). NMR data for 1'k (*trans*-(N4Pyr-C5Pyr-Cα-Cβ)): ¹H NMR (500.1 MHz, DMSO- d_6): δ 7.96 (d, J = 4.5 Hz, 1H, H5-Th), 7.73 (d, J = 4.0 Hz, 1H, H3-Th), 7.22 (dd, J = 4.5 Hz, J = 4.0 Hz, 1H, H4-Th), 6.70 (s, 1H, H α -Sp). The signals of (N(4)H) and (N(1)H) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO- d_6): δ 177.0 (C β -Sp, based on ¹H-¹³C HMBC spectrum), 162.9 (C2-Pyr), 155.2 (C3-Pyr), 142.7 (C2-Th), 133.9 (C5-Th), 131.1 (C3-Th), 129.1 (C4-Th), 113.9 (C5-Pyr), 113.6 (C6-Pyr), 113.1 (C6a-Pyr), 108.6 (C5a-Pyr), 92.4 (Cα-Sp). NMR data for 1"k (cis-(N4Pyr-C5Pyr-C α -C β)): ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 7.96 (dd, *J* = 3.5 Hz, *J* = 1.1 Hz, 1H, H5-Th), 7.87 (dd, J = 4.9 Hz, J = 1.1 Hz, 1H, H3-Th), 7.18 (dd, J = 4.9 Hz, J = 3.5 Hz, 1H, H4-Th), 5.95 (s, 1H, H α -Sp). The signals of (N(4)H) and (N(1)H) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO-d₆): δ 177.8 (Cβ-Sp, based on ¹H-¹³C HMBC spectrum), n/o (C2-Pyr), n/o (C3-Pyr), 142.7 (C2-Th), 133.6 (C5-Th), 133.2 (C3-Th), 128.2 (C4-Th). The signals of (C2-Pyr), (C3-Pyr), (C6-Pyr), (C6a-Pyr), (C5-Pyr), (C5a-Pyr) and (C α -Sp) have not benn observed. In the 1D spectra of ¹³C, due to the broadening caused by exchange processes between different tautomeric forms, signals of some carbon nuclei are not observed. However, in some cases it was possible to determine their values from cross peaks in the ¹H-¹³C HMBC spectra.

3-(2-Oxobutyl)pyrazin-2(1*H***)-one-5,6-dicarbonitrile (11).** The compound was obtained by the same procedure starting from diaminomaleonitrile (0.97 g, 9.08 mmol, 1.0 equiv) and ethyl 2,4-dioxohexanoate (1.56 g, 9.08 mmol, 1.0 equiv) in glacial acetic acid (10 mL) following the general procedure. Yield 1.67 g, (85%); orange solid; mp 211–212 °C. IR (KBr, cm⁻¹): v_{max} 3424, 3328, 2218, 1699, 1668, 1634, 1574, 1500, 1436, 1333, 1258, 649. Anal. Calcd. for C₁₀H₈N₄O₂: C, 55.56; H, 3.73; N, 25.91. Found: C, 55.52; H, 3.75; N, 25.89%. NMR data for **11**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 7.80 (s, 1H, N(1)H), 3.95 (s, 2H, H α -Sp), 2.58 (q, *J* = 7.5 Hz, 2H, CH₃CH₂-Pyr), 0.94 (t, *J* = 7.5 Hz, 3H, <u>CH₃CH₂-Pyr). ¹³C{1H} NMR (125.8 MHz, DMSO-*d*₆): δ 206.0 (C β -Sp), 159.9 (C2-Pyr), 151.3 (C3-Pyr), 118.3 (C5a-Pyr), 115.1 (C6-Pyr), 113.7 (C6a-Pyr), 113.6 (C5-Pyr), 46.7(C α -Sp), 35.6 (C2a-Pyr), 7.5 (C2b-Pyr). This compound in the solution (DMSO-*d*₆) investigated exists almost exclusively in ketone form **11** (95%). **1'1** Not determined but present.</u>

General Procedure for the Preparation of 2-(5-Aryl(ethyl)-1*H*-pyrazol-3-yl)-5*H*imidazo[4,5-*d*]pyridazine-4,7-diamine hydrate 2. *Method a*. To a stirred suspension of pyrazin-2(1H)-one-5,6-dicarbonitriles 1 (1.89 mmol, 1.0 equiv) and 64% solution of hydrazine hydrate (5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL) was added 0.055 g (5.61 mmol) of concentrated H₂SO₄ at rt. The reaction mixture was stirred with heating at reflux for 6 h. The reaction mixture was allowed to cool to room temperature and precipitate produced was filtered, washed with washed with 5% NaHCO₃ solution, dried in air to give pure product 2. The filtrate was evaporated to dryness and the resulting residue was washed with washed with 5% NaHCO₃ solution, to afford an additional portion of the product 2. *Method b*. To a stirred suspension of spiro[pyrazino[2,3-*d*]pyridazine-2,3'-pyrazol]-3(4*H*)-ones 3 (1.61 mmol) (As to the synthesis of spiro[pyrazino[2,3-*d*]pyridazine-2,3'-pyrazol]-3(4*H*)-ones see below) in *n*-BuOH (10 mL) was added 0.023 g (2.81 mmol) of concentrated H₂SO₄ at rt. The reaction mixture was stirred with heating at reflux for 6 h. The reaction mixture was allowed to cool to room temperature and precipitate produced was filtered, washed with 5% NaHCO₃ solution, dried in air to give pure product 2. The filtrate was evaporated to dryness and the resulting residue was washed with 5% NaHCO₃ solution, dried in air to give pure product 2. The filtrate was evaporated to dryness and the resulting residue was washed with washed with 5% NaHCO₃ solution, to afford an additional portion of the product 2.

2-(5-Phenyl-1*H*-pyrazol-3-yl)-5*H*-imidazo[4,5-d]pyridazine-4,7-diamine (2a). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6-dicarbonitrile 1a (0.5 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in n-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-one 3a (0.5 g, 1.61 mmol) in n-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.53 g, (97%) (Method a); 0.46 g, (99%) (Method b); brown solid; mp 222–223 °C. IR (KBr, cm⁻¹): v_{max} 3425, 3338, 3292, 3204, 1644, 1522, 1451, 1348, 1299, 1275, 1245, 1194, 1157, 1130, 1101, 1075, 1029, 1000, 961, 871, 826, 761, 692, 615, 557, 508, 453. Anal. Calcd. for C₁₄H₁₂N₈·H₂O: C, 54.19; H, 4.55; N, 36.11. Found: C, 54.23; H, 4.57; N, 36.17%. NMR data for 2a: ¹H NMR (500.1 MHz, DMSO-d₆): δ13.73 (very broad singlet, 1H, NH(6)-IP), 9.32 (brs, 1H, H1-Py), 7.84 (d, J = 7.2 Hz, 2H, H2/H6-Ar), 7.47 (dd, J = 7.2 Hz, J = 7.2 Hz, 2H, H3/H5-Ar), 7.36 (dd, J = 7.2 Hz, J = 7.1 Hz, 2H, H4-Ar), 7.31 (s, 1H, H4-Py), 5.74 (brs, 2H, H₂O), 5.39 (brs, 2H, NH₂4-IP), 5.23 (brs, 2H, NH₂7-IP). ¹³C {¹H} NMR (125.8 MHz, DMSO-*d*₆): δ159.5 (C4-IP), 152.5 (C7-IP), 147.1 (C7a-IP), 146.6 (C3-Py), 143.7 (C5-Py), 133.8 (C3a-IP), 130.7 (C1-Ar), 129.0 (C3/C5-Ar), 128.2 (C4-Ar), 125.3 (C2/C6-Ar), 105.3 (C2-IP), 103.4 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO-d₆): δ 263.3 (N1-Py), 244.9 (N2-Py), 61.3 (N1-IP), 57.7 (NH₂7-IP), 57.2 (NH₂4-IP). The signals of (N5-IP), (N6-IP), (N1-IP) and (N3-IP) have not been observed.

2-(5-(4-Chlorophenyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2b) and 2-(3-(4-chlorophenyl)-1H-pyrazol-5-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine monohydrate (2'b) were obtained and characterized as the mixture of regionsomers in percentage ratio 70:30, respectively. Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1b (0.56 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4H)-one **3b** (0.56 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.51 g, (82%) (Method a); 0.49 g, (93%) (Method b); beige solid; mp 321-322 °C. IR (KBr, cm⁻¹): v_{max} 3418, 3296, 3181, 3158, 2962, 2875, 1663, 1606, 1578, 1560, 1492, 1445, 1425, 1390, 1369, 1234, 1097, 1047, 1015, 965, 826, 813, 739, 579, 504. Anal. Calcd. for C₁₄H₁₁ClN₈·H₂O: C, 48.77; H, 3.80; N, 32.50. Found: C, 48.79; H, 3.85; N, 32.55%. NMR data for 2b and 2'b: the NMR spectra of this compound consist of two sets of signals, seemed to pyrazole tautomerism. Signals from the minor tautomer are shown in square brackets. ¹H NMR (500.1 MHz, DMSO- d_6): δ 13.6 (very broad singlet, 2H, NH(1)-Py + NH(6)-IP), 7.90 [7.88] (d, J = 8.6 Hz, 2H, H3/H5-Ar), 7.53 [7.50] (d, J = 8.6 Hz, 2H, H2/H6-Ar), 7.29 [7.13] (s, 1H, H4-Py), 6.79 (brs, 2H, H₂O), 6.69 (brs, 2H, NH₂4-IP), 5.89 (brs, 2H, NH₂7-IP). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ159.6 (C4-IP), 152.9 (C7-IP), 147.5 (C7a-IP), 146.2 (C5-Py br), 144.1 (C3-Py br), 134.1 (C3a-IP), 132.6 (C4-Ar), 131.6 (C1-Ar), 129.9 [128.8] (C2/C6-Ar), 127.0 [126.9] (C3/C5-Ar), 104.6 (C2-IP), 102.3 [100.9] (C4-Py).

2-(5-(4-Bromophenyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2c). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1c (0.65 g, 1.89 mmol, 1.0 equiv) and 64% hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in n-BuOH (10 mL)/H₂SO₄ 0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4H)-one 3c (0.63 g, 1.61 mmol) in n-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.56 g, (80%) (Method a); 0.54 g, (90%) (Method b); brown solid; mp 271-272 °C. IR (KBr, cm⁻¹): v_{max} 3448, 3338, 3234, 3191, 1665, 1635, 1524, 1484, 1441, 1309, 1292, 1265, 1239, 1192, 1074, 1010, 999, 961, 887, 871, 816, 769, 697, 559, 506. Anal. Calcd. for C₁₄H₁₁BrN₈·H₂O: C, 43.20; H, 3.37; N, 28.79. Found: C, 43.25; H, 3.35; N, 28.81%. NMR data for 2c: ¹H NMR (500.1 MHz, DMSO d_6): δ 13.66 (very broad singlet, 1H, NH(6)-IP), 9.32 (brs, 1H, NH(1)-Py), 7.77 (d, J = 8.6 Hz, 2H, H2/H6-Ar), 7.67 (d, J = 8.6 Hz, 2H, H3/H5-Ar), 7.34 (s, 1H, H4-Py), 5.58 (brs, 2H, H₂O), 5.25 (brs, 2H, NH₂4-IP), 4.95 (brs, 2H, NH₂7-IP). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ158.9 (C4-IP), 152.5 (C7-IP), 147.1 (C7a-IP), 146.2 (C5-Py br), 143.1 (C3-Py br), 133.1 (C3a-IP), 131.9 (C3/C5-Ar), 130.4 (C1-Ar), 127.1 (C2/C6-Ar), 121.1 (C4-Ar), 105.1 (C2-IP), 103.6 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO- d_6): δ 60.3 (N1-IP), 56.5 (NH₂4-IP), 55.5 (NH₂7-IP). The signals of (N1-Py), (N2-Py), (N5-IP), (N6-IP), (N1-IP) and (N3-IP) have not been observed.

2-(5-(p-Tolyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2d). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6-dicarbonitrile 1d (0.53 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-one 3d (0.52 g, 1.61 mmol) in n-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.52 g, (89%) (*Method a*); 0.48 g, (97%) (*Method b*); brown solid; mp > 400 °C. IR (KBr, cm⁻¹): v_{max} 3346, 3346, 3269, 3206, 2956, 2924, 1676, 1638, 1515, 1508, 1449, 1317, 1300, 1244, 1191, 1130, 1045, 1019, 999, 963, 871, 810, 770, 700, 670, 618, 587, 551, 510. Anal. Calcd. for C₁₅H₁₄N₈·H₂O: C, 55.55; H, 4.97; N, 34.55. Found: C, 55.52; H, 4.99; N, 34.57%. NMR data for **2d**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 13.67 (very broad singlet, 1H, NH(6)-IP), 9.28 (brs, 1H, NH(1)-Py), 7.71 (d, J = 8.0 Hz, 2H, H2/H6-Ar), 7.28 (d, J = 8.0 Hz, 2H, H3/H5-Ar), 7.22 (s, 1H, H4-Py), 5.76 (brs, 2H, H₂O), 5.39 (brs, 2H, NH₂4-IP), 5.20 (brs, 2H, NH₂7-IP), 2.34 (s, 3H, H4a-Ar). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ159.6 (C4-IP), 152.2 (C7-IP), 147.0 (C7a-IP), 146.2 (C5-Py br), 144.0 (C3-Py br), 137.6 (C4-Ar), 134.0 (C3a-IP), 129.5 (C3/C5-Ar), 127.7 (C1-Ar), 125.2 (C2/C6-Ar), 104.9 (C2-IP), 103.0 (C4-Py), 20.8 (C4b-Ar). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ62.7 (N1-IP), 57.9 (NH₂7-IP), 57.7 (NH₂4-IP). The signals of (N1-Py), (N2-Py), (N5-IP), (N6-IP), (N1-IP) and (N3-IP) have not been observed.

2-(5-(4-Methoxyphenyl)-1*H*-pyrazol-3-yl)-5*H*-imidazo[4,5-*d*]pyridazine-4,7-diamine hydrate (2e). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1e (0.56 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in n-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4H)-one **3e** (0.55 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.57 g, (94%) (Method a); 0.52 g, (100%) (Method b); brown solid; mp 230-231 °C. IR (KBr, cm⁻¹): v_{max} 3444, 3333, 3212, 3212, 2957,1676, 1641, 1618, 1508, 1449, 1411, 1308, 1254, 1180, 1129, 1113, 1058, 1029, 999, 962, 872, 813, 796, 770, 702, 677, 617, 582, 553, 529, 518. Anal. Calcd. for C₁₅H₁₄N₈O·H₂O: C, 52.94; H, 4.74; N, 32.92. Found: C, 52.97; H, 4.77; N, 32.87%. NMR data for **2e**: ¹H NMR (500.1 MHz, DMSO- d_6): δ 13.64 (very broad singlet, 1H, NH(6)-IP), 9.36 (brs, 1H, NH(1)-Py), 7.75 (d, *J* = 8.8 Hz, 2H, H2/H6-Ar), 7.17 (s, 1H, H4-Py), 7.03 (d, *J* = 8.8 Hz, 2H, H3/H5-Ar), 6.55 (brs, 2H, H₂O), 6.35 (brs, 2H, NH₂4-IP), 5.92 (brs, 2H, NH₂7-IP), 3.80 (s, 3H, CH₃O-Ar). ¹³C{¹H} NMR $(125.8 \text{ MHz}, \text{DMSO-}d_6): \delta 160.0 \text{ (C4-IP)}, 159.3 \text{ (C4-Ar)}, 150.9 \text{ (C7-IP)}, 147.8 \text{ (C5-Py br)}, 146.1 \text{ (C7a-IP)}, 146.1 \text{ (C7a$ 145.4 (C3-Py br), 137.6 (C3a-IP), 126.6 (C2/C6-Ar), 123.0 (C1-Ar), 114.4 (C3/C5-Ar), 103.3 (C2-IP), 102.8 (C4-Py), 55.2 (CH₃O-Ar).

2-(5-(4-Hydroxyphenyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2f) 2-(3-(4-hydroxyphenyl)-1H-pyrazol-5-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate and (2'f) were obtained and characterized as the mixture of regionsomers in percentage ratio 70:30, respectively. Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1f (0.53 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4*H*)-one **3f** (0.53 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.50 g, (87%) (Method a); 0.46 g, (91%) (Method b); brown solid; mp 248-250 °C. IR (KBr, cm⁻¹): v_{max} 3444, 3325, 3325, 3290, 3205, 1617, 1384, 1251, 1021, 576. Anal. Calcd. for C14H12N8O·H2O: C, 51.53; H, 4.32; N, 34.34. Found: C, 51.55; H, 4.29; N, 34.37%. NMR data for 2f and **2'f**: signals from the minor tautomer are shown in square brackets.¹H NMR (500.1 MHz, DMSO- d_6): δ 7.66 [7.65] (d, J = 8.0 Hz, 2H, H2/H6-Ar), 7.06 [6.92] (s, 1H, H4-Py), 6.85 [6.82] (d, J = 8.6 Hz, 2H, H3/H5-Ar), 6.43 (brs, 2H, NH₂7-IP), 6.17 (brs, 2H, NH₂4-IP), 5.39 (s, 2H H₂O). The signals of (H1-Py) and (NH(6)-IP) have not been observed. ${}^{13}C{}^{1}H$ NMR (125.8 MHz, DMSO- d_6): δ 158.5 (C4-IP), 157.5 (C1-Ar), 151.7 (C7-IP), 148.7 [152.5] (C5-Py, br), 148.1 (C7a-IP), 142.3 [142.9] (C3-Py, br), 134.6 (C4a-IP), 126.7 [126.4] (C2/C6-Ar), 121.9 [123.5] (C4-Ar), 115.6 (C3/C5-Ar), 104.3 (C2-IP), 100.6 [99.7] (C4-Py).

2-(5-(4-Nitrophenyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2g). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1g (0.58 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in n-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4H)-one **3g** (0.57 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.52 g, (74%) (Method a); 0.45 g, (79%) (Method b); brown solid; mp 204-205 °C. IR (KBr, cm⁻¹): v_{max} 3430, 3330, 3304, 3204, 1656, 1612, 1515, 1450, 1342, 1249, 1181, 1109, 854, 752, 694. Anal. Calcd. for C₁₄H₁₁N₉O₂·H₂O: C, 47.32; H, 3.69; N, 35.48. Found: C, 47.35; H, 3.71; N, 35.45%. NMR data for **2g**: ¹H NMR (500.1 MHz, DMSO- d_6): δ 9.60 (brs, 1H, NH(1)-Py), 8.33 (d, J = 8.9Hz, 2H, H3/H5-Ar), 8.09 (d, J = 8.9 Hz, 2H, H2/H6-Ar), 7.54 (s, 1H, H4-Py), 6.11 (brs, 2H, H₂O), 5.67 (brs, 2H, NH₂7-IP), 5.58 (brs, 2H, NH₂4-IP). The signal of (NH(6)-IP) has not been observed. ${}^{13}C{}^{1}H$ NMR (125.8 MHz, DMSO-d₆): δ158.5 (C4-IP), 151.7 (C7-IP), 146.6 (C7a-IP), 146.6 (C4-Ar), 146.2 (C5-Py, br), 142.3 (C3-Py, br), 138.1 (C1-Ar), 135.1 (C4a-IP), 125.9 (C2/C6-Ar), 124.4 (C3/C5-Ar), 105.0 (C4-Py), 104.4 (C2-IP).

2-(5-(2-Nitrophenyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2h). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5.6dicarbonitrile **1h** (0.58 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4H)-one **3h** (0.57 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.47 g, (70%) (Method a); 0.5 g, (87%) (Method b); brown solid; mp 241-242 °C. IR (KBr, cm⁻¹): v_{max} 3435, 3309, 3180, 2960, 2873, 1720, 1632, 1568, 1533, 1463, 1314, 1240, 1198, 1044, 949, 784, 587. Anal. Calcd. for $C_{14}H_{11}N_9O_2 \cdot H_2O$: C, 47.32; H, 3.69; N, 35.48. Found: C, 47.37; H, 3.65; N, 35.51%. NMR data for **2h**: ¹H NMR (500.1 MHz, DMSO- d_6): δ 12.64 (brs, 1H, NH(1)-Py), 12.52 (very broad singlet, 1H, NH(6)-IP), 8.08 (d, J = 8.0 Hz, 1H, H3-Ar), 7.84 (dd, J = 8.0 Hz, J = 8.0 Hz, 1H, H5-Ar), 7.84 (d, J = 8.0 Hz, 1H, H6-Ar), 7.79 (dd, J = 8.0 Hz, J = 8.0 Hz, 1H, H4-Ar), 6.63 (s, 1H, H4-Py). The signals of (NH₂7-IP) and (NH₂4-IP) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSOd₆): δ155.8 (C5-Py), 147.6 (C2-Ar), 144.9 (C7-IP), 144.0 (C4-IP), 134.1 (C3a-IP), 133.8 (C1-Ar), 133.6 (C5-Ar), 132.1 (C4-Ar), 129.2 (C6-Ar), 127.2 (C3-Py br), 124.4 (C3-Ar), 124.3 (C7a-IP), 117.0 (C2-IP), 95.8 (C4-Py).

2-(5-(3-Nitrophenyl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hvdrate (2i). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1i (0.58 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in n-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4H)-one **3i** (0.57 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.53 g, (79%) (Method a); 0.43 g, (76%) (Method b); brown solid; mp 250-251 °C. IR (KBr, cm⁻¹): v_{max} 3425, 3356, 3204, 2932, 2857, 1675, 1646, 1626, 1526, 1451, 1349, 1312, 1277, 1243, 1199, 1171, 1105, 1071, 1032, 999, 975, 875, 864, 805, 770, 739, 678, 616, 593, 557, 522, 508. Anal. Calcd. for C₁₄H₁₁N₉O₂·H₂O: C, 47.32; H, 3.69; N, 35.48. Found: C, 47.36; H, 3.65; N, 35.52%. NMR data for **2i**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 13.74 (very broad singlet, 1H, NH(6)-IP), 9.45 (brs, 1H, NH(1)-Py), 8.63 (s, 1H, H2-Ar), 8.25 (dd, J = 8.0 Hz, J = 1.4 Hz, 1H, H6-Ar), 8.20 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H, H4-Ar), 7.77 (dd, J = 8.0 Hz, J = 8.0 Hz, 1H, H5-Ar), 7.54 (s, 1H, H4-Py), 5.85 (brs, 2H, H₂O), 5.41 (brs, 2H, NH₂4-IP), 5.32 (brs, 2H, NH₂7-IP). ${}^{13}C{}^{1}H$ NMR (125.8 MHz, DMSO- d_6): δ 158.5 (C4-IP), 152.1 (C7-IP), 148.4 (C3-Ar), 146.8 (C7a-IP), 146.2 (C5-Py br), 141.8 (C3-Py br), 134.1 (C3a-IP), 133.4 (C1-Ar), 131.3 (C6-Ar), 130.7 (C5-Ar), 122.4 (C4-Ar), 119.2 (C2-Ar), 105.3 (C2-IP), 104.2 (C4-Py).

2-(5-(Pyridin-2-yl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2j) and 2-(3-(pyridin-2-yl)-1H-pyrazol-5-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2'j) were obtained and characterized as the mixture of regioisomers in percentage ratio 50:50, respectively. Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6-dicarbonitrile 1; (0.50 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in n-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-one 3j (0.50 g, 1.61 mmol) in n-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.44 g, (80%) (Method a); 0.39 g, (83%) (Method b); black solid; mp 313-314 °C. IR (KBr, cm⁻¹): v_{max} 3440, 3364, 3176, 3330, 3090, 2989, 1655, 1640, 1599, 1568, 1508, 1460, 1440, 1422, 1372, 1341, 1310, 1286, 1192, 1151, 1093, 1073, 1000, 968, 785,745, 726, 687, 625, 576, 497. Anal. Calcd. for C₁₃H₁₁N₉·H₂O: C, 50.16; H, 4.21; N, 40.49. Found: C, 50.20; H, 4.19; N, 40.51%. NMR data for 2j and 2'j: signals from the second tautomer are shown in square brackets. ¹H NMR (500.1 MHz, DMSO-d₆): δ 13.4 [13.4] (very broad singlet, H, (H1-Py) and (NH(6)-IP)), 8.61 (dd, J = 4.4 Hz, J = 1.5 Hz, 1H, H3-Pyr), 7.98 [7.99] (d, J = 7.2 Hz, 1H, H6-Pyr), 7.83 (dd, J = 7.8 Hz, J = 1.9 Hz, 1H, H5-Pyr), [7.89 (d, J = 7.8 Hz, 1H, H5-Pyr)], 7.30 [7.35] (dd, J = 5.2 Hz, J = 5.2 Hz, 1H, H4-Pyr), 7.24 [7.40, br] (s, 1H, H4-Py), 6.50 (brs, 2H, NH₂4-IP), 6.50 (brs, 2H, NH₂7-IP), 5.49 (brs, 2H H₂O). ${}^{13}C{}^{1}H$ NMR (125.8 MHz, DMSO- d_6): δ 156.6 (C4-IP), 156.1 (C7-IP), 151.5 (C1-Pyr), 149.4 (C3-Pyr), 148.0 (C7a-IP), 146.6 (C3-Py br), 143.7 (C5-Py br), 137.1 (C5-Pyr), 133.8 (C3a-IP), 122.9 (C4-Pyr), 119.9 (C6-Ar), 105.3 (C2-IP), 101.9 (C4-Py).

2-(5-(Thien-2-yl)-1H-pyrazol-3-yl)-5H-imidazo[4,5-d]pyridazine-4,7-diamine hydrate (2k) and 3-(4,7-diamino-5H-imidazo[4,5-d]pyridazin-2-yl)-5-(thiophen-2-yl)-1H-pyrazol-2-ium trifluoroacetate (2'k). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1k (0.51 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'pyrazol]-3(4H)-one **3k** (0.51 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.55 g, (99%) (Method a); 0.35 g, (73%) (Method b); brown solid; mp 277-278 °C. IR (KBr, cm⁻¹): v_{max} 3445, 3312, 3173, 2980, 1617, 1504, 1456, 1408, 1063, 713, 619, 511. Anal. Calcd. for C₁₂H₁₀N₈S·H₂O: C, 45.56; H, 3.82; N, 35.42; S, 10.13. Found: C, 45.53; H, 3.87; N, 35.39; S, 10.17%. NMR data for 2k and 2'k: in this case, for a clear assignment of signals to the NMR ampoule with the sample three drops of CF₃CO₂H was added. As a result, two sets of signals from the free and N2-Py protonated target compounds appear in the ¹H and ¹³C NMR spectra in a percentage ratio of 50:50, respectively. Data for unprotonated form **2k**: ¹H NMR (500.1 MHz, DMSO- d_6): δ 7.87 (d, J = 3.8 Hz, 1H, H3-Th), 7.40 (d, J = 4.9 Hz, 1H, H5-Th), 7.07 (dd, J = 4.9 Hz, J = 3,8 Hz, 1H, H4-Th), 6.91 (s, 1H, H4-Py). The signals of (NH₂4-IP), (NH₂7-IP), (NH(6)-IP), (H1-Py) and (H₂O) have not been observed. ${}^{13}C{}^{1}H{}$ NMR (125.8 MHz, DMSO-d₆): δ181.8 (C5-Py), 155.9 (C3-Py), 149.8 (C7-IP), 145.5 (C4-IP), 144.6 (C2-Th), 140.1 (C3a-IP), 134.3 (C5-Th), 131.5 (C3-Th), 128.8 (C4-Th), 117.2 (C2-IP), 115.6 (C7a-IP), 94.0 (C4-Py). Data for protonated form **2'k**: ¹H NMR (500.1 MHz, DMSO- d_6): δ 7.97 (d, J = 5.1 Hz, 1H, H3Th), 7.42 (d, J = 3.7 Hz, 1H, H5-Th), 7.19 (dd, J = 5.1 Hz, J = 3.7 Hz, 1H, H4-Th), 7.15 (s, 1H, H4-Py). The signals of (NH₂4-IP), (NH₂7-IP), (NH(6)-IP) and (H1-Py) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO- d_6): δ 148.9 (C7-IP), 145.2 (C4-IP), 145.0 (C3-Py), 142.7 (C2-Th), 141.7 (C2-IP), 133.9 (C5-Py), 127.6 (C4-Th), 126.1 (C3a-IP), 125.2 (C3-Th), 124.0 (C5-Th), 115.6 (C7a-IP), 103.6 (C4-Py).

2-(5-Ethyl-1H-pyrazol-3-yl)-6H-pyrrolo[2,3-d]pyridazine-4,7-diamine hydrate (21) and 3-(4,7diamino-6H-pyrrolo[2,3-d]pyridazin-2-yl)-5-ethyl-1H-pyrazol-2-ium trifluoroacetate (2'l). Method a. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6-dicarbonitrile 11 (0.41 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Method b. The compound was obtained by the same procedure starting from spiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-one 31 (0.42 g, 1.61 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.023 g, 2.81 mmol) following the general procedure. Yield 0.31 g, (68%) (Method a); 0.37 g, (81%) (Method b); brown solid; mp 277–278 °C. IR (KBr, cm⁻¹): v_{max} 3440, 3369, 3348, 3205, 2974, 1644, 1620, 1516, 1451, 1365, 1246, 1165, 773, 723, 623, 522, 467. Anal. Calcd. for C₁₁H₁₃N₇·H₂O: C, 50.57; H, 5.79; N, 37.53. Found: C, 50.53; H, 5.81; N, 37.57%. NMR data for 21 and 2'1: in this case, for a clear assignment of signals to the NMR ampoule with the sample three drops of CF₃CO₂H was added. As a result, two sets of signals from the free and N2-Py protonated target compounds appear in the ¹H and ¹³C NMR spectra in a percentage ratio of 60:40, respectively. Data for unprotonated form **21**:¹H NMR (500.1 MHz, DMSO- d_6): δ 6.53 (s, 1H, H4-Py), 2.57 (q, J = 7.5 Hz, 2H, CH_3CH_2 -Py), 1.12 (t, J = 7.7 Hz, 3H, CH_3CH_2 -Py). The signals of (N(4)H₂-IP), (N(7)H₂-IP), (1H, H1-Py) and (H₂O) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 162.2 (C2-IP), 161.2 (C4-IP), 159.9 (C7-IP), 149.5 (C5-Py), 145.4 (C3-Py), 128.3 (C7a-IP), 105.1 (C4-Py), 91.0 (C3a-IP), 19.7 (CH₃CH₂-Py), 14.1 (CH₃CH₂-Py). Data for protonated form 2'I: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ6.49 (s, 1H, H4-Py), 2.56 (q, J = 7.5 Hz, 2H, CH₃CH₂-Py), 1.11 (t, J = 7.7 Hz, 3H, CH₃CH₂-Py). The signals of (N(4)H₂-IP), (N(7)H₂-IP) and (1H, H1-Py) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSOd₆): δ 162.2 (C2-IP), 161.2 (C4-IP), 159.9 (C7-IP), 150.2 (C5-Py), 142.0 (C3-Py), 128.3 (C7a-IP), 107.0 (C4-Py), 91.0 (C3a-IP), 19.9 (CH₃CH₂-Py), 13.9 (CH₃CH₂-Py).

Procedure for Preparation 5,8-Diamino-5'-aryl(ethyl)-1,4'-General the of dihydrospiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-ones 3. To a stirred suspension of pyrazin-2(1H)-one-5,6-dicarbonitrile 1 (1.89 mmol, 1.0 equiv) in n-BuOH (20 mL) a 64% solution of hydrazine hydrate (5.62 mmol, 3.0 equiv) was added at rt. The reaction mixture was stirred for 2 h with heating at reflux. The reaction mixture was allowed to cool to room temperature and precipitate produced was filtered, washed with water (3×5mL), dried in air to give pure product 3a-e. The filtrate was evaporated to dryness and the resulting residue was crystallized from DMF (5 mL) to afford an additional portion of the product **3a-e**. In the cases of synthesis **3f-I** the reaction mixture was stirred for 12 h. Precipitate produced during the rection was filtered, washed with water $(3 \times 5 \text{mL})$, dried in air to give pure product **3f-I**. The filtrate was evaporated to dryness and the resulting residue was crystallized from DMF (5 mL) to afford an additional portion of the product 3f-l.

5,8-Diamino-5'-phenyl-1,2',4,4'-tetrahydro-3*H***-spiro[pyrazino[2,3-***d***]pyridazine-2,3'-pyrazol]-3-one (3a)**. The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6dicarbonitrile **1a** (0.50 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.57 g, (97%); yellow solid; mp 195–196 °C. IR (KBr, cm⁻¹): v_{max} 3411, 3244, 3160, 3088, 2958, 2928, 2858, 1696, 1666, 1651, 1578, 1522, 1497, 1456, 1384, 1369, 1354, 1312, 1254, 1095, 1045, 989, 865, 790, 768, 727, 695, 661, 586, 471. Anal. Calcd. for C₁₄H₁₄N₈O: C, 54.19; H, 4.55; N, 36.11. Found: C, 54.22; H, 4.52; N, 36.09%. NMR data for **3a:** ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 10.41 (s, 1H, NH(4)-PP), 8.25 (s, 1H, NH(2)-Py), 7.68 (dd, *J* = 7.4 Hz, *J* = 1.5 Hz,2H, H2/H6-Ar), 7.42 (dd, *J* = 7.4 Hz, *J* = 7.4 Hz, 2H, H3/H5-Ar), 7.35 (ddd, *J* = 7.4 Hz, *J* = 7.2 Hz, *J* = 1.2 Hz, 1H, H4-Ar), 7.22 (s, 1H, NH(1)-PP), 5.43 (brs, 2H, NH₂5-PP), 5.30 (brs, 2H, NH₂8-PP), 4.00 and 3.12 (both d, *J* = 17.4 Hz, 2H, CH₂4-Py). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 163.0 (C3-PP), 147.1 (C5-Py), 145.7 (C8-PP), 144.6 (C5-PP), 132.7 (C1-Ar), 128.5 (C3/C5-Ar), 128.3 (C4-Ar), 125.4 (C2/C6-Ar), 117.9 (C8a-PP), 109.7 (C4a-PP), 77.6 (C3-Py), 41.7 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO*d*₆): δ 330.0 (N1-Py), 304.2 (N7-PP), 297.6 (N6-PP), 157.7 (N2-Py), 80.9 (N1-PP), 57.4 (NH₂8-PP), 55.2 (NH₂5-PP). The signal of (N4-PP) has not been observed.

5,8-Diamino-5'-(4-chlorophenyl)-1,4'-dihydrospiro[pyrazino[2,3-*d***]pyridazine-2,3'-pyrazol]-3(4H)-one (3b)**. The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6dicarbonitrile **1b** (0.56 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.53 g, (82%); beige solid; mp 238–239 °C. IR (KBr, cm⁻¹): v_{max} 3317, 3168, 2963, 2872, 1690, 1647, 1619, 1600, 1519, 1498, 1449, 1409, 1377, 1319, 1250, 1095, 1038, 1012, 986, 920, 869, 824, 730, 686, 653, 589, 532, 507. Anal. Calcd. for C₁₄H₁₃ClN₈O: C, 48.77; H, 3.80; N, 32.50. Found: C, 48.72; H, 3.75; N, 32.47%. NMR data for **3b**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 10.21 (s, 1H, NH(4)-PP), 8.37 (s, 1H, NH(2)-Py), 7.68 (d, *J* = 8.6 Hz, 2H, H2/H6-Ar), 7.47 (d, *J* = 8.6 Hz, 2H, H3/H5-Ar), 7.17 (s, 1H, NH(1)-PP), 5.34 (brs, 2H, NH₂5-PP), 5.22 (brs, 2H, NH₂8-PP), 3.99 and 3.10 (both d, *J* = 17.6 Hz, 2H, CH₂4-Py). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 162.9 (C3-PP), 146.0 (C5-PP), 145.7 (C5-Py), 144.7 (C8-PP), 132.6 (C4-Ar), 131.6 (C1-Ar), 128.6 (C3/C5-Ar), 127.0 (C2/C6-Ar), 117.5 (C8a-PP), 109.7 (C4a-PP), 77.8 (C3-Py), 41.6 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ 330.7 (N1-Py), 308.6 (N7-PP), 297.6 (N6-PP), 160.0 (N2-Py), 81.9 (N1-PP), 56.4 (NH₂8-PP), 55.3 (NH₂5-PP). The signal of (N4-PP) has not been observed.

5,8-Diamino-5'-(4-bromophenyl)-1,4'-dihydrospiro[pyrazino[2,3-*d***]pyridazine-2,3'-pyrazol]-3(4H)-one (3c)**. The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6dicarbonitrile **1c** (0.65 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.59 g, (80%); beige solid; mp 215–216 °C. IR (KBr, cm⁻¹): v_{max} 3318, 3169, 2962, 2930, 2868, 1686, 1647, 1618, 1518, 1492, 1447, 1398, 1375, 1317, 1249, 1074, 1008, 986, 920, 867, 820, 728, 670, 587, 530. Anal. Calcd. for C₁₄H₁₃BrN₈O: C, 43.20; H, 3.37; N, 28.79. Found: C, 43.25; H, 3.33; N, 28.75%. NMR data for **3c**: ¹H NMR (500.1 MHz, DMSO*d*₆): δ 10.47 (s, 1H, NH(4)-PP), 8.39 (s, 1H, NH(2)-Py), 7.62 (d, *J* = 8.4 Hz, 2H, H3/H5-Ar), 7.60 (d, *J* = 8.6 Hz, 2H, H2/H6-Ar), 7.31 (s, 1H, NH(1)-PP), 5.55 (brs, 2H, NH₂5-PP), 5.39 (brs, 2H, NH₂8-PP), 3.99 and 3.11 (both d, *J* = 17.6 Hz, 2H, CH₂4-Py). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 162.7 (C3-PP), 146.1 (C5-Py), 145.6 (C8-PP), 144.5 (C5-PP), 131.9 (C1-Ar), 131.5 (C3/C5-Ar), 127.3 (C2/C6-Ar), 121.3 (C1-Ar), 118.1 (C8a-PP), 109.8 (C4a-PP), 77.7 (C3-Py), 41.5 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO- d_6): δ 331.4 (N1-Py), 308.6 (N7-PP), 297.6 (N6-PP), 162.6 (N2-Py), 81.4 (N1-PP), 56.2 (N8-PP), 55.6 (N5-PP). The signal of (N4-PP) has not been observed.

5,8-Diamino-5'-(*p***-tolyl)-1,4'-dihydrospiro[pyrazino[2,3-***d***]pyridazine-2,3'-pyrazol]-3(***4H***)-one (3d**). The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6-dicarbonitrile **1d** (0.53 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.54 g, (89%); gray solid; mp 239–240 °C. IR (KBr, cm⁻¹): v_{max} 3319, 3166, 2966, 2923, 2871, 1691, 1647, 1619, 1518, 1482, 1449, 1377, 1319, 1250, 1201, 1188, 1092, 987, 920, 871, 816, 729, 686, 674, 583, 534. Anal. Calcd. for C₁₅H₁₆N₈O: C, 55.55; H, 4.97; N, 34.55. Found: C, 55.52; H, 4.95; N, 34.52%. NMR data for **3d**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 10.21 (s, 1H, NH(4)-PP), 8.13 (s, 1H, NH(2)-Py), 7.57 (d, *J* = 8.0 Hz, 2H, H2/H6-Ar), 7.22 (d, *J* = 8.0 Hz, 2H, H3/H5-Ar), 7.14 (s, 1H, NH(1)-PP), 5.33 (brs, 2H, NH₂5-PP), 5.22 (brs, 2H, NH₂8-PP), 3.97 and 3.08 (both d, *J* = 17.4 Hz, 2H, CH₂4-Py), 2.33 (s, 3H, H4a-Ar). ¹³C {¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 163.1 (C3-PP), 147.3 (C5-Py), 145.7 (C8-PP), 109.7 (C4a-PP), 77.5 (C3-Py), 41.9 (C4-Py), 20.9 (C4a-Ar). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ 326.6 (N1-Py), 308.7 (N7-PP), 297.8 (N6-PP), 158.6 (N2-Py), 81.1 (N1-PP), 56.1 (N8-PP), 56.0 (N5-PP). The signal of (N4-PP) has not been observed.

5,8-Diamino-5'-(4-methoxyphenyl)-1,4'-dihydrospiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-one (3e). The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6dicarbonitrile **1e** (0.56 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.60 g, (94%); yellow solid; mp 232–233 °C. IR (KBr, cm⁻¹): v_{max} 3318, 3170, 2962, 2936, 2838, 1690, 1648, 1611, 1518, 1482, 1450, 1422, 1373, 1354, 1318, 1255, 1177, 1092, 1043, 1021, 986, 918, 871, 828, 747, 686, 674, 584, 540. Anal. Calcd. for $C_{15}H_{16}N_8O_2$: C, 52.94; H, 4.74; N, 32.92. Found: C, 52.92; H, 4.75; N, 32.89%. NMR data for **3e**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 10.30 (s, 1H, NH(1)-PP), 8.01 (s, 1H, NH(2)-Py), 7.62 (d, *J* = 9.9 Hz, 2H, H2/H6-Ar), 7.19 (s, 1H, NH(4)-PP), 6.93 (d, *J* = 9.9 Hz, 2H, H3/H5-Ar), 5.42 (brs, 2H, NH₂5-PP), 5.29 (brs, 2H, NH₂8-PP), 3.79 (s, 3H, CH₃-Ar), 3.97 and 3.08 (both d, *J* = 17.4 Hz, 2H, CH₂4-Py). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 163.1 (C3-PP), 159.5 (C4-Ar), 147.3 (C5-Py), 145.7 (C5-PP), 144.6 (C8-PP), 126.9 (C2/C6-Ar), 125.3 (C1-Ar), 117.9 (C8a-PP), 114.0 (C3/C5-Ar), 109.8 (C4a-PP), 77.4 (C3-Py), 55.2 (CH3-Ar), 42.0 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ 324.9 (N1-Py), 305.4 (N7-PP), 157.6 (N2-Py), 80.5 (N4-PP), 56.3 (N8-PP), 48.1 (N5-PP). The signals of (N1-PP) and (N6-PP) have not been observed.

5,8-Diamino-5'-(4-hydroxyphenyl)-1,4'-dihydrospiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4*H***)-one (3f**). The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6dicarbonitrile **1f** (0.53 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.42 g, 67%; brown solid; mp 237-238 °C. IR (KBr, cm⁻¹): v_{max} 3438, 3411, 3202, 2928, 2882, 2810, 1696, 1652, 1611, 1578, 1520, 1495, 1457, 1411, 1389, 1357, 1311, 1299, 1275, 1255, 1211, 1176, 1096, 1044, 996, 917, 877, 836, 795, 737, 661, 624, 540. Anal. Calcd. for C₁₄H₁₄N₈O₂: C, 51.53; H, 4.32; N, 34.34. Found: C, 51.55; H, 4.35; N, 34.31. NMR data for **3f**:¹H NMR (500.1 MHz, DMSO-*d*₆): δ 7.89 (s, 1H, NH(2)-Py), 7.51 (d, *J* = 8.7 Hz, 2H, H2/H6-Ar), 7.13 (s, 1H, NH(1) PP), 6.80 (d, *J* = 8.7 Hz, 2H, H3/H5-Ar), 5.33 (brs, 2H, NH₂5-PP), 5.24 (brs, 2H, NH₂8-PP), 3.93 and 3.04 (both d, *J* = 17.4 Hz, 2H, CH₂4-Py). The signals of (HO-Ar) and (NH(4) PP) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 163.2 (C3-PP), 157.9 (C4-Ar), 147.8 (C5-Py), 145.8 (C5-PP), 144.8 (C8-PP), 127.1 (C2/C6-Ar), 123.8 (C1-Ar), 117.8 (C8a-PP), 115.4 (C3/C5-Ar), 109.8 (C4a-PP), 77.4 (C3-Py), 42.1 (C4-Py).

5,8-Diamino-5'-(4-nitrophenyl)-1,4'-dihydrospiro[pyrazino[2,3-*d***]pyridazine-2,3'-pyrazol]-3(4***H***)-one (3g). The compound was obtained by the same procedure starting from pyrazin-2(1***H***)-one-5,6dicarbonitrile 1g** (0.58 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.50 g, (74%); orange solid; mp 223–224 °C. IR (KBr, cm⁻¹): v_{max} 3334, 1612, 1518, 1452, 1377, 1342, 848, 537. Anal. Calcd. for C₁₄H₁₃N₉O₃: C, 47.32; H, 3.69; N, 35.48. Found: C, 47.31; H, 3.72; N, 35.46%. Data for **3g**: ¹H NMR (500.1 MHz, DMSO d_6): δ 8.24 (d, *J* = 9.0 Hz, 2H, H3/H5-Ar), 7.88 (d, *J* = 9.0 Hz, 2H, H2/H6-Ar), 6.11 (s, 1H, N(2)H-Py), 5.48 (s, 1H, NH(4) PP), 5.40 (brs, 2H, NH₂5-PP), 5.27 (brs, 2H, NH₂8-PP), 4.05 and 3.17 (both d, *J* = 17.6, 2H, CH₂4-Py). The signal of (NH(1) PP) has not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO d_6): δ 163.3 (C3-PP), 146.4 (C4-Ar), 145.7 (C8-PP), 144.7 (C5-PP), 144.5 (C5-Py), 139.2 (C1-Ar), 125.9 (C2/C6-Ar), 123.9 (C3/C5-Ar), 117.5 (C8a-PP), 109.8 (C4a-PP), 78.2 (C3-Py), 41.1 (C4-Py).

5,8-Diamino-5'-(2-nitrophenyl)-1,4'-dihydrospiro[pyrazino[2,3-*d***]pyridazine-2,3'-pyrazol]-3(4***H***)-one (3h).** The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6-

S(4*H*)-one (51). The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-3,6dicarbonitrile **1h** (0.58 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.46 g, (68%); yellow solid; mp 215–25816 °C. IR (KBr, cm⁻¹): v_{max} 3322, 3174, 1613, 1525, 1392, 1350, 1291, 855, 753, 514. Anal. Calcd. for C₁₄H₁₃N₉O₃: C, 47.32; H, 3.69; N, 35.48. Found: C, 47.37; H, 3.65; N, 35.51%. NMR data for **3h**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 8.72 (s, 1H, N(2)H-Py), 7.87 (dd, *J* = 7.9 Hz, *J* = 1.1 Hz, 1H, H3-Ar), 7.74 (dd, J = 7.9 Hz, J = 1.1 Hz, 1H, H6-Ar), 7.72 (dd, J = 7.9 Hz, J = 7.8 Hz, 1H, H5-Ar), 7.63 (dd, J = 7.9 Hz, J = 1.1 Hz, 1H, H4-Ar), 6.95 (brs, 2H, NH₂5-PP), 6.75 (brs, 2H, NH₂8-PP), 4.02 and 3.16 (both d, J = 17.6, 2H, CH₂4-Py). The signals of (NH(4) PP) and (NH(6) PP) have not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO- d_6): δ 164.9 (C3-PP), 153.5 (C8-PP), 150.03 (C5-PP), 149.1 (C8a-PP), 148.5 (C2-Ar), 142.2 (C5-Py), 134.6 (C1-Ar), 132.6 (C5-Ar), 130.3 (C4-Ar), 129.2 (C6-Ar), 124.0 (C6-Ar), 100.3 (C4a-PP), 77.5 (C3-Py), 41.9 (C4-Py).

5,8-Diamino-5'-(3-nitrophenyl)-1,4'-dihydrospiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4*H***)-one (3i). The compound was obtained by the same procedure starting from pyrazin-2(1***H***)-one-5,6dicarbonitrile 1i** (0.58 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.48 g, (71%); yellow solid; mp 257–258 °C. IR (KBr, cm⁻¹): v_{max} 3325, 1616, 1526, 1349, 1092, 1061, 808, 738, 679. Anal. Calcd. for C₁₄H₁₃N₉O₃: C, 47.32; H, 3.69; N, 35.48. Found: C, 47.30; H, 3.71; N, 35.45%. NMR data for **3i**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 8.68 (s, 1H, N(2)H-Py), 8.42 (d, *J* = 1.7 Hz, 1H, H2-Ar), 8.19 (dd, *J* = 8.0, *J* = 1.7 Hz, 1H, H4-Ar), 8.08 (d, *J* = 8.0 Hz, 1H, H6-Ar), 7.72 (dd, *J* = 8.0 Hz, *J* = 8.0 Hz, 1H, H5-Ar), 6.43 (brs, 2H, NH₂5-PP), 6.15 (brs, 2H, NH₂8-PP), 4.07 and 3.22 (both d, *J* = 17.7, 2H, CH₂4-Py). The signals of (NH(4) PP, and NH(1) PP) havt not been observed. ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 161.9 (C3-PP), 148.1 (C3-Ar), 145.5 (C5-Py), 145.2 (C5-PP), 143.6 (C8-PP), 134.2 (C1-Ar), 131.6 (C6-Ar), 130.3 (C5-Ar), 122.7 (C4-Ar), 120.3 (C8a-PP), 119.4 (C2-Ar), 110.0 (C4a-PP), 77.8 (C3-Py), 41.1 (C4-Py).

5,8-Diamino-5'-(pyridin-2-yl)-1,4'-dihydrospiro[pyrazino[2,3-*d***]pyridazine-2,3'-pyrazol]-3(4***H***)-one (3j).** The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6-dicarbonitrile **1j** (0.50 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.53 g, (89%); brown solid solid; mp > 400 °C. IR (KBr, cm⁻¹): v_{max} 3324, 3210, 1615, 1510, 1478, 1454, 1389, 1360, 1323, 1256, 1196, 1152, 1073, 1052, 1032, 997, 917, 872, 781, 743, 669, 623, 592, 544. Anal. Calcd. for C₁₃H₁₃N₉O: C, 50.16; H, 4.21; N, 40.49. Found: C, 50.19; H, 4.19; N, 40.45%. NMR data for **3j**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 8.61 (s, 1H, NH(2)-Py), 8.58 (d, *J* = 5.0 Hz, 1H, H3-Ar), 7.89 (d, *J* = 7.7 Hz, 1H, H6-Ar), 7.80 (ddd, *J* = 7.4 Hz, *J* = 7.7 Hz, *J* = 1.1 Hz, 1H, H5-Ar), 7.33 (ddd, *J* = 7.4 Hz, *J* = 5.0 Hz, 2H, CH₂4-Py). ¹³C {¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 162.9 (C3-PP), 151.8 (C1-Ar), 149.0 (C3-Ar), 148.1 (C5-Py), 145.7 (C5-PP), 144.8 (C8-PP), 136.3 (C5-Ar), 122.9 (C4-Ar), 119.5 (C6-Ar), 117.4 (C8a-PP), 109.8 (C4a-PP), 77.5 (C3-Py), 41.3 (C4-Py).

5,8-Diamino-5'-thienyl-1,4'-dihydrospiro[pyrazino[2,3-d]pyridazine-2,3'-pyrazol]-3(4H)-one (3k) and (Z)-5,8-diamino-3-(2-hydrazinevlidene-2-(thiophen-2-yl)ethyl)pyrazino[2,3-d]pyridazin-2(1H)-one (3'k) were obtained and characterized as the mixture of tautomers in percentage ratio 64:36, respectively. The compound was obtained by the same procedure starting from pyrazin-2(1H)-one-5,6dicarbonitrile 1k (0.51 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.52 g, (87%); orange solid solid; mp 275–276 °C. IR (KBr, cm⁻¹): v_{max} 3314, 3158, 1609, 1507, 1455, 1407, 1353, 1329, 1284, 1062, 709, 515. Anal. Calcd. for C₁₂H₁₂N₈OS: C, 45.56; H, 3.82; N, 35.42; S, 10.13. Found: C, 45.59; H, 3.87; N, 35.39; S, 10.17%. NMR data for **3k**: ¹H NMR (500.1 MHz, DMSO- d_6): δ 11.0 (s, 1H, NH(1) PP), 10.21 (brs, 1H, 4.9 Hz, J = 3,8 Hz, 1H, H4-Th), 6.62 (brs, 2H, NH₂5-PP), 6.24 (brs, 2H, NH₂8-PP), 4.02 and 3.16 (both d, $J = 17.5 \text{ Hz}, 2H, CH_24-Py)$. ¹³C{¹H} NMR (125.8 MHz, DMSO- d_6): δ 162.2 (C3-PP), 143.9 (C5-PP), 143.9 (C8-PP), 143.6 (C5-Py), 143.4 (C2-Th), 132.7 (C5-Th), 128.5 (C4-Th), 128.4 (C8a-PP), 127.7 (C3-Th), 110.1 (C4a-PP), 77.5 (C3-Py), 42.5 (C4-Py). NMR data for **3'k**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ8.07 (dd, *J* = 3.8 Hz, *J* = 1.1 Hz, 1H, H3-Th), 7.99 (dd, *J* = 4.9 Hz, *J* = 1.1 Hz, 1H, H5-Th), 7.25 (dd, *J* = 4.9 Hz, J = 3.8 Hz, 1H, H4-Th), 6.42 (s, 1H, (N(1)H)), 5.95 (brs, 2H, NH₂), 4.35 (s, 2H, H\alpha-Sp). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ189.1 (Cα-Sp), 166.3 (C2-PP), 156.2 (C3-PP), 145.2 (C2-Th), 134.7 (C5-Th), 133.7 (C3-Th), 128.7 (C4-Th), 121.4 (C5-PP), 120.1 (C6-PP), 116.1 (C5-PP), 115.5 (C8-PP), 44.9 (Ca-Sp).

5,8-Diamino-5'-(ethyl)-1,4'-dihydrospiro[pyrazino[2,3-*d***]pyridazine-2,3'-pyrazol]-3(4***H***)-one (3**). The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6-dicarbonitrile **11** (0.41 g, 1.89 mmol, 1.0 equiv) and hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (20 mL) following the general procedure. Yield 0.46 g, 91%; light-brown solid; mp 231-232 °C. IR (KBr, cm⁻¹): v_{max} 3314, 3203, 2972, 2937, 2878, 1699, 1618, 1509, 1458, 1378, 1326, 1259, 1201, 1154, 1106, 1063, 1049, 988, 914, 870, 816, 729, 680, 658, 602, 572, 561, 514. Anal. Calcd. for C₁₀H₁₄N₈O: C, 45.80; H, 5.38; N, 42.72. Found: C, 45.83; H, 5.33; N, 42.78. NMR data for **3**I: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 8.09 (s, 1H, H N(4) PP), 7.46 (s, 1H, NH(2)-Py), 6.61 (brs, 2H, NH₂5-PP), 6.40 (brs, 2H, NH₂8-PP), 3.62 and 2.73 (both d, *J* = 17.7 Hz, 2H, CH₂4-Py), 2.30 (q, *J* = 7.5 Hz, 2H, CH₃CH₂-Py). The signal of (HN(1)PP) has not been observed. ¹³C {¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 162.4 (C3-PP), 153.1 (C5-PP), 145.1 (C5-PP), 143.1 (C8-PP), 121.4 (C8a-PP), 110.0 (C4a-PP), 76.8 (C3-Py), 43.8 (C4-Py), 22.7 (C5a-Py), 10.7 (C5b-Py).

General Procedure for the Preparation of 5'-Aryl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4H)-one-5,6-dicarbonitrile. To a stirred suspension of pyrazin-2(1H)-one-5,6-dicarbonitriles 1 (1.89 mmol, 1.0 equiv) in *n*-BuOH (20 mL) a 64% solution of hydrazine hydrate (1.9 mmol, 1.0 equiv) was added at rt. The reaction mixture was stirred for 12 h. Precipitate produced during the rection was filtered, washed with water (3×5mL), dried in air to give pure product 4. The filtrate was evaporated to dryness to afford an additional portion of the product 4. In the case of the synthesis 4c EtOH was used as solvent instead of *n*-BuOH.

5'-Phenyl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4H)-one-5,6-dicarbonitrile (4a). The compound was obtained by the same procedure starting from pyrazin-2(1*H*)-one-5,6-dicarbonitrile 1a (0.5 g, 1.89 mmol, 1.0 equiv) in *n*-BuOH (20 mL) a 64% solution of hydrazine hydrate (0.09 g, 0.08 mL, 1.89 mmol, 1.0 equiv) following the general procedure. Yield 0.48 g, 90%; light-brown solid; mp 218–219 °C.

IR (KBr, cm⁻¹): v_{max} 3325, 3185, 3081, 2914, 2776, 2225, 1698, 1636, 1599,1572, 1528, 1492, 1446, 1411, 1378, 1355, 1297, 1249, 1198, 1002, 875, 865, 828, 785, 754, 741, 691, 665, 632, 594, 544, 483. Anal. Calcd. for C₁₄H₁₀N₆O: C, 60.43; H, 3.62; N, 30.20. Found: C, 60.39; H, 3.65; N, 30.23. NMR data for **4a**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 11.30 (s, 1H, N(4)H-Pyr), 9.52 (brs, 1H, N(2)H-Py), 8.98 (s, 1H, H1-Pyr), 7.65 (dd, *J* = 8.0 Hz, *J* = 1.3 Hz, 2H, H2/H6-Ar), 7.41 (dd, *J* = 8.0 Hz, *J* = 8.0 Hz, 2H, H3/H5-Ar), 7.36 (dd, *J* = 8.0 Hz, *J* = 7.9 Hz, 1H, H4-Ar), 3.87 and 3.05 (both d, *J* = 17.6 Hz, 2H, CH₂4-Py). ¹³C {¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 160.1 (C3-Pyr), 148.0 (C5-Py), 132.2 (C1-Ar), 128.6 (C4-Ar), 128.5 (C3/C5-Ar), 125.6 (C2/C6-Ar), 113.1 (C5a-Pyr), 112.6 (C6a-Pyr), 110.6 (C6-Pyr), 98.3 (C5-Pyr), 77.0 (C2-Pyr/C3-Py), 40.8 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ 328.2 (N1-Py), 129.4 (N4-Pyr), 107.6 (N2-Py), 96.6 (N1-Pyr). The signals of (CN5-Pyr), (CN6-Pyr) have not been observed.

5'-Nitrophenyl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4*H***)-one-5,6-dicarbonitrile (4b). The compound was obtained by the same procedure starting from pyrazin-2(1***H***)-one-5,6-dicarbonitrile 1g** (0.58 g, 1.89 mmol, 1.0 equiv) in *n*-BuOH (20 mL) a 64% solution of hydrazine hydrate (0.09 g, 0.08 mL, 1.89 mmol, 1.0 equiv) following the general procedure. Yield 0.57 g, 94%; red solid; mp 271–272 °C. IR (KBr, cm⁻¹): v_{max} 3424, 3063, 2907, 2227, 1694, 1619, 1585, 1541, 1528, 1483, 1458, 1447, 1351, 1250, 1208, 1156, 1051, 816, 780, 691, 659, 631. Anal. Calcd. for C₁₄H₉N₇O₃: C, 52.02; H, 2.81; N, 30.33. Found: C, 51.91; H, 2.83; N, 30.39. NMR data for **4b**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 14.18 (s, 1H, N(2)H-Py), 11.39 (s, 1H, H1-Pyr), 9.02 (s, 1H, H1-Pyr), 8.25 (d, *J* = 9.0 Hz, 2H, H3/H5-Ar), 7.87 (d, *J* = 9.0 Hz, 2H, H2/H6-Ar), 3.93 and 3.11 (both d, *J* = 17.8 Hz, 2H, CH₂4-Py). ¹³C {¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 159.8 (C3-Pyr), 146.7 (C4-Ar), 145.7 (C5-Py), 138.7 (C1-Ar), 126.3 (C2/C6-Ar), 124.4 (C3/C5-Ar), 113.0 (CN5-Pyr), 112.6 (CN6-Pyr), 110.4 (C6-Pyr), 98.5 (C5-Pyr), 77.5 (C2-Pyr/C3-Py), 40.3 (C4-Py).

2',5'-Diphenyl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4H)-one-5,6-dicarbonitrile 4c. To a stirred suspension of pyrazin-2(1H)-one-5,6-dicarbonitrile 1a (0.5 g, 1.89 mmol, 1.0 equiv) in EtOH (20 mL) a phenyl hydrazine (0.20 g, 0.18 mL, 1.89 mmol, 1.0 equiv) was added at rt. The reaction mixture was stirred for 12 h. The reaction mixture filtrate was evaporated to dryness to afford pure product 4c. Yield 0.66 g, 98%; red solid; mp 255–256 °C. IR (KBr, cm⁻¹): v_{max} 3426, 3066, 2901, 2230, 1698, 1623, 1596, 1584, 1543, 1509, 1481, 1458, 1439, 1352, 1253, 1205, 1159, 1055, 816, 782, 698, 662, 638. Anal. Calcd. for C₂₀H₁₄N₆O: C, 67.79; H, 3.98; N, 23.72. Found: C, 67.81; H, 3.95; N, 23.69. NMR data for **4c**: ¹H NMR $(500.1 \text{ MHz}, \text{DMSO-}d_6)$: $\delta 11.50$ (s, 1H, H4-P), 9.10 (s, 1H, H1-P), 7.74 (dd, J = 8.0 Hz, J = 1.3 Hz, 2H,H2/H6-Ar), 7.47 (dd, J = 8.0 Hz, J = 8.0 Hz, 2H, H3/H5-Ar), 7.43 (dd, J = 8.0 Hz, J = 8.0 Hz, 1H, H4-Ar), 7.36 (dd, J = 8.0 Hz, J = 8.0 Hz, 2H, H3/H5-Ar2), 7.16 (dd, J = 8.0 Hz, J = 8.0 Hz, 1H, H4-Ar2), 7.14 (dd, J = 8.0 Hz, J = 8.0 Hz J = 8.0 Hz, J = 1.3 Hz, 2H, H2/H6-Ar2), 4.08 and 3.54 (both d, J = 17.9 Hz, 2H, CH₂4-Py). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 160.8 (C3-P), 147.7 (C5-Py), 142.4 (C1-Ar2), 131.5 (C1-Ar), 129.3 (C4-Ar), 129.0 (C3/C5-Ar2), 128.7 (C3/C5-Ar), 125.8 (C2/C6-Ar), 123.6 (C4-Ar2), 119.3 (C2/C6-Ar2), 112.5 (C5a-P), 111.7 (C6a-P), 110.5 (C6-P), 96.5 (C5-P), 80.7 (C2-P/C3-Py), 46.6 (C4-Py). ¹⁵N NMR (50.7 MHz, DMSO-d₆): δ 327.1 (N1-Py), 170.7 (N2-Py), 131.1 (N4-P), 92.9 (N1-P). The signals of (CN5-Pyr), (CN6-Pyr) have not been observed.

General Procedure for the Preparation of 2-(3-Phenyl(and 1,3-diphenyl)-1*H*-pyrazol-5yl)pyrrolo[3,4-*d*]imidazol-4,6(1*H*,5*H*)-dione hydrates 5a,b. To a stirred suspension of pyrazin2(1H)-one-5,6-dicarbonitriles **4** (1.8 mmol) in *n*-BuOH (5 mL) was added 0.055 g (5.61 mmol) of concentrated H₂SO₄ at rt. The reaction mixture was stirred with heating at reflux for 6 h. The reaction mixture was allowed to cool to room temperature and precipitate produced was filtered, washed with washed with 5% NaHCO₃ solution, dried in air to give pure product **5**. The filtrate was evaporated to dryness and the resulting residue was washed with washed with 5% NaHCO₃ solution, to afford an additional portion of the product **5**.

2-(3-Phenyl-1*H***-pyrazol-5-yl)pyrrolo[3,4-***d***]imidazol-4,6(1***H***,5***H***)-dione hydrate (5a). The compound was obtained by the same procedure starting from 5'-phenyl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4***H***)-one-5,6-dicarbonitrile 4a** (0.5 g, 1.8 mmol) in *n*-BuOH (10 mL)/H₂SO₄ (0.055 g, 5.61 mmol) following the general procedure. Yield 0.50 g, 100%; brown solid; mp 273-275 °C. IR (KBr): v_{max} 3451, 3356, 3339, 3263, 1787, 1677, 1652, 1559, 1544, 1485, 1466, 1374, 1360, 1265, 1196, 992, 962, 851, 820, 770, 748, 692, 671, 651, 634, 453, 424. Anal. Calcd. for C₁₄H₉N₅O₂: C, 60.21; H, 3.25; N, 25.08. Found: C, 60.19; H, 3.28; N, 25.15. NMR data for **5a**: ¹H NMR (500.1 MHz, DMSO-*d*₆): δ 13.83 (brs, 1H, NH(5)-PI), 10.30 (s, 1H, NH(1)-PI), 7.81 (d, *J* = 7.4 Hz, 2H, H2/H6-Ar1), 7.47 (dd, *J* = 7.4 Hz, *J* = 7.4 Hz, 2H, H3/H5-Ar), 7.38 (dd, *J* = 7.4 Hz, *J* = 7.4 Hz, 1H, H4-Ar1), 7.20 (brs, 1H, H4-Py), 6.60(brs, 2H, H₂O). ¹³C {¹H} NMR (125.8 MHz, DMSO-*d*₆): δ 169.8 (C6-PI), 168.0 (C4-PI), 156.6 (C6a-PI), 146.6 (C3-Py), 144.1 (C5-Py), 136.1 (C3a-PI), 133.1 (C1-Ar1), 129.0 (C3/C5-Ar1), 128.5 (C4-Ar1), 125.3 (C2/C6-Ar1), 103.0 (C4-Py), 99.6 (C2-PI).

2-(1,3-Diphenyl-1H-pyrazol-5-yl)pyrrolo[3,4-d]imidazol-4,6(1H,5H)-dione hvdrate The (5b). compound was obtained from 2',5'-diphenyl-1,4'-dihydrospiro[pyrazine-2,3'-pyrazol]-3(4H)-one-5,6dicarbonitrile 4c (0.64 g, 1.8 mmol) in *n*-BuOH (10 mL)/ H_2SO_4 (0.055 g, 5.61 mmol) following the general procedure. Yield 0.53 g, 83%; yellow solid; mp 229-230 °C. IR (KBr, cm⁻¹): v_{max} 3318, 1775, 1723, 1659, 1563, 1540, 1524, 1497, 1459, 1366, 1287, 1257, 850, 769, 743, 693. Anal. Calcd. for C₂₀H₁₃N₅O₂: C, 67.60; H, 3.69; N, 19.71. Found: C, 67.53; H, 3.72; N, 19.76%. NMR data for 5b:¹H NMR (500.1 MHz, DMSO- d_6): $\delta 10.28$ (s, 1H, NH(5)-PI), 9.81 (s, 1H, NH(1)-PI), 7.86 (d, J = 7.4 Hz, 2H, H2/H6-Ar1), 7.56 (s, 1H, H4-Py), 7.55 (d, J = 7.8 Hz, 2H, H2/H6-Ar2), 7.48 (dd, J = 8.0 Hz, J = 7.4 Hz, 4H, H3/H5-Ar1 and H3/H5-Ar2), 7.42 (dd, *J* = 7.8 Hz, *J* = 7.8 Hz, 1H, H4-Ar2), 7.39 (dd, *J* = 7.4 Hz, *J* = 7.4 Hz, 1H, H4-Ar1), 6.66 (brs, 2H, H₂O). ¹³C{¹H} NMR (125.8 MHz, DMSO-*d*₆): δ169.6 (C6-Pi), 167.6 (C4-Pi), 157.3 (C6a-PI), 150.2 (C3-Py), 140.1 (C1-Ar2), 139.4 (C3a-Pi), 137.5 (C5-Py), 132.1 (C1-Ar1), 128.9 (C3/C5-Ar2), 128.6 (C3/C5-Ar1), 128.3 (C4-Ar2), 127.8 (C4-Ar1), 125.2 (C2/C6-Ar2), 124.8 (C2/C6-Ar1), 107.1 (C4-Py), 98.2 (C2-Pi). ¹⁵N NMR (50.7 MHz, DMSO-*d*₆): δ311.0 (N1-Py), 219.4 (N2-Py), 139.1 (N5-Pi), 113.3 (N1-Pi), 73.5 (N3-Pi).

General Procedure for the Preparation of 2-(5-Aryl)-1*H*-pyrazol-3-yl)-5*H*-imidazo[4,5*d*]pyridazine-4,7-diamine hydrates 2a,g from Spiro[pyrazino[2,3-*d*]pyridazine-2,3'-pyrazol]-3(4*H*)-ones 4a,b. To a stirred suspension of pyrazin-2(1*H*)-one-5,6-dicarbonitrile 4a,b (1.8 mmol, 1.0 equiv) and 64% solution of hydrazine hydrate (0.28 g, 0.27 mL, 5.67 mmol, 3.0 equiv) in *n*-BuOH (10 mL) was added 0.055 g (5.61 mmol) of concentrated H_2SO_4 at rt. The reaction mixture was stirred with heating at reflux for 6 h. The reaction mixture was allowed to cool to room temperature and precipitate produced was filtered, washed with washed with 5% NaHCO₃ solution, dried in air to give pure product 2a,g. The filtrate was evaporated to dryness and the resulting residue was washed with washed with 5% NaHCO₃ solution, to afford an additional portion of the product 2a,g.

References

1) M. Moloudi, H. Kabirifard, S. Piri, E. Naghizadeh, Synthesis of 2,3-dicyanopyrazine and ethyl 5-amino-4,6-dicyanobiphenyl-3-carboxylate derivatives from ethyl aroylpyruvates, *Heterocycl. Commun.*, 2018, **24**, 99–102.

2) Ş. H. Üngören, E. Dilekoğlu, İ. Koca, Synthesis of Pyrazine-2,3-dicarbonitrile and 1,2,4-triazine-5(4*H*)one derivatives from furan-2,3-diones, *Chinese Chemical Letters*, 2013, **24**, 1130–1133.

3) D. D. Nekrasov, S. V. Koltsova, Yu. S. Andreichikov, Vzaimodeistvie Reacting 5-aryl-2,3-dihydrofuran-2,3-diones and N- and C-substituted nitrilamins, *Russ. Jour. Org. Chem.*, 1995, **31**, 591–594.

Figure S1. 1D ¹H NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S2. 1D ¹H NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S3. ¹³C{¹H} NMR spectrum of 1f, 1'f and 1''f in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S4. 1D ¹H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S5. 1D ¹H NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S6. ¹³C{¹H} NMR spectrum of 1g, 1'g and 1''g in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S7. 1D ¹H NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S8. 1D ¹H NMR spectrum of 1h and 1'h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S9. ¹³C{¹H} NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S10. 2D ¹H-¹H COSY NMR spectrum of of **1h** and **1'h** in DMSO- d_6 at T = 303 K.

Figure S11. 2D ¹H-¹³C HMBC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.

Figure S12. 2D 1H-¹³C HSQC NMR spectrum of of 1h and 1'h in DMSO- d_6 at T = 303 K.

Figure S13. 1D ¹H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S14. 1D ¹H NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S15. ¹³C{¹H} NMR spectrum of 1i, 1'i and 1''i in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S16. 1D ¹H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S17. 1D ¹H NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S18. ¹³C{¹H} NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S19. 2D ¹H-¹H COSY NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.

Figure S20. 2D ¹H-¹³C HMBC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.

Figure S21. 2D 1H-¹³C HSQC NMR spectrum of 1j and 1'j in DMSO- d_6 at T = 303 K.

Figure S22. 1D ¹H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S23. 1D ¹H NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S24. ¹³C{¹H} NMR spectrum of 1k, 1'k and 1''k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S25. 1D ¹H NMR spectrum of 11 in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S26. 1D ¹H NMR spectrum of 1l in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S27. ¹³C{¹H} NMR spectrum of 1l in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S28. 1D ¹H NMR spectrum of **2a** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S29. 1D ¹H NMR spectrum of 2a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S30. ¹³C{¹H} NMR spectrum of 2a in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S31. 1D ¹H NMR spectrum of 2b and 2'b in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S32. 1D ¹H NMR spectrum of 2b and 2'b in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S33. ¹³C{¹H} NMR spectrum of 2b and 2'b in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S34. 1D ¹H NMR spectrum of **2c** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S35. 1D ¹H NMR spectrum of 2c in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S36. ¹³C{¹H} NMR spectrum of 2c in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S37. 1D ¹H NMR spectrum of 2d in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S38. 1D ¹H NMR spectrum of 2d in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S39. ¹³C{¹H} NMR spectrum of 2d in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S40. 2D ¹H-¹H COSY NMR spectrum of **2d** in DMSO- d_6 at T = 303 K.

Figure S41. 2D ¹H-¹³C HMBC NMR spectrum of 2d in DMSO- d_6 at T = 303 K.

Figure S42. 2D 1H-¹³C HSQC NMR spectrum of 2d in DMSO- d_6 at T = 303 K.

Figure S43. 1D ¹H NMR spectrum of **2e** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S44. 1D ¹H NMR spectrum of 2e in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S45. ¹³C{¹H} NMR spectrum of 2e in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S46. 1D ¹H NMR spectrum of 2f and 2'f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S47. 1D ¹H NMR spectrum of 2f and 2'f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S48. ¹³C{¹H} NMR spectrum of 2f and 2'f in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S49. 1D ¹H NMR spectrum of 2g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S50. 1D ¹H NMR spectrum of 2g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S51. ¹³C{¹H} NMR spectrum of 2g in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S52. 1D ¹H NMR spectrum of 2h in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S53. 1D ¹H NMR spectrum of 2h in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S54. ¹³C{¹H} NMR spectrum of **2h** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S55. 1D ¹H NMR spectrum of 2i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S56. 1D ¹H NMR spectrum of 2i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S57. ¹³C{¹H} NMR spectrum of 2i in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S58. 1D ¹H NMR spectrum of 2j and 2'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S59. 1D ¹H NMR spectrum of 2j and 2'j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S60. ¹³C{¹H} NMR spectrum of 2j and 2'j in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S61. 1D ¹H NMR spectrum of 2k and 2'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S62. 1D ¹H NMR spectrum of 2k and 2'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S63. ¹³C{¹H} NMR spectrum of 2k and 2'k in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S64. 1D ¹H NMR spectrum of 2l and 2'l in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S65. 1D ¹H NMR spectrum of 2l and 2'l in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S66. ¹³C{¹H} NMR spectrum of 2l and 2'l in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S67. 1D ¹H NMR spectrum of 3a in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S68. 1D ¹H NMR spectrum of 3a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S69. ¹³C{¹H} NMR spectrum of **3a** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S70. 1D ¹H NMR spectrum of **3b** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S71. 1D ¹H NMR spectrum of **3b** in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S72. ¹³C{¹H} NMR spectrum of **3b** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S73. 1D ¹H NMR spectrum of **3c** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S74. 1D ¹H NMR spectrum of 3c in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S75. ¹³C{¹H} NMR spectrum of 3c in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S76. 1D ¹H NMR spectrum of 3d in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S77. 1D ¹H NMR spectrum of 3d in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S78. ¹³C{¹H} NMR spectrum of 3d in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S79. 2D ¹H-¹H COSY NMR spectrum of **3d** in DMSO- d_6 at T = 303 K.

Figure S80. 2D ¹H-¹³C HMBC NMR spectrum of **3d** in DMSO- d_6 at T = 303 K.

Figure S81. 2D ¹H-¹⁵N HMBC NMR spectrum of **3d** in DMSO- d_6 at T = 303 K.

Figure S82. 2D 1H-¹³C HSQC NMR spectrum of **3d** in DMSO-d₆ at T = 303 K.

Figure S83. 1D ¹H NMR spectrum of **3e** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S84. 1D ¹H NMR spectrum of 3e in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S85. ¹³C{¹H} NMR spectrum of 3e in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S86. 1D ¹H NMR spectrum of 3f in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S87. 1D ¹H NMR spectrum of 3f in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S88. ¹³C{¹H} NMR spectrum of 3f in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S89. 1D ¹H NMR spectrum of 3g in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S90. 1D ¹H NMR spectrum of 3g in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S91. ¹³C{¹H} NMR spectrum of 3g in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S92. 1D ¹H NMR spectrum of **3h** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S93. 1D ¹H NMR spectrum of **3h** in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S94. ¹³C{¹H} NMR spectrum of **3h** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S95. 1D ¹H NMR spectrum of 3i in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S96. 1D ¹H NMR spectrum of 3i in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S97. ¹³C{¹H} NMR spectrum of **3i** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S98. 1D ¹H NMR spectrum of 3j in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S99. 1D ¹H NMR spectrum of 3j in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S100. ¹³C{¹H} NMR spectrum of **3j** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S101. 1D ¹H NMR spectrum of 3k and 3'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S102. 1D ¹H NMR spectrum of 3k and 3'k in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S103. ¹³C{¹H} NMR spectrum of **3k** and **3'k** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S104. 1D ¹H NMR spectrum of **3I** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S105. 1D ¹H NMR spectrum of 3l in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S106. ¹³C{¹H} NMR spectrum of **3I** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S107. 1D ¹H NMR spectrum of 4a in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S108. 1D ¹H NMR spectrum of 4a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S109. ¹³C{¹H} NMR spectrum of 4a in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S110. 1D ¹H NMR spectrum of 4b in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S111. 1D ¹H NMR spectrum of 4b in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S112. ¹³C{¹H} NMR spectrum of 4b in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S113. 1D ¹H NMR spectrum of 4c in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S114. 1D ¹H NMR spectrum of 4c in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S115. ¹³C{¹H} NMR spectrum of 4c in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S116. 1D ¹H NMR spectrum of 5a in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S117. 1D ¹H NMR spectrum of 5a in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S118. ¹³C{¹H} NMR spectrum of 5a in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).

Figure S119. 1D ¹H NMR spectrum of **5b** in DMSO- d_6 at T = 303 K. Chemical shifts are given in ppm (Bruker spectrometer at 500.1 MHz).

Figure S120. 1D ¹H NMR spectrum of **5b** in DMSO- d_6 at T = 303 K. Chemical shifts are given in Hz (Bruker spectrometer at 500.1 MHz).

Figure S121. ¹³C{¹H} NMR spectrum of **5b** in DMSO- d_6 at T = 303 K (Bruker spectrometer at 125.7 MHz).