Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

# **Supporting Information**

## Conformational properties of alkyl glucosyl sulfones in solution

Carlos A. Sanhueza,<sup>a,b</sup> Rosa L. Dorta,<sup>a</sup> Jesús T. Vázquez<sup>a\*</sup>

<sup>a</sup>Departamento de Química Orgánica, IUBO-AG, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, Tenerife 38206, Spain. <sup>b</sup>Department of Pharmaceutical Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 10439, United States.

### A) Experimental Spectra (Figures S1–S25)

| <sup>1</sup> H NMR Spectra of compounds <b>4a–4f</b> and <b>9a–9f</b> in CDCl <sub>3</sub>                       | S2  |
|------------------------------------------------------------------------------------------------------------------|-----|
| <sup>1</sup> H NMR Spectra of compound <b>4d</b> in other solvents                                               | S14 |
| <sup>13</sup> C NMR Spectra of compounds <b>4a–4f</b> and <b>9a–9f</b> in CDCl <sub>3</sub>                      | S17 |
| <sup>1</sup> H NMR and 1D-NOESY Spectra of <b>4a</b> , <b>4b</b> , <b>4d</b> and <b>4f</b> in CD <sub>3</sub> CN | S23 |
| B) NMR Spectral simulation (Tables S1–S3 and Figures S26–S43)                                                    |     |
| <b>Table S1.</b> Analysis of ABX Spin System in CDCl <sub>3</sub> to Determine the Order Coupling                | S27 |

- **Table S2**. Data from experimental and simulated spectra in CDCl3S28
- **Table S3**. Data from experimental and simulated spectra in CD<sub>3</sub>CNS29
- **Table S4**. Data from experimental and simulated spectra of 4d in CD<sub>3</sub>OD and C<sub>6</sub>D<sub>6</sub>S29
- Overlaid regions of experimental and simulated <sup>1</sup>H NMR spectra (Figures S26–S45) S30

#### C) Hydroxymethyl rotamer populations from simulated coupling constants

| Table S5. Hydroxymethyl rotamer populations calculated from the simulated |     |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|
| coupling constants                                                        | S40 |  |  |  |  |  |  |  |
| Plots of rotamer populations vs. Charton parameters (Figures S46-S48)     | S41 |  |  |  |  |  |  |  |

## A) Experimental Spectra



Figure S1. <sup>1</sup>H NMR of **4a** (600 MHz. CDCl<sub>3</sub>)



Figure S2. <sup>1</sup>H NMR of **4b** (500 MHz. CDCl<sub>3</sub>)



Figure S3. <sup>1</sup>H NMR of **4c** (400 MHz. CDCl<sub>3</sub>)



Figure S4. <sup>1</sup>H NMR 4d (600 MHz. CDCl<sub>3</sub>)



Figure S5. <sup>1</sup>H NMR of **4e** (400 MHz. CDCl<sub>3</sub>)



Figure S6. <sup>1</sup>H NMR of **4f** (400 MHz. CDCl<sub>3</sub>)



Figure S7. <sup>1</sup>H NMR of **9a** (500 MHz. CDCl<sub>3</sub>)



Figure S8. <sup>1</sup>H NMR of **9b** (500 MHz. CDCl<sub>3</sub>)



Figure S9. <sup>1</sup>H NMR of **9c** (400 MHz. CDCl<sub>3</sub>)



Figure S10. <sup>1</sup>H NMR of **9d** (400 MHz. CDCl<sub>3</sub>)



Figure S11. <sup>1</sup>H NMR of **9e** (400 MHz. CDCl<sub>3</sub>)





Figure S12. <sup>1</sup>H NMR of **9f** (500 MHz. CDCl<sub>3</sub>)



Figure S13. <sup>1</sup>H NMR of **4d** (600 MHz. C<sub>6</sub>D<sub>6</sub>)



Figure S14. <sup>1</sup>H NMR of 4d (600 MHz. CD<sub>3</sub>CN)



Figure S15. <sup>1</sup>H NMR of **4d** (600 MHz. CD<sub>3</sub>OD)



Figure S16. <sup>13</sup>C NMR of **4a** (top) and **4b** (bottom) (100 MHz. CDCl<sub>3</sub>)



Figure S17.  $^{13}$ C NMR of **4c** (top) and **4d** (bottom) (100 MHz. CDCl<sub>3</sub>)



Figure S18.  $^{13}\text{C}$  NMR of 4e (top) and 4f (bottom) (100 MHz. CDCl<sub>3</sub>)



Figure S19. <sup>13</sup>C NMR of **9a** (top) and **9b** (bottom) (100 MHz. CDCl<sub>3</sub>)



Figure S20. <sup>13</sup>C NMR of **9c** (top) and **9d** (bottom) (100 MHz. CDCl<sub>3</sub>)



Figure S21. <sup>13</sup>C NMR of **9e** (top) and **9f** (bottom) (100 MHz. CDCl<sub>3</sub>)





Figure S22. <sup>1</sup>H NMR (top) and 1D-NOESY (bottom) of **4a** (600 MHz. CD<sub>3</sub>CN)





Figure S23. <sup>1</sup>H NMR (top) and 1D-NOESY (bottom) of **4b** (600 MHz. CD<sub>3</sub>CN)



Figure S24. <sup>1</sup>H NMR (top) and 1D-NOESY (bottom) of **4d** (600 MHz. CD<sub>3</sub>CN)





Figure S25. <sup>1</sup>H NMR (top) and 1D-NOESY (bottom) of **4f** (600 MHz. CD<sub>3</sub>CN)

### B) Spectral simulation

### **Table S1.** Analysis of ABX Spin System in CDCl<sub>3</sub> to Determine the Order Coupling.

| Cmpd | Spectrometer<br>(MHz) | δ H6R<br>(ppm) | δ H6S<br>(ppm) | δ H5<br>(ppm) | J <sub>5,6R</sub><br>(Hz) | J <sub>5,6S</sub><br>(Hz) | J <sub>6R,6S</sub><br>(Hz) | Δδ <sub>5,6R</sub><br>(Hz) | Δδ <sub>5,65</sub><br>(Hz) | Δδ <sub>6R,6S</sub><br>(Hz) | Δδ <sub>5,6</sub> <b>/J</b> 5,6 | Δδ <sub>5,65</sub> /J <sub>5,65</sub> | $\Delta \delta_{6R,6S}/J_{6R,6S}$ |
|------|-----------------------|----------------|----------------|---------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|---------------------------------|---------------------------------------|-----------------------------------|
| 4a   | 500                   | 4.30           | 4.21           | 3.85          | 4.7                       | 1.5                       | 12.6                       | 225                        | 180                        | 45                          | 48                              | 120                                   | 3.6                               |
| 4b   | 500                   | 4.27           | 4.21           | 3.82          | 4.5                       | 2.0                       | 12.5                       | 225                        | 195                        | 30                          | 50                              | 98                                    | 2.4                               |
| 4c   | 500                   | 4.26           | 4.21           | 3.82          | 4.7                       | 2.1                       | 12.5                       | 220                        | 195                        | 25                          | 47                              | 93                                    | 2.0                               |
| 4d   | 600                   | 4.20           | 4.23           | 3.8           | 4.8                       | 2.4                       | 12.6                       | 240                        | 258                        | 18                          | 50                              | 108                                   | 1.4                               |
| 4e   | 500                   | 4.17           | 4.23           | 3.79          | 5.5                       | 2.3                       | 12.4                       | 190                        | 220                        | 30                          | 35                              | 96                                    | 2.4                               |
| 4f   | 500                   | 4.14           | 4.24           | 3.81          | 6.6                       | 1.9                       | 12.4                       | 165                        | 215                        | 50                          | 25                              | 113                                   | 4.0                               |
| 9a   | 500                   | 4.44           | 4.61           | 4.12          | 5.0                       | 2.0                       | 12.0                       | 160                        | 245                        | 85                          | 32                              | 123                                   | 7.1                               |
| 9b   | 500                   | 4.43           | 4.58           | 4.10          | 5.5                       | 3.0                       | 12.5                       | 165                        | 240                        | 75                          | 30                              | 80                                    | 6.0                               |
| 9c   | 500                   | 4.44           | 4.60           | 4.11          | 5.0                       | 2.2                       | 12.2                       | 165                        | 245                        | 80                          | 33                              | 111                                   | 6.6                               |
| 9d   | 500                   | 4.36           | 4.50           | 4.02          | 5.8                       | 2.4                       | 12.3                       | 170                        | 240                        | 70                          | 29                              | 100                                   | 5.7                               |
| 9e   | 500                   | 4.42           | 4.56           | 4.09          | 5.8                       | 2.1                       | 12.4                       | 165                        | 235                        | 70                          | 28                              | 112                                   | 5.6                               |
| 9f   | 500                   | 4.40           | 4.57           | 4.12          | 6.5                       | 2.5                       | 12.5                       | 140                        | 225                        | 85                          | 22                              | 90                                    | 6.8                               |

Formulas used: 1.  $\Delta\delta$  (ppm) × spectrometer frequency=  $\Delta\delta$  (Hz); 2.  $\Delta\delta/J = \Delta\delta$  (Hz) / J (Hz); the system is considered second order if  $\Delta\delta/J \le 10$ 

#### <sup>1</sup>H NMR spectra simulation:

Spectra simulations were carried out using Bruker's simulation and iteration tool (Daisy), available in TopSpin 4.0.7. The three spin systems of interest (H5, H6*R*, and H6*S*) were entered in the "Frequencies" and "Scalars" tabs. Subsequently, both the simulation and iteration of the  $\delta$ H5,  $\delta$ H6R,  $\delta$ H6S,  ${}^{3}J_{H5.6R}$  and  ${}^{3}J_{H5.H6S}$  values were performed using the standard iteration algorithm, with a linewidth of 0.3 Hz, medium signal broadening, and a medium number of cycles. The resulting simulated spectra were peak-picked and plotted. The simulated data presented in **Tables S2** and **S3** correspond to the chemical shifts and coupling constants obtained from these spectra.

**Table S2**.  $\delta$ H5,  $\delta$ H6*R*,  $\delta$ H6*S*,  ${}^{3}J_{H5.6R}$  and  ${}^{3}J_{H5.H6S}$  data from experimental and simulated spectra of acetates **4a–4g** and dibenzoates **9a–9g** in CDCl<sub>3</sub>.

|       | Exp                    | erimenta               | al data       |                           |                           |                            | Si                     | mulated                | data          |                           |                           |                            |
|-------|------------------------|------------------------|---------------|---------------------------|---------------------------|----------------------------|------------------------|------------------------|---------------|---------------------------|---------------------------|----------------------------|
| Cmpd. | δ H6 <i>R</i><br>(ppm) | δ H6 <i>S</i><br>(ppm) | δ H5<br>(ppm) | J <sub>5.6R</sub><br>(Hz) | J <sub>5.6S</sub><br>(Hz) | J <sub>6R.6S</sub><br>(Hz) | δ H6 <i>R</i><br>(ppm) | δ H6 <i>S</i><br>(ppm) | δ H5<br>(ppm) | J <sub>5.6R</sub><br>(Hz) | J <sub>5.6S</sub><br>(Hz) | J <sub>6R.6S</sub><br>(Hz) |
| 4a    | 4.32                   | 4.20                   | 3.85          | 4.8                       | 2.2                       | 12.7                       | 4.32                   | 4.20                   | 3.85          | 5.1                       | 2.3                       | 12.8                       |
| 4b    | 4.26                   | 4.21                   | 3.83          | 4.7                       | 2.1                       | 12.7                       | 4.27                   | 4.21                   | 3.82          | 4.6                       | 2.2                       | 12.7                       |
| 4c    | 4.26                   | 4.20                   | 3.82          | 4.8                       | 2.3                       | 12.6                       | 4.26                   | 4.20                   | 3.81          | 4.9                       | 2.3                       | 12.5                       |
| 4d    | 4.20                   | 4.23                   | 3.80          | 4.8                       | 2.4                       | 12.6                       | 4.19                   | 4.23                   | 3.79          | 5.1                       | 2.2                       | 12.6                       |
| 4e    | 4.16                   | 4.22                   | 3.78          | 5.6                       | 2.3                       | 12.5                       | 4.11                   | 4.18                   | 3.72          | 5.2                       | 2.3                       | 11.9                       |
| 4f    | 4.13                   | 4.24                   | 3.80          | 6.5                       | 2.4                       | 12.5                       | 4.13                   | 4.23                   | 3.80          | 6.3                       | 1.9                       | 12.2                       |
| 9a    | 4.44                   | 4.61                   | 4.13          | 4.9                       | 3.0                       | 12.7                       | 4.44                   | 4.61                   | 4.11          | 5.3                       | 2.8                       | 12.7                       |
| 9b    | 4.43                   | 4.60                   | 4.11          | 5.3                       | 3.0                       | 12.5                       | 4.43                   | 4.59                   | 4.09          | 5.5                       | 2.6                       | 12.5                       |
| 9c    | 4.44                   | 4.60                   | 4.11          | 5.4                       | 3.0                       | 12.5                       | 4.44                   | 4.60                   | 4.11          | 5.1                       | 2.6                       | 12.2                       |
| 9d    | 4.43                   | 4.56                   | 4.09          | 5.8                       | 2.7                       | 12.3                       | 4.44                   | 4.57                   | 4.09          | 5.7                       | 2.4                       | 12.2                       |
| 9e    | 4.42                   | 4.55                   | 4.08          | 5.9                       | 2.4                       | 12.5                       | 4.41                   | 4.56                   | 4.08          | 6.0                       | 2.4                       | 12.7                       |
| 9f    | 4.39                   | 4.58                   | 4.12          | 6.8                       | 2.6                       | 12.2                       | 4.39                   | 4.57                   | 4.11          | 6.3                       | 2.3                       | 12.2                       |

| Experimental data |                        |                        |               |                           |                           |                            |                                            |                        | Simulated data         |               |                           |                           |                            |
|-------------------|------------------------|------------------------|---------------|---------------------------|---------------------------|----------------------------|--------------------------------------------|------------------------|------------------------|---------------|---------------------------|---------------------------|----------------------------|
| Cmpd.             | δ H6 <i>R</i><br>(ppm) | δ H6 <i>S</i><br>(ppm) | δ H5<br>(ppm) | J <sub>5.6R</sub><br>(Hz) | J <sub>5.6S</sub><br>(Hz) | J <sub>6R.6S</sub><br>(Hz) | Δδ <sub>6R.6S</sub><br>/J <sub>6R.6S</sub> | δ H6 <i>R</i><br>(ppm) | δ H6 <i>S</i><br>(ppm) | δ H5<br>(ppm) | J <sub>5.6R</sub><br>(Hz) | J <sub>5.6S</sub><br>(Hz) | J <sub>6R.6S</sub><br>(Hz) |
| 4a                | 4.25                   | 4.18                   | 4.00          | 5.1                       | 2.4                       | 12.6                       | 2.8                                        | 4.25                   | 4.18                   | 4.00          | 5.5                       | 2.2                       | 12.5                       |
| 4b                | 4.24                   | 4.17                   | 4.00          | 5.4                       | 2.4                       | 12.6                       | 2.8                                        | 4.24                   | 4.16                   | 3.99          | 5.3                       | 1.7                       | 12.5                       |
| 4c                | 4.34                   | 4.44                   | 4.22          | 5.4                       | 2.4                       | 12.5                       | 4.4                                        | 4.34                   | 4.44                   | 4.21          | 5.1                       | 2.7                       | 12.5                       |
| 4d                | 4.23                   | 4.15                   | 4.02          | 6.0                       | 2.4                       | 12.6                       | 3.2                                        | 4.23                   | 4.15                   | 4.02          | 5.9                       | 2.1                       | 12.6                       |
| 4e                | 4.19                   | 4.16                   | 3.99          | 5.3                       | 3.0                       | 12.6                       | 1.2                                        | 4.19                   | 4.16                   | 3.99          | 5.9                       | 2.5                       | 12.6                       |
| 4f                | 4.13                   | 4.17                   | 4.03          | 6.1                       | 2.9                       | 12.6                       | 1.6                                        | 4.13                   | 4.17                   | 4.03          | 6.3                       | 2.0                       | 12.6                       |

**Table S3**.  $\delta$ H5,  $\delta$ H6*R*,  $\delta$ H6*S*,  ${}^{3}J_{H5.6R}$  and  ${}^{3}J_{H5.H6S}$  data from experimental and simulated spectra of acetates **4a-4g** in CD<sub>3</sub>CN.

**Table S4**.  $\delta$ H5,  $\delta$ H6*R*,  $\delta$ H6*S*,  ${}^{3}J_{H5,6R}$  and  ${}^{3}J_{H5,H6S}$  data from experimental and simulated spectra of sulfone **4d** in C<sub>6</sub>D<sub>6</sub> and CD<sub>3</sub>OD.

|                               |                        | E                      | kperimen      | tal data                  | 1                         |                            | Simulated data                             |                        |                        |               |                           |                           |                            |
|-------------------------------|------------------------|------------------------|---------------|---------------------------|---------------------------|----------------------------|--------------------------------------------|------------------------|------------------------|---------------|---------------------------|---------------------------|----------------------------|
| Cmpd.                         | δ H6 <i>R</i><br>(ppm) | δ H6 <i>S</i><br>(ppm) | δ H5<br>(ppm) | J <sub>5.6R</sub><br>(Hz) | J <sub>5.6S</sub><br>(Hz) | J <sub>6R.6S</sub><br>(Hz) | Δδ <sub>6R.6S</sub><br>/J <sub>6R.6S</sub> | δ H6 <i>R</i><br>(ppm) | δ H6 <i>S</i><br>(ppm) | δ H5<br>(ppm) | J <sub>5.6R</sub><br>(Hz) | J <sub>5.6S</sub><br>(Hz) | J <sub>6R.6S</sub><br>(Hz) |
| C <sub>6</sub> D <sub>6</sub> |                        |                        |               |                           |                           |                            |                                            |                        |                        |               |                           |                           |                            |
| 4d                            | 3.95                   | 3.94                   | 2.90          | 4.4                       | 3.0                       | 12.6                       | 0.5                                        | 3.95                   | 3.94                   | 2.90          | 5.2                       | 2.1                       | 12.7                       |
| CD₃OD                         |                        |                        |               |                           |                           |                            |                                            |                        |                        |               |                           |                           |                            |
| 4d                            | 4.28                   | 4.25                   | 4.11          | 5.4                       | 2.4                       | 12.6                       | 1.4                                        | 4.28                   | 4.25                   | 4.11          | 5.6                       | 2.0                       | 12.5                       |



Overlaid regions of experimental and simulated <sup>1</sup>H NMR spectra of 4a–4f and 9a–9f

**Figure S26.** Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(methylsulfonyl)- $\beta$ -D-glucopyranoside **(4a)** in CDCl<sub>3</sub>.



**Figure S27**. Overlaid regions of experimental (blue) and simulated (red) NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(ethylsulfonyl)- $\beta$ -D-glucopyranoside **(4b)** in CDCl<sub>3</sub>.



**Figure S28**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*n*-propylsulfonyl)- $\beta$ -D-glucopyranoside (4c) in CDCl<sub>3</sub>.



**Figure S29**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*iso*-propylsulfonyl)- $\beta$ -D-glucopyranoside (4d) in CDCl<sub>3</sub>.



**Figure S30**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(cyclohexylsulfonyl)- $\beta$ -D-glucopyranoside **(4e)** in CDCl<sub>3</sub>



**Figure S31**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*tert*-butylsulfonyl)- $\beta$ -D-glucopyranoside **(4f)** in CDCl<sub>3</sub>



**Figure 32**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(methylsulfonyl)- $\beta$ -D-glucopyranoside **(4a)** in CD<sub>3</sub>CN



**Figure S33.** Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(ethylsulfonyl)- $\beta$ -D-glucopyranoside **(4b)** in CD<sub>3</sub>CN



**Figure 34**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*n*-propylsulfonyl)- $\beta$ -D-glucopyranoside (4c) in CD<sub>3</sub>CN



**Figure 35**. Overlaid regions of experimental (blue) and simulated (red) NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*iso*-propylsulfonyl)- $\beta$ -D-glucopyranoside (4d) in CD<sub>3</sub>CN



**Figure S36**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(cyclohexylsulfonyl)- $\beta$ -D-glucopyranoside **(4e)** in CD<sub>3</sub>CN



**Figure S37**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*tert*-butylsulfonyl)- $\beta$ -D-glucopyranoside **(4f)** in CD<sub>3</sub>CN



**Figure S38**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3–di–*O*–acetyl-4,6-bis-*O*-(4-bromobenzoyl)-1-(methylsulfonyl)-β-D-glucopyranoside **(9a)** in CDCl<sub>3</sub>



**Figure S39**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3–di–*O*–acetyl-4,6-bis-*O*-(4-bromobenzoyl)-1-(ethylsulfonyl)-β-D-glucopyranoside **(9b)** in CDCl<sub>3</sub>



**Figure S40**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3–di–O–acetyl-4,6-bis-O-(4-bromobenzoyl)-1-(n-propylsulfonyl)- $\beta$ -D-glucopyranoside (9c) in CDCl<sub>3</sub>

![](_page_36_Figure_2.jpeg)

**Figure S41**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3–di–*O*–acetyl-4,6-bis-*O*-(4-bromobenzoyl)-1-(*iso*-propylsulfonyl)-β-D-glucopyranoside **(9d)** in CDCl<sub>3</sub>

![](_page_37_Figure_0.jpeg)

**Figure S42**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3–di–O–acetyl-4,6-bis-O-(4-bromobenzoyl)-1-(cyclohexylsulfonyl)- $\beta$ -D-glucopyranoside (**9e**) in CDCl<sub>3</sub>

![](_page_37_Figure_2.jpeg)

**Figure S43**. Overlaid regions of experimental (blue) and simulated (red) <sup>1</sup>H NMR spectra showing H5, H6*R*, and H6*S* for 2,3–di–*O*–acetyl-4,6-bis-*O*-(4-bromobenzoyl)-1-(*tert*-butylsulfonyl)-β-D-glucopyranoside **(9f)** in CDCl<sub>3</sub>

![](_page_38_Figure_0.jpeg)

**Figure S44**. Overlaid regions of experimental (blue) and simulated (red) NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*iso*-propylsulfonyl)- $\beta$ -D-glucopyranoside (4d) in C<sub>6</sub>D<sub>6</sub>

![](_page_38_Figure_2.jpeg)

**Figure S45**. Overlaid regions of experimental (blue) and simulated (red) NMR spectra showing H5, H6*R*, and H6*S* for 2,3,4,6–tetra–O–acetyl-1-(*iso*-propylsulfonyl)- $\beta$ -D-glucopyranoside (4d) in CD<sub>3</sub>OD.

## C) Hydroxymethyl rotamer populations from simulated coupling constants

**Table S5.** Hydroxymethyl rotamer populations of *per*-acetylated alkyl sulfones **4a**–**4f** (CDCl<sub>3</sub> and CD<sub>3</sub>CN) and dibenzoates **9a**–**9f** (CDCl<sub>3</sub>) calculated from the simulated  ${}^{3}J_{H5,H6R}$  and  ${}^{3}J_{H5,H6S}$  coupling constants (Tables S2 and S3).

|       |          | <b>CDCI</b> ₃ |          | CD₃CN    |          |          |  |  |  |  |
|-------|----------|---------------|----------|----------|----------|----------|--|--|--|--|
| Cmpd. | $P_{gg}$ | $P_{gt}$      | $P_{tg}$ | $P_{gg}$ | $P_{gt}$ | $P_{tg}$ |  |  |  |  |
| 4a    | 59       | 41            | 0        | 55       | 45       | 0        |  |  |  |  |
| 4b    | 64       | 36            | 0        | 57       | 43       | 0        |  |  |  |  |
| 4c    | 61       | 39            | 0        | 56       | 39       | 5        |  |  |  |  |
| 4d    | 59       | 41            | 0        | 51       | 49       | 0        |  |  |  |  |
| 4e    | 58       | 42            | 0        | 50       | 48       | 2        |  |  |  |  |
| 4f    | 48       | 52            | 0        | 48       | 52       | 0        |  |  |  |  |
| 9a    | 53       | 41            | 6        |          |          |          |  |  |  |  |
| 9b    | 53       | 44            | 3        |          |          |          |  |  |  |  |
| 9c    | 57       | 40            | 0        |          |          |          |  |  |  |  |
| 9d    | 53       | 47            | 0        |          |          |          |  |  |  |  |
| 9e    | 50       | 50            | 0        |          |          |          |  |  |  |  |
| 9f    | 47       | 53            | 0        |          |          |          |  |  |  |  |

![](_page_40_Figure_1.jpeg)

Figure S46.  $P_{gg}$  (red color),<sup>1</sup> and  $P_{gt}$  (blue color)<sup>2</sup> (calculated from simulated <sup>3</sup>J<sub>H5,H6R</sub> and <sup>3</sup>J<sub>H5,H6S</sub> coupling constants) versus alkyl's Charton values for alkyl sulfones 4a-4f in CDCl3

<sup>&</sup>lt;sup>1</sup>  $P_{gg} = -18.7v + 72.7 (R^2 = 0.82)$ <sup>2</sup>  $P_{gt} = 18.7v + 27.3 (R^2 = 0.82)$ 

![](_page_41_Figure_0.jpeg)

Figure S47. Pgg (red color),<sup>3</sup> and Pgt (blue color)<sup>4</sup> (calculated from simulated <sup>3</sup>JH5,H6R and <sup>3</sup>JH5,H6S coupling constants) versus alkyl's Charton values for alkyl sulfones 4a-4f in CD<sub>3</sub>CN

<sup>&</sup>lt;sup>3</sup>  $P_{gg} = -12.4 v + 62.5 (R^2 = 0.80)$ <sup>4</sup>  $P_{gt} = 13.3 v + 35.7 (R^2 = 0.56)$ 

![](_page_42_Figure_0.jpeg)

**Figure S48.**  $P_{gg}$  (red color),<sup>5</sup> and  $P_{gt}$  (blue color)<sup>6</sup> (calculated from simulated <sup>3</sup>J<sub>H5,H6R</sub> and <sup>3</sup>J<sub>H5,H6S</sub> coupling constants) versus alkyl's Charton values for alkyl sulfones **9a–9f** in CDCl<sub>3</sub>

 $<sup>^{5}</sup>P_{gg} = -9.9 v + 59.9 (R^{2} = 0.61)$ 

 $<sup>^{6}</sup>P_{gt} = 17.1 v + 32.5 (R^{2} = 0.78)$