Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Unexpected amine-triggered skeletal modification of fascaplysin and

its derivatives: a rapid access to δ , γ -biscarbolines

Zizhen Wang, Huanhuan Wang, Mei Xu, Liping Wang and Sheng Liu

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine,

Guizhou Medical University;

Natural Products Research Center of Guizhou Province, Guiyang, China

lsheng@126.com

1. Experimental and spectroscopic data for compounds 4a-j, 2a-j and 1: Page S2-15.

2. NMR spectra for compounds 4a-j, 2a-j and 1: Page S16-91.

Column chromatographic purifications were performed on SDZF silica gel 160. ¹H, ¹³C and ¹⁹F NMR spectra were obtained on a Bruker NMR spectrometer at 600 MHz, 150 MHz and 565 MHz, respectively, referenced internally based on the residual solvent signal. The data reported for the ¹H NMR spectra are as follows: chemical shift (δ , ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet), coupling constant in hertz, and number of protons. The data reported for the ¹³C spectra are given as chemical shift (δ , ppm). The data reported for the ¹⁹F spectra are given as chemical shift (δ , ppm). High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer by electrospray ionization-time of flight (ESI-TOF) analysis. Melting points were measured with a melting point instrument without correction. All the chemical reagents and solvents were purchased from commercial sources and used as received.

1. Experimental and spectroscopic data for compounds 4a-j, 2a-j and 1: Page S2-15.

1.1 Synthesis of compounds 4a-j

To a solution of tryptamine (12.5 mmol) in 20 mL DMSO was added acetophenone (12.5 mmol), iodine (2.5 g, 10 mmol), 30% H₂O₂ (425 mg, 0.38 mL, 18.8 mmol) and the reaction mixture was stirred at 110 °C until TLC indicated the complete consumption of acetophenone. Then the reaction mixture was cooled to room temperature, diluted with H₂O, extracted with DCM. The combined organic layer was washed with 10% Na₂S₂O₃, H₂O and brine, dried over anhydrous Na₂SO₄, concentrated. The obtained crude products was purified by flash column silica gel chromatography to give compound **4**.

(2-bromo-5-methoxyphenyl) (9H-pyrido[3,4-b] indol-1-yl) methanone (4a)

Purification by flash column silica gel chromatography (PE: EA=3:1) to give **4a** as a yellow solid (3.23 g, yield 68%). m.p.190.8-191.3 °C. ¹H NMR (600 MHz, DMSOd₆) δ 12.23 (s, 1H), 8.51 – 8.40 (m, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.59 (d, J = 8.9 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.18 (d, J

= 3.0 Hz, 1H), 7.05 (dd, *J* = 8.9, 3.1 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 196.6, 158.3, 142.3, 142.0, 137.9, 135.3, 135.1, 133.1, 131.3, 129.2, 122.0, 120.5, 120.0, 119.7, 116.8, 115.0, 113.2, 109.2, 55.7. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₄BrN₂O₂ 381.0233; Found 381.0229.

(2-bromophenyl) (9H-pyrido[3,4-b] indol-1-yl) methanone (4b)

Purification by flash column silica gel chromatography (PE: EA=4:1) to give **4b** as a yellow solid (3.59 g, yield 82 %). ¹H NMR (600 MHz, DMSO- d_6) δ 12.24 (s, 1H), 8.45 (dd, J = 11.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 1.1, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 1.1, 4.8 Hz, 2H), 8.85 (d, J = 1.1, 4.8 Hz, 8.85 (d, J = 1.1, 4.8 (d, J = 1.1, 4.8 Hz, 8.85 (d, J = 1.1, 4.8 (d, J = 1.1, 4.8

8.0, 0.7 Hz, 1H), 7.67 – 7.61 (m, 1H), 7.59 (dd, J = 7.5, 1.7 Hz, 1H), 7.53 (td, J = 7.5, 1.0 Hz, 1H), 7.47 (td, J = 7.8, 1.8 Hz, 1H), 7.37 – 7.31 (m, 1H). The ¹H NMR data is consistent with literature values.¹

(2,5-dichlorophenyl) (9*H*-pyrido[3,4-*b*] indol-1-yl) methanone (4c)

Purification by flash column silica gel chromatography (PE: EA=4:1) to give 4c as a yellow solid (3.78 g, yield 75%). ¹H NMR (600 MHz, DMSO- d_6) δ 12.26 (s, 1H), 8.47 (dd, J = 11.8, 4.8 Hz, 2H), 8.34 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 1.8 Hz, 1H), 7.66 – 7.60 (m, 3H), 7.34 (t, J = 7.5 Hz, 1H). The ¹H NMR data is consistent

with literature values.²

(5-bromo-2-chlorophenyl) (9H-pyrido[3,4-b] indol-1-yl) methanone (4d)

Purification by flash column silica gel chromatography (PE: EA=3:1) to give **4d** as a yellow solid (3.44 g, yield 72%). m.p.265.4-265.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.26 (s, 1H), 8.47 (q, *J* = 4.8 Hz, 2H), 8.33 (d, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 2.4 Hz, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.74 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.64 (t, *J* = 7.7 Hz, 1H), 7.54 (d, *J*

= 8.6 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 194.4, 142.0, 141.3, 138.0, 135.3, 134.9, 133.7, 131.8, 131.4, 131.3, 129.4, 129.3, 122.0, 120.6, 120.0, 119.9, 119.7, 113.2. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₁BrClN₂O 384.9738; Found 384.9733.

(2-chloro-5-nitrophenyl) (9H-pyrido[3,4-b] indol-1-yl) methanone(4e)

Purification by flash column silica gel chromatography (DCM: MeOH =300:1-DCM: MeOH=150:1) to give 4e as a yellow solid (219.4 mg, yield 5%). m.p.248.9-249.5°C. ¹H NMR (600 MHz, DMSO- d_6) δ 12.31 (s, 1H), 8.59 (d, J = 1.6 Hz, 1H), 8.47 (dd, J = 23.7, 4.6 Hz, 2H), 8.36 (dd, J = 19.7, 8.3 Hz, 2H), 7.88 (dd, J = 17.6, 8.5 Hz,

2H), 7.64 (t, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 193.7, 146.1, 142.1, 140.4, 138.0, 137.0, 135.3, 134.7, 131.5, 131.0, 129.4, 125.7, 124.5, 122.0, 120.7, 120.2, 119.9, 113.2. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₈H₁₀ClN₃O₃Na 374.0303; Found 374.0294.

(2-chloro-4-fluorophenyl) (9H-pyrido[3,4-b] indol-1-yl) methanone (4f)

Purification by flash column silica gel chromatography (PE: EA=3:1) to give **4f** as a yellow solid (2.83 g, yield 70%). m.p.180.9-181.8 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 12.23 (s, 1H), 8.46 (dd, J = 10.8, 4.8 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.85 (d, J

= 8.2 Hz, 1H), 7.73 (dd, J = 8.5, 6.2 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H), 7.60 (dd, J = 9.0, 2.4 Hz, 1H), 7.39 (td, J = 8.5, 2.4 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 195.2, 163.3(d, J = 248.2 Hz), 142.0, 137.9, 135.7(d, J = 3.2 Hz), 135.3, 135.2, 131.7, 131.6, 131.4, 129.2, 122.0, 120.5, 119.9, 119.8, 117.0, (d, J = 25.3 Hz), 114.2(d, J = 21.1 Hz), 113.1. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -109.1. HRMS (ESI-TOF) *m/z*: [M + H]⁺Calcd for C₁₈H₁₁ClFN₂O 384.9738; Found 384.9733.

(2-bromo-4-(trifluoromethyl) phenyl) (9H-pyrido[3,4-b] indol-1-yl) methanone(4g)

Purification by flash column silica gel chromatography (DCM) to give 4g as a yellow solid (2.72 g, yield 52%). m.p.211.3-211.8°C. ¹H NMR (600 MHz, DMSO- d_6) δ 12.31 (s, 1H), 8.49 (d, J = 4.8 Hz, 1H), 8.44 (d, J = 4.8 Hz, 1H), 8.34 (d, J = 7.8

Hz, 1H), 8.15 (s, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.86 (t, J = 7.7 Hz, 2H), 7.69 – 7.59 (m, 1H), 7.35 (t, J = 7.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 195.8, 145.7, 142.1, 138.1, 135.3, 134.6, 131.5, 131.2(d, J = 32.3 Hz), 130.1, 129.3, 129.1(d, J = 3.6 Hz), 124.4(d, J = 3.5 Hz), 124.0, 122.2(d, J = 27.8 Hz), 120.7, 120.1, 119.9, 119.5, 113.2. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -61.2. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₁₀BrF₃N₂ONa 440.9821; Found 440.9814.

(2-bromophenyl) (6-chloro-9*H*-pyrido[3,4-*b*] indol-1-yl) methanone (4h)

Purification by flash column silica gel chromatography (PE: EA=2:1) to give 4h as a yellow solid (3.11 g, yield 65 %). m.p.254.2-254.7 °C. ¹H NMR (600 MHz, DMSO-*d*₆)
δ 12.37 (s, 1H), 8.50 (d, *J* = 4.9 Hz, 1H), 8.47 (dd, *J* = 8.2, 3.4 Hz, 2H), 7.85 (d, *J* = 8.7 Hz, 1H), 7.73 (dd, *J* = 8.0, 0.6 Hz, 1H), 7.65 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.59 (dd, *J* = 7.5,

1.7 Hz, 1H), 7.53 (td, J = 7.5, 0.9 Hz, 1H), 7.47 (td, J = 7.8, 1.7 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d₆) δ 196.8,
141.2, 140.4, 138.1, 135.6, 135.5, 132.3, 131.2, 130.4, 129.5, 129.1, 127.2, 124.8, 121.6, 121.3, 120.2, 119.0, 114.73.
HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₁BrClN₂O 384.9738; Found 384.9732.

(2-bromophenyl) (6-methoxy-9H-pyrido[3,4-b] indol-1-yl) methanone (4i)

Purification by flash column silica gel chromatography (PE: EA=2:1) to give **4i** as a yellow solid (2.72 g, yield 68%). m.p.195.3-196.2 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 12.07 (s, 1H), 8.44 (d, J = 4.9 Hz, 1H), 8.40 (d, J = 4.8 Hz, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.61 (dd, J = 7.5, 1.4 Hz, 1H), 7.56 (m,

J = 9.8, 8.1, 1.5 Hz, 2H), 7.49 (td, *J* = 7.3, 1.6 Hz, 1H), 7.28 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 196.8, 154.2, 141.4, 137.2, 136.7, 135.7, 135.1, 132.3, 131.2, 131.1, 129.4, 127.2, 120.4, 119.8,119.0, 119.0, 114.0, 103.8, 55.6. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₄BrN₂O₂ 381.0233; Found 381.0237

(2-bromophenyl) (9H-pyrido[3,4-b] indol-1-yl-3-d) methanone (4j)

4j was obtained from 2-bromoacetophenone and tryptamine- α , α - d_2 (prepared according to the literature³ through the reduction of 3-indoleacetamide by lithium aluminum deuteride). Purification by flash column silica gel chromatography (DCM) to give a yellow solid (2.72 g, yield 62 %). m.p.207.8-208.3 °C. ¹H NMR (600 MHz,

DMSO- d_6) δ 12.23 (s, 1H), 8.46 (s, 1H), 8.33 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 8.0, 0.7 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.59 (dd, J = 7.5, 1.7 Hz, 1H), 7.53 (td, J = 7.5, 1.0 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.34 (t, J = 7.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 196.9, 142.0, 141.4, 135.3, 135.1, 132.3, 131.3, 131.2, 129.5, 129.2, 127.2, 122.0, 120.5, 120.0, 119.6, 119.0, 113.2. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₀DBrN₂O 352.0190; Found 352.0186.

1.2 Synthesis of compounds 2a-j

Compound 4 (2.86 mmol) was heated in sealed tube and under an argon atmosphere at 230 °C for 3-5 h. After cooling, the reaction mixture was purified by trituration with MeOH and EA to give compound **2**.

2-methoxy-13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2a)

Purified by trituration with MeOH and EA to give **2a** as a red solid (1.52 g, yield 76 %). m.p. > 420 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.87 (s, 1H), 9.54 (d, *J* = 6.2 Hz, 1H), 9.16 (d, *J* = 6.1 Hz, 1H), 8.58 (d, *J* = 7.9 Hz, 1H), 8.29 (d, *J* =

8.6 Hz, 1H), 8.01 – 7.88 (m, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.37 – 7.24 (m, 2H), 4.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃ + CF₃CO₂D) δ 182.0, 162.1, 148.2, 142.0, 139.6, 136.2, 135.9, 125.8, 125.3, 125.1, 124.7, 124.2, 120.1, 117.5, 116.4, 115.6, 113.7, 111.9, 35.3. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₁₉H₁₃N₂O₂⁺ 301.0972; Found 301.0966.

13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2b)

Purified by trituration with MeOH and EA to give **2b** as red solid (1.8 g, yield 90%). ¹H NMR (600 MHz, DMSO- d_6 + CF₃CO₂D) δ 9.63 (d, J = 6.2 Hz, 1H), 9.09 (d, J= 6.2 Hz, 1H), 8.49 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 7.4 Hz, 1H), 7.95 (t, J = 7.8 Hz, 1H),

7.78 (t, J = 7.6 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H). The ¹H NMR data is consistent with literature values.⁴

2-chloro-13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2c)

Purified by trituration with MeOH and EA to give 2c as a red solid (1.6 g, yield 80%). ¹H NMR (600 MHz, DMSO- d_6 + CF₃CO₂D) δ 9.60 (dd, J = 6.3, 2.3 Hz, 1H), 9.07 (d, J = 6.2 Hz, 1H), 8.50 (d, J = 8.5 Hz, 1H), 8.46 (d, J = 8.0 Hz, 1H), 8.04 (d, J

= 2.1 Hz, 1H), 8.00 (dd, J = 8.5, 2.1 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.46 – 7.37 (m, 1H). The ¹H NMR data is consistent with literature values.⁵

2-bromo-13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2d)

Purified by trituration with MeOH and EA to give **2d** as a red solid. (1.78 g, yield 89 %). ¹H NMR (600 MHz, DMSO-*d*₆+CF₃CO₂D) δ 9.61 (d, *J* = 6.2 Hz, 1H), 9.08 (d, *J* = 6.2 Hz, 1H), 8.48 (d, *J* = 8.0 Hz, 1H), 8.43 (d, *J* = 8.5 Hz, 1H), 8.22 –

8.11 (m, 2H), 7.80 (t, J = 7.6 Hz, 1H), 7.75 (d, J = 8.3 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H). The ¹H NMR data is consistent with literature values.⁶

2-nitro-13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2e)

Purified by trituration with MeOH and EA to give **2e** as a black solid (1.80g, yield 90%). m.p.>420°C. ¹H NMR (600 MHz, DMSO-*d*₆ + CF₃CO₂D) δ 9.75 (d, *J* = 6.3 Hz, 1H), 9.14 (d, *J* = 6.2 Hz, 1H), 8.82 (dd, *J* = 8.7, 1.8 Hz, 1H), 8.75 (d, *J* =

8.8 Hz, 1H), 8.67 (d, *J* = 1.9 Hz, 1H), 8.50 (d, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆ + CF₃CO₂D) δ 181.1, 151.1, 150.1, 148.4, 142.4, 135.8, 132.9, 131.9, 128.8, 126.3, 125.4, 124.1, 121.1, 120.4, 118.6, 116.7, 114.8, 112.9. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₁₈H₁₀N₃O₃⁺ 316.0717; Found 316.0714.

3-fluoro-13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2f)

Purified by trituration with MeOH and EA to give **2f** as a red solid (1.64 g, yield 82 %). m.p. > 420 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 13.59 (s, 1H), 9.79 (d, J = 5.8 Hz, 1H), 9.23 (d, J = 6.1 Hz, 1H), 8.82 – 8.67 (m, 1H), 8.57 (d, J = 7.9 Hz, 1H), 8.15 (dd, J = 8.2, 5.1 Hz, 1H), 7.88 (t, J = 7.5 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.60 (td, J

= 8.7, 1.9 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 180.7, 167.8(d, J = 255.3 Hz), 149.3(d, J = 13.2 Hz), 147.1, 140.8, 134.5, 130.7, 128.0(d, J = 10.9 Hz), 127.5, 124.6, 123.3, 123.1, 120.8, 120.4, 119.4, 118.2(d, J = 23.4 Hz), 113.8, 105.7(d, J = 29.8 Hz). ¹⁹F NMR (565 MHz, DMSO- d_6) δ -98.0. HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₁₈H₁₀FN₂O⁺ 289.0772 Found 289.0767.

13-oxo-3-(trifluoromethyl)-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2g)

Purified by trituration with MeOH and EA to give **2g** as a red solid (1.84 g, yield 92 %). m.p.>420°C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 13.65 (d, *J* = 8.8 Hz, 1H), 9.85 (s, 1H), 9.30 (d, *J* = 5.7 Hz, 1H), 9.09 (s, 1H), 8.59 (d, *J* = 7.6 Hz, 1H), 8.29 (d, *J* = 7.5 Hz, 1H), 8.14 (d, *J* = 7.7 Hz, 1H), 7.91 (d, *J* = 5.8 Hz, 1H), 7.81 (d, *J* = 8.1

Hz, 1H), 7.63 – 7.45 (m, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 181.1, 147.3(d, J = 30.8 Hz), 140.8, 135.6(d, J = 32.5 Hz), 134.7, 130.9, 128.5, 127.5, 126.4, 124.6, 124.0, 123.3(d, J = 35.0 Hz), 122.2, 120.7, 119.5, 113.8(d, J = 39.0 Hz). ¹⁹F NMR (565 MHz, DMSO- d_6) δ -61.6. HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₁₉H₁₀F₃N₂O⁺ 339.0740; Found 339.0738.

9-chloro-13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2h)

Purified by trituration with MeOH and EA to give **2h** as a red solid (1.70 g, yield 85 %).¹H NMR (600 MHz, DMSO- d_6 + CF₃CO₂D) δ 9.60 (d, J = 6.3 Hz, 1H), 9.06 (d, J = 6.2 Hz, 1H), 8.58 (s, 1H), 8.43 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 7.4 Hz,

1H), 7.94 – 7.86 (m, 1H), 7.80 – 7.70 (m, 2H), 7.65 (t, J = 7.5 Hz, 1H). The ¹H NMR data is consistent with literature

values.7

9-methoxy-13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium (2i)

Purified by trituration with MeOH and EA to give **2i** as a black solid (1.52 g, yield 76 %). m.p. > 420 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 13.31 (s, 1H), 9.62 (s, 1H), 9.07 (s, 1H), 8.50 (d, J = 7.7 Hz, 1H), 8.03 (d, J = 23.8 Hz, 3H), 7.80 – 7.56

(m, 2H), 7.40 (s, 1H), 3.87 (s, 3H). HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₁₉H₁₃N₂O₂⁺ 301.0972 Found 301.0975. The ¹³C NMR spectra of **2i** could not be obtained due to its poor solubility.

13-oxo-12,13-dihydropyrido[1,2-a:3,4-b'] diindol-5-ium-6-d (2j)

1.3 Synthesis of compounds 1

To a solution of fascaplysin or its derivatives (0.28 mmol) in 4 mL pyridine was added 14.8 mmol NH₃ (2.11 mL, 7 M in MeOH) or amine (0.84 mmol), and the reaction mixture was stirred at room temperature for 8-12 h under air, then the reaction mixture was concentrated. The obtained crude products was purified by trituration with DCM and PE to give compound **1**.

11,12-dihydropyrido[3,2-b:4,5-b'] diindole (1a)

Purification by flash column silica gel chromatography (DCM: MeOH=40:1-20:1)

to give **1a** as a brown solid (7.4 mg, yield 10%). ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.61 (s, 1H), 11.24 (s, 1H), 9.29 (s, 1H), 8.27 (dd, *J* = 30.1, 7.7 Hz, 2H), 7.82 – 7.70 (m, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.29 (dt, *J* = 15.0, 7.4 Hz, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 139.1, 139.1, 137.0, 135.8, 130.0, 125.8, 125.6, 123.0, 122.3, 120.2, 120.0, 119.5, 119.5, 119.3, 116.9, 112.2, 112.1. HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₂N₃ 258.1026; Found 258.1018.

5-pentyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium. (1b)

Purified by trituration with DCM and PE to give **1b** as a white solid (108.3 mg, yield 90%). m.p. 256.3-257.1 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.73 (s, 2H), 9.92 (s, 1H), 8.34 (dd, *J* = 57.3, 8.1 Hz, 2H), 7.96 (dd, *J* = 33.5, 8.2 Hz, 2H), 7.69 (dt, *J* = 16.2, 7.8 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 5.15 (t, *J* = 7.4 Hz, 2H), 2.16 – 2.00 (m, 2H), 1.49 (dt, *J* = 15.2, 7.4 Hz, 2H), 1.29 (qd, *J* = 14.5, 7.0 Hz, 4H), 0.84 (t, *J* = 7.2 Hz, 3H). ¹³C

NMR (150 MHz, DMSO-*d*₆) δ 140.4, 139.1, 133.4, 132.7, 128.5, 128.2, 125.8, 122.5, 121.7, 121.6, 121.3, 121.1, 120.7, 116.3, 114.9, 113.5, 113.3, 57.3, 30.7, 29.1, 25.2, 21.9, 13.8. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₃H₂₄N₃⁺ 342.1965; Found 342.1961.

5-ethyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1c)

Purified by trituration with DCM and PE to give **1c** as a white solid (78.2 mg, yield 75%). m.p. 346.3-347.1 °C. ¹H NMR (600 MHz, DMSO- d_6 + CF₃CO₂D) δ 9.75 (s, 1H), 8.44 – 8.16 (m, 2H), 7.84 (dd, J = 39.1, 8.2 Hz, 2H), 7.61 (dt, J = 39.0, 7.7 Hz, 2H), 7.41 (dd, J = 12.6, 7.3 Hz, 2H), 5.14 (q, J = 7.1 Hz, 2H), 1.70 (t, J = 7.2 Hz, 3H). ¹³C NMR

(150 MHz, CDCl₃ + CF₃CO₂D) δ 140.5, 139.9, 130.2, 130.1, 129.5, 123.7, 123.1, 121.3, 120.9, 120.7, 117.9, 117.5, 115.7, 115.0, 113.8, 113.1, 111.9, 54.0, 15.4. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₁₉H₁₆N₃⁺ 286.1339; Found 286.1333.

5-propyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1d)

Purified by trituration with DCM and PE to give **1d** as a white solid (84.5 mg, yield 78%). m.p. 311.6-312.4 °C. ¹H NMR (600 MHz, DMSO-*d*₆ + CF₃CO₂D) δ 9.83 (s, 1H), 8.25 (dd, *J* = 57.0, 8.0 Hz, 2H), 7.85 (dd, *J* = 32.8, 8.2 Hz, 2H), 7.61 (dt, *J* = 32.0, 7.7 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 2H), 5.06 (t, *J* = 7.3 Hz, 2H), 2.18 – 2.00 (m, 2H), 1.04 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆+ CF₃CO₂D) δ 140.7, 139.5, 133.8, 128.8, 128.6, 126.1, 122.8, 122.0, 121.4, 118.3, 116.4, 114.5, 113.8, 113.5, 112.5, 58.9, 23.0, 10.7. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₀H₁₈N₃⁺ 300.1495; Found 300.1490.

5-isopropyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1e)

Purified by trituration with DCM and PE to give 1e as a beige solid (65.0 mg, yield 60%). m.p. 328.9-329.5 °C. ¹H NMR (600 MHz, DMSO-*d*₆+ CF₃CO₂D) δ 9.88 (s, 1H), 8.50 (dd, J = 74.3, 7.6 Hz, 2H), 7.89 (dd, J = 45.4, 7.7 Hz, 2H), 7.63 (dt, J = 42.5, 7.0 Hz, 2H), 7.44 (s, 2H), 5.89 (s, 1H), 1.88 (d, J = 5.7 Hz, 6H).¹³C NMR (150 MHz, DMSO- d_6 + CF₃CO₂D) δ 140.8,

139.6, 129.3, 128.8, 128.5, 126.6, 122.6, 122.6, 122.1, 121.9, 118.2, 117.3, 116.3, 115.5, 114.4, 113.8, 113.5, 112.5, 57.9, 22.5. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₀H₁₈N₃⁺ 300.1495; Found 300.1492.

5-butyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1f)

Purified by trituration with DCM and PE to give 1f as a white solid (79.7 mg, yield 71%). m.p. 256.3-257.1 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.71 (s, 2H), 9.92 (s, 1H), 8.37 (d, J = 44.8 Hz, 2H), 7.98 (d, J = 32.2 Hz, 2H), 7.71 (d, J = 32.2 Hz, 2H), 7.52 (s, 2H), 5.18 (s, 2H), 2.08 (s, 2H), 1.50 (s, 2H), 0.96 (s, 3H). 13C NMR (150 MHz, DMSO $d_6) \\ \delta \\ 140.4, \\ 139.1, \\ 133.4, \\ 132.6, \\ 128.5, \\ 128.2, \\ 125.8, \\ 122.4, \\ 121.7, \\ 121.3, \\ 121.1, \\ 120.7, \\ 116.3, \\ 114.9, \\ 113.5, \\ 113.3, \\ 114.9, \\ 113.5, \\ 113.3, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\ 114.9, \\ 113.5, \\ 113.4, \\ 114.9, \\$

57.1, 31.2, 19.0, 13.6. HRMS (ESI-TOF) m/z: [M]⁺Calcd for C₂₁H₂₀N₃⁺ 314.1652; Found 314.1646.

5-cyclopropyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1h)

Purified by trituration with DCM and PE to give 1h as a beige solid (50.6 mg, isolated yield 47%). m.p. > 420 °C. ¹H NMR (600 MHz, DMSO- d_6 + CF₃CO₂D) δ 9.74 (s, 1H), 8.54 (dd, J = 112.2, 8.0 Hz, 2H), 7.83 (dd, J = 41.0, 8.2 Hz, 2H), 7.60 (dt, J =

45.8, 7.7 Hz, 2H), 7.40 (dd, J = 12.9, 7.3 Hz, 2H), 1.61 (d, J = 7.2 Hz, 5H). HRMS (ESI-TOF) m/z: [M]⁺ Calcd for $C_{20}H_{16}N_3^+$ 298.1339; found 298.1336. The ¹³C NMR spectra of **1h** could not be obtained due to its poor solubility.

5-cyclohexyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1i)

Purified by trituration with DCM and PE to give 1i as a light pink solid (98.2 mg, yield 82%). m.p. 321.8-322.5 °C. ¹H NMR (600 MHz, DMSO-d₆) δ 12.78 (s, 2H), 9.91 (s, 1H), 8.45 (dd, *J* = 172.6, 8.0 Hz, 2H), 7.95 (dd, *J* = 47.0, 8.2 Hz, 2H), 7.69 (dt, *J* = 42.2, 7.6 Hz, 2H), 7.60 – 7.42 (m, 2H), 5.45 (t, *J* = 11.7 Hz, 1H), 2.39 (d, *J* = 11.0 Hz, 2H), 2.24 (q, *J* = 11.4 Hz, 2H), 2.06 (d, *J* = 12.6 Hz, 2H), 1.86 (dd, *J* = 27.1, 12.6 Hz, 3H), 1.44 (t, *J* = 12.9 Hz, 1H).¹³C NMR (150 MHz, DMSO-*d*₆) δ 140.5, 139.2, 132.6, 129.3, 128.5, 128.3, 126.2, 122.4, 121.9, 121.7, 121.7, 120.7, 116.8, 115.1, 113.6, 113.3, 64.3, 32.4, 25.1, 24.9. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₃H₂₂N₃⁺ 340.1808; Found 340.1806.

5-allyl-11,12-dihydropyrido[3,2-*b*:4,5-*b*'] diindol-5-ium bromide (1j).

Purified by trituration with DCM and PE to give **1j** as a beige solid (62.5 mg, yield 58%). m.p. > 420 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.75 (s, 1H), 8.27 (dd, *J* = 66.3, 8.0 Hz, 2H), 7.82 (dd, *J* = 13.8, 8.2 Hz, 2H), 7.58 (dd, *J* = 19.2, 7.7 Hz, 2H), 7.44 – 7.29

(m, 2H), 6.52 - 6.31 (m, 1H), 5.77 (s, 2H), 5.27 (d, J = 10.6 Hz, 1H), 4.89 (d, J = 17.3 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 138.9, 132.8, 132.4, 127.4, 124.6, 122.7, 122.2, 121.8, 121.3, 120.8, 120.7, 117.6, 117.2, 115.3, 114.7, 113.1, 58.1. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₀H₁₆N₃⁺ 298.1339; found 298.1336.

5-(3-hydroxypropyl)-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1m)

HO

Purified by trituration with DCM and PE to give **1m** as a white solid (73.4 mg, yield 65%). m.p. 296.2-297.1 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.77 (s, 2H), 9.86 (s, 1H), 8.39 (dd, *J* = 44.6, 8.0 Hz, 2H), 7.92 (dd, *J* = 36.7, 8.2 Hz, 2H), 7.66 (dt, *J* = 37.5, 7.7 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 5.22 (t, *J* = 7.4 Hz, 2H), 5.04 (s, 1H), 3.64 (s, 2H), 2.32 –

2.18 (m, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 140.4, 139.2, 133.6, 132.7, 128.5, 128.3, 125.9, 122.5, 122.0, 121.7, 121.3, 121.1, 120.7, 116.4, 115.0, 113.5, 113.3, 57.4, 55.1, 32.2. HRMS (ESI-TOF) *m/z*: [M]⁺Calcd for C₂₀H₁₈N₃O⁺ 316.1444; Found 316.1441.

5-(2-((tert-butoxycarbonyl) amino) ethyl)-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1n)

Purified by trituration with DCM and PE to give **1n** as a white solid (82.3 mg, yield 60%). m.p. 246.7-247.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.63 (s, 1H), 8.40 (dd, *J* = 53.5, 8.0 Hz, 2H), 7.95 (dd, *J* = 32.1, 8.2 Hz, 2H), 7.69 (dt, *J* = 33.7,

7.6 Hz, 2H), 7.49 (dt, *J* = 20.0, 7.5 Hz, 2H), 7.13 (t, *J* = 5.9 Hz, 1H), 5.19 (t, *J* = 5.2 Hz, 2H), 3.70 (dd, *J* = 10.7, 5.4 Hz, 2H), 1.04 (s, 9H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 156.0, 141.4, 139.6, 134.2, 133.8, 128.8, 128.6, 126.7, 122.9, 122.3, 122.0, 121.3, 121.3, 116.9, 115.7, 114.0, 113.9, 78.5, 57.8, 28.2. HRMS (ESI-TOF) *m/z*: [M]⁺

Calcd for C₂₄H₂₅N₄O₂⁺401.1972; Found 401.1970.

5-(2-(pyrrolidin-1-yl) ethyl)-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (10)

Purified by trituration with DCM and PE to give **10** as a white solid (68.2 mg, yield 55%). m.p. 248.6-249.4 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.73 (s, 2H), 9.85 (s, 1H), 8.37 (dd, *J* = 46.7, 8.1 Hz, 2H), 7.96 (dd, *J* = 34.5, 8.2 Hz, 2H), 7.69 (dt, *J* = 32.2, 7.5 Hz, 2H), 7.50 (dd, *J* = 12.7, 7.4 Hz, 2H), 5.28 (s, 2H), 3.20 (s, 2H), 2.61 (s, 4H), 1.67 (s, 4H).

¹³C NMR (150 MHz, DMSO-*d*₆) δ 140.5, 139.2, 134.0, 132.9, 128.6, 128.3, 125.8, 122.6, 121.7, 121.6, 121.4, 121.1,
120.7, 116.2, 115.0, 113.6, 113.4, 56.0, 53.9, 53.8, 23.3. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₃H₂₃N₄⁺
355.1917; Found 355.1912.

5-(4-methoxybenzyl)-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1p)

Purified by trituration with DCM and PE to give **1p** as a white solid (73.2 mg, yield 56%). m.p. 267.5-268.2 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.84 (d, *J* = 142.1 Hz, 2H), 10.02 (s, 1H), 8.41 (d, *J* = 7.6 Hz, 1H), 8.23 (d, *J* = 8.0 Hz, 1H), 8.09 – 7.86 (m, 2H), 7.68 (dt, *J* = 27.2, 7.3 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 8.1 Hz, 2H), 6.42 (s, 2H), 3.68 (s, 3H). ¹³C NMR (150 MHz,

DMSO-*d*₆) δ 159.1, 140.7, 139.3, 134.1, 133.2, 128.6, 128.5, 127.7, 126.6, 126.5, 122.7, 122.2, 121.5, 121.4, 121.2, 121.0, 116.8, 115.0, 114.5, 113.5, 59.3, 55.1. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₅H₂₀N₃O⁺ 378.1601; Found 378.1598.

5-(3,4-dimethoxyphenethyl)-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1q)

Purified by trituration with DCM and PE to give **1q** as a white solid (87.2 mg, yield 61%). m.p. 188.7-189.3 °C. ¹H NMR (600 MHz, DMSO- d_6 +CF₃CO₂D) δ 9.52 (s, 1H), 8.21 (dd, J = 67.9, 8.0 Hz, 2H), 7.82 (dd, J = 52.6, 8.2 Hz, 2H), 7.58 (dt, J = 51.1, 7.6 Hz, 2H), 7.39 (dt, J = 36.0, 7.5 Hz, 2H), 6.79 (s, 1H), 6.71 (d, J = 8.1 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 5.30 (t, J = 7.3 Hz, 2H), 3.60 (d, J = 6.4 Hz, 6H), 3.28

(t, *J* = 7.3 Hz, 2H). ¹³C NMR (150 MHz, DMSO-*d*₆+CF₃CO₂D) δ 149.2, 148.3, 140.6, 139.5, 133.5, 129.0, 128.7, 128.4, 126.0, 122.7, 121.8, 121.6, 121.2, 121.1, 118.1, 116.2, 115.2, 114.3, 113.8, 113.5, 113.0, 112.4, 112.2, 58.4, 55.6, 55.5, 35.1. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₇H₂₄N₃O₂⁺ 422.1863; Found 422.1860.

2-chloro-5-hexyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1r)

Purified by trituration with DCM and PE to give **1r** as a white solid (52.0 mg, yield 43%). m.p. 272.2-273.1 °C. ¹H NMR (600 MHz, DMSO- d_6 +CF₃CO₂D) δ 13.24 (d, J = 105.0 Hz, 2H), 9.78 (d, J = 2.4 Hz, 1H), 8.29 (d, J = 7.8 Hz, 1H), 8.17 (s, 1H), 7.87 (dd, J = 8.8, 3.1 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.65 – 7.56 (m, 2H), 7.43 (t, J = 7.5 Hz, 1H), 5.07 (t, J = 7.4 Hz, 2H), 2.12 – 1.97 (m, 2H), 1.46 (dt, J = 15.1, 7.5

Hz, 2H), 1.37 – 1.29 (m, 2H), 1.25 (dt, *J* = 14.3, 6.9 Hz, 2H), 0.83 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃+ CF₃CO₂D) δ 140.9, 138.3, 133.1, 131.5, 130.5, 130.0, 129.2, 126.1, 124.1, 121.7, 121.2, 120.9, 120.9, 117.7, 115.8, 113.9, 112.0, 59.2, 31.6, 30.3, 26.4, 22.7, 13.6. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₃H₂₃ClN₃⁺ 376.1575; Found 376.1573.

2-bromo-5-hexyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1s)

Purified by trituration with DCM and PE to give **1s** as a beige solid (77.2 mg, yield 65%). m.p. 297.1-297.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆) δ 13.28 (s, 2H), 9.87 (s, 1H), 8.43 – 8.33 (m, 2H), 7.89 (dd, *J* = 11.9, 8.5 Hz, 2H), 7.80 (d, *J* = 8.8 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 5.13 (t, *J* = 7.4 Hz, 2H), 2.15 – 1.98 (m, 2H), 1.48 (dt, *J* = 15.0, 7.4 Hz, 2H), 1.39 – 1.31 (m, 2H),

1.27 (dt, J = 14.3, 7.1 Hz, 2H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃+CF₃CO₂D) δ 140.8, 138.5, 133.1, 131.5, 130.0, 125.8, 124.1, 123.9, 121.5, 121.1, 120.9, 117.6, 116.8, 115.7, 113.9, 113.5, 112.0, 59.2, 31.6, 30.2, 26.4, 22.7, 13.6. HRMS (ESI-TOF) *m/z*: [M]⁺ Calcd for C₂₃H₂₃BrN₃⁺ 420.1070; Found 420.1068.

3-fluoro-5-hexyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1v)

Purified by trituration with DCM and PE to give **1v** as a white solid (84.1 mg, yield 69%). m.p. 257.3-258.2 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 13.26 (s, 2H), 9.82 (s, 1H), 8.33 (d, J = 7.8 Hz, 1H), 8.28 (dd, J = 9.0, 5.1 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.73 (dd, J = 9.4, 1.8 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.32 (td, J = 9.1, 2.1 Hz, 1H), 5.11 (t, J = 7.4 Hz, 2H), 2.15 – 1.92 (m, 2H), 1.48

(dt, *J* = 15.2, 7.5 Hz, 2H), 1.36 – 1.22 (m, 4H), 0.84 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃+CF₃CO₂D) δ 163.5(d, *J* = 249.6 Hz), 141.2(d, *J* = 12.7 Hz), 140.9, 132.9, 131.0, 129.9, 127.2, 124.0, 123.2(d, *J* = 10.4 Hz), 121.5, 121.1(d, J = 29.4 Hz), 118.2, 117.7, 115.8, 113.9, 112.1, 100.5(d, J = 26.4 Hz), 59.1, 31.6, 30.2, 26.5, 22.7, 13.5. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -110.6. HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₂₃H₂₃FN₃⁺ 360.1871; Found 360.1866.

5-hexyl-2-(trifluoromethyl)-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1w)

Purified by trituration with DCM and PE to give **1w** as a light pink solid (88.1 mg, yield 76%). m.p.309.2-310.1 °C. ¹H NMR (600 MHz, DMSO- d_6) δ 12.93 (s, 2H), 10.02 (s, 1H), 8.49 (d, J = 8.6 Hz, 1H), 8.44 – 8.33 (m, 2H), 7.93 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 5.17 (t, J = 7.4 Hz, 2H), 2.14 – 2.01 (m, 2H), 1.50 (dt, J = 15.2, 7.5 Hz, 2H), 1.35 – 1.22 (m, 4H), 0.84 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz,

DMSO- d_6) δ 140.5, 138.1, 134.8, 132.8, 128.5, 128.0 (d, J = 31.9 Hz), 125.3, 124.9, 123.5, 123.0, 122.8, 122.4, 121.4, 121.2, 117.6 (d, J = 9.6 Hz), 116.8, 113.6, 111.3 (d, J = 4.4 Hz), 57.4, 30.8, 29.1, 25.3, 21.9, 13.9. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -60.1. HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₂₄H₂₃F₃N₃⁺ 410.1839; Found 410.1837.

9-chloro-5-hexyl-11,12-dihydropyrido[3,2-b:4,5-b'] diindol-5-ium (1x)

Purified by trituration with DCM and PE to give 1x as a beige solid (65.3 mg, yield 54%). m.p.303.1-303.8 °C. ¹H NMR (600 MHz, DMSO- d_6 +CF₃CO₂D) δ 9.80 (s, 1H), 8.38 (s, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.84 (dd, J = 34.2, 8.4 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 5.05 (t, J = 6.9 Hz, 2H), 2.12 – 1.98 (m, 2H), 1.46 (dd, J = 13.9, 6.9 Hz, 2H), 1.36 – 1.19 (m, 4H),

0.82 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃+ CF₃CO₂D) δ 139.9, 138.7, 132.9, 131.8, 130.3, 129.6, 129.5, 127.2, 123.3, 122.1, 121.4, 120.9, 120.5, 117.6, 115.7, 113.8, 112.0, 59.5, 31.6, 30.3, 26.5, 22.7, 13.6. HRMS (ESI-TOF) *m/z*: [M]⁺Calcd for C₂₃H₂₃ClN₃⁺ 376.1575; Found 376.1572.

1.4 N-dealkylation of 1p

To a solution of 1p (100 mg, 0.22 mmol) in 4 mL DMF was added triphenylphosphine (172 mg, 0.66 mmol), and the reaction mixture was stirred at 155 °C for 48 h. Then the reaction mixture was cooled to room temperature, diluted with H₂O, extracted with EA. The combined organic layer was washed with H₂O and brine, dried over anhydrous Na₂SO₄. After evaporation, the obtained crude products were purified by flash column silica gel chromatography (DCM: MeOH=40:1-10:1) to give 45 mg compound **1a** in 80% yield.

References:

- Wang X, Qiu H, Yang N, et al. Fascaplysin derivatives binding to DNA via unique cationic five-ring coplanar backbone showed potent antimicrobial/antibiofilm activity against MRSA in vitro and in vivo. European Journal of Medicinal Chemistry, 2022, 230: 114099.
- (2) Zhidkov M E, Smirnova P A, Tryapkin O A, et al. Total syntheses and preliminary biological evaluation of brominated fascaplysin and reticulatine alkaloids and their analogues. Marine drugs, 2019, 17(9): 496.
- (3) Gynther J, Kanerva L, Undheim K, et al. EI and CI mass fragmentation of tryptamine, tetrahydro-beta-carboline and some of their derivatives. Acta Chemica Scandinavica, 1988, 42: 433-441.
- (4) Pan H, Qiu H, Zhang K, et al. Fascaplysin derivatives are potent multitarget agents against Alzheimer's disease: in vitro and in vivo evidence. ACS Chemical Neuroscience, 2019, 10(11): 4741-4756.
- (5) Manda S, Sharma S, Wani A, et al. Discovery of a marine-derived bis-indole alkaloid fascaplysin, as a new class of potent Pglycoprotein inducer and establishment of its structure-activity relationship. European journal of medicinal chemistry, 2016, 107: 1-11.
- (6) Zhidkov M E, Kaune M, Kantemirov A V, et al. Study of structure–activity relationships of the marine alkaloid fascaplysin and its derivatives as potent anticancer agents. Marine Drugs, 2022, 20(3): 185.
- (7) Fretz H, Ucci-Stoll K, Hug P, et al. Investigations on the reactivity of fascaplysin, part I, aromatic electrophilic substitutions occur at position 9. Helvetica Chimica Acta, 2000, 83(11): 3064-3068.

2. NMR spectra for compounds 4a-j, 2a-j and 1: Page S16-91.

S87

