Supplementary Information

Chemoselective Benzylic Csp³-H Bond Oxidation Reactions Catalyzed by

Ag^{II}(bipy)₂S₂O₈ Complex

Zaheen Akhter,^{a,b, +} Sumit Sharma,^{a,b, +} Radhika Anand,^{a,b} Muzamil Samad,^{a,b} Praveen

Kumar Verma,^{a,c,} and Parvinder Pal Singh^{a,b,*}

^aNatural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

^bAcademy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002 India.

^cSchool of Advanced Chemical Sciences, Shoolini University of Biotechnology and

Management Sciences, Solan, HP-173229 India.

[†]Equal contribution

Contents	Pages
Table S1: Optimization study	S2
General Procedure for the synthesis of silver complex.	S2
General Procedures for controlled experiments (Scheme-2)	S2-S3
General Procedures for labelling experiment (Figure-2)	S4
Spectral copies of compounds 2a-2al	S05-S85
Spectral copies of compounds 4a – 4j	S86-S107
Spectral copies of compound 8a and 10a	S108-S114
References	S115

Table S1: Optimization study

	$MeO \begin{array}{c} CH_3 \\ MeO \end{array} \begin{array}{c} Ag^{II}(bipy)_2S_2O_8, Oxidant \\ MeCN/H_2O, 40 \ ^{\circ}C \\ 1a \end{array} \begin{array}{c} O \\ MeO \end{array} \begin{array}{c} O \\ MeO \end{array} \begin{array}{c} O \\ HeO \\ 2a \ (\% \ yield) \end{array}$							
entry	R	Ag catalyst	oxidant	Solvent	time (h)	2a (% yield)		
1	<i>p</i> -OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	Oxone (3 equiv.)*	MeCN/H ₂ O	12 h	21		
2	p-OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	H_2O_2 (3 equiv.)	MeCN/H ₂ O	12 h	nd		
3	p-OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	TBHP (3 equiv.)	MeCN/H ₂ O	12 h	12		
4	p-OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	Selectfluor (3 equiv.)	MeCN/H ₂ O	0.166 h	78		
5	<i>p</i> -OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	K ₂ S ₂ O ₈ (3 equiv.)	MeCN/H ₂ O	12 h	48		
6	<i>p</i> -OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	NH₄S₂O₂ (3 equiv.)	MeCN/H ₂ O	12 h	24		
7	<i>p</i> -OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	$Na_2S_2O_8$ (3 equiv.)	MeCN/H ₂ O	12 h	18		
8	<i>p</i> -OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	Selectfluor (1 equiv.)	MeCN/H ₂ O	0.5 h	56		
9	<i>p</i> -OMe	Ag ^{II} (bipy) ₂ S ₂ O ₈	Selectfluor (2 equiv.)	MeCN/H ₂ O	0.333 h	62		

Reaction conditions: 1a (1 mmol), Ag catalyst (10 mol%), Selectfluor (3 equiv.), CH₃CN/H₂O (9:1, 4 mL), 40 °C, *Oxone 2KHSO₅·KHSO₄·K₂SO₄

General procedure for the synthesis of Silver Complex:¹

2,2'-Bipyridine (1.1 g, 7 mmol) was added to a silver nitrate solution in methanol (0.51 g, 3 mmol), and the mixture was allowed to stir for 0.5 hours at room temperature. Thereafter,

methanol was evaporated using a rotary evaporator and crystalline compound was obtained. This compound was then added to cold solution of $K_2S_2O_8$ (1.1 g in 100 mL H_2O) and after some time brown coloured precipitates were observed. The precipitates were then filtered under vacuum, and upon drying brown colour compound was obtained (2.1 g).

Procedures for controlled experiments (Scheme 2)

To a stirred solution of *p*-methoxy toluene **1a** (0.8196 mmol) in CH₃CN/H₂O (9:1, 4 mL), was added (3 equiv.) of selectfluor and 10mol% of silver complex in 50 ml round bottom flask. The reaction mixture was stirred at 40 °C under Nitrogen atmosphere. After completion of the reaction as indicated by thin layer chromatography, the reaction mixture was extracted with EtOAc and water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo on rotary evaporator. The crude material was purified by column chromatography using ethyl acetate/ *n*-hexane as eluent to afford the required product **2a** in 76% yield (Scheme 2, *eq. 1*).

To a 50 mL two necked round bottom flask 10mol% of silver complex was added under nitrogen atmosphere after that 4 ml of anhydrous acetonitrile (CH₃CN) was added with the

help of syringe, simultaneously we added *p*-methoxy toluene **1a** (0.8196 mmol) and (3 equiv.) of selectflour into it and place the reaction mixture on stirring at 40 °C under nitrogen atmosphere followed by freeze thaw cycles. After completion of the reaction as indicated by thin layer chromatography, the reaction mixture was extracted with EtOAc and water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo on rotary evaporator. The crude material was purified by column chromatography using ethyl acetate/ *n*-hexane as eluent to afford the required product **2a** of 46% (Scheme 2, *eq. 2*).

To a 50 mL two necked round bottom flask 10mol% of silver complex was added under argon atmosphere after that 4 mL of anhydrous tetrahydrofuran (THF) was added with the help of syringe, simultaneously we added *p*-methoxy toluene **1a** (0.8196 mmol) and (3 equiv.) of selectflour into it and place the reaction mixture on stirring at 40 °C under argon atmosphere for 3hr followed by freeze thaw cycles. After 3 hr no new spot was observed as indicated by thin layer chromatography (Scheme 2, *eq. 3*).

To a 50 mL two necked round bottom flask 10mol% of silver complex was added under argon atmosphere after that 3.5 mL of anhydrous tetrahydrofuran (THF) was added with the help of syringe, simultaneously we added *p*-methoxy toluene **1a** (0.8196 mmol) and (3 equiv.) of selectflour into it and place the reaction mixture on stirring at 40 °C under argon atmosphere for 3hr followed by freeze thaw cycles. After 3 hr when we check thin layer chromatography (TLC) we observe no new spot. After this, we added 0.5 mL of freeze thaw water in the reaction mixture with the help of syringe, we observe heat up of reaction. Suddenly when we check the TLC of reaction, the reaction was completed in 5 minutes. After completion of the reaction as indicated by thin layer chromatography, the reaction mixture was extracted with EtOAc and water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo on rotary evaporator. The crude material was purified by column chromatography using ethyl acetate/ *n*-hexane as eluent to afford the required product **2a** of 78% (Scheme 2, *eq. 4*).

To a stirred solution of *p*-methoxy toluene **1a** (0.8196 mmol) in CH₃CN/H₂O (9:1, 4 mL), was added (3 equiv.) of selectfluor and 10mol% of silver complex after that we added (4 equiv., 6 equiv., 8 equiv. and 3 equiv.) of TEMPO as a radical scavenger. Then the reaction mixture was placed on stirring at 40 °C under Nitrogen atmosphere. After completion of the reaction as indicated by thin layer chromatography, the reaction mixture was extracted with EtOAc and water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo on

rotary evaporator. The crude material was purified by column chromatography using ethyl acetate/ *n*-hexane as eluent to afford the required product 2a of 58%, 42%, 28%, 12% (Scheme 2, *eq.* 5).

Procedure for Isotope labelling experiment (Figure 2)

To a stirred solution of *p*-methoxy toluene **1a** (0.8196 mmol) in anhydrous CH₃CN was added (3 equiv.) of selectfluor and 10mol% of silver complex under nitrogen atmosphere after that we add 10 μ l H₂O¹⁸. Then the reaction was continued to stir for about 5 minutes at 40 °C.

Spectral copies of:

¹H NMR Spectra of 4-Methoxy benzaldehyde (2a)²

DEPT Spectra of 4-Methoxy benzaldehyde (2a)²

¹HNMR Spectra of 2-Methoxy benzaldehyde (2b)²

¹³C² NMR Spectra of 2-Methoxy benzaldehyde (2b)²

DEPT Spectra of 2-Methoxy benzaldehyde (2b)²

GCMS of 2-Methoxy benzaldehyde (2b)

GCMS ANALYSIS REPORT

136.05 Benzaldehyde, 2-methoxy-135.00 Benzoic acid, 2-methoxy-105.05 Benzoic acid, 2-methoxy-191.10 2,4-Di-tert-butylphenol 7.213 8.133 9.393 88382296 443776 91.00 0.46 95 94 1.70 94 93 1650466 9.559 83451 97127286 100.00

Hit#:1 Entry:10102 Library:NIST17M1 lib SI:95 Formula:C8H8O2 CAS:135-02-4 MolWeight:136 RetIndex:1171 CompName:Benzaldehyde, 2-methoxy-\$\$ o-Anisaldehyde \$\$ o-Methoxybenzaldehyde \$\$ 2-Methoxybenzaldehyde \$\$ 2-Methoxybenzal

¹H NMR Spectra of 4-Nitro benzaldehyde (2c)²

¹³C{¹H} NMR Spectra of 4-Nitro benzaldehyde (2c)²

DEPT Spectra of 4-Nitro benzaldehyde (2c)²

120 110 f1 (ppm)

GCMS of 4-Nitro benzaldehyde (2c)

IIIM GCMS ANALYSIS

¹H NMR Spectra of 2-Nitro benzaldehyde (2d)²

DEPT Spectra of 2-Nitro benzaldehyde (2d)²

20

10

0

Peak Report TIC							
Peak#	R.Time	Area	Area%	Similarity	Base m/z	Name	
1	7.796	8478771	98.88	96	121.00	Benzaldehyde, 2-nitro-	
2	9.572	96017	1.12	93	191.10	2,4-Di-tert-butylphenol	
		8574788	100.00				

¹HNMR Spectra of 3-Methoxy benzaldehyde (2e)²

¹³C{¹H} NMR Spectra of 3-Methoxy benzaldehyde (2e)²

DEPT Spectra of 3-Methoxy benzaldehyde (2e)²

S17

DEPT Spectra of 4-(*tert*-butyl) benzaldehyde (2f)³

¹HNMR Spectra of 4-Methyl benzaldehyde (2g)⁴

¹³C{¹H} NMR Spectra of 4-Methylbenzaldehyde (2g)⁴

DEPT Spectra of 4-Methylbenzaldehyde (2g)⁴

GCMS of 4-Methylbenzaldehyde (2g)

GCMS ANALYSIS REPORT

¹HNMR Spectra of 1-Naphthaldehyde (2h)²

¹³C{¹H} NMR Spectra of 1-Naphthaldehyde (2h)²

DEPT Spectra of 1-Naphthaldehyde (2h)²

9	
Q	
0	0000NT
0	ทักดักดัก
-	
A	

GCMS of 1-Naphthaldehyde (2h)

¹HNMR Spectra of 2-Naphthaldehyde (2i)²

¹³C{¹H} NMR Spectra of 2-Naphthaldehyde (2i)²

DEPT Spectra of 2-Naphthaldehyde (2i)²

GCMS of 2-Naphthaldehyde (2i)

GCMS ANALYSIS REPORT

¹HNMR Spectra of [1,1⁻Biphenyl]-4-carbaldehyde(2j)²

DEPT Spectra of [1,1⁻Biphenyl]-4-carbaldehyde(2j)²

HRMS of [1,1⁻Biphenyl]-4-carbaldehyde(2j)

	Durad	1	Page 1
Elemental Composi	ition Report		
Single Mass Analys Tolerance = 50.0 PPM Element prediction: Off Number of isotope peak	is / DBE: min = -1.5 ks used for i-FIT = :	i, max = 50.0	
Monoisotopic Mass, Even 3 formula(e) evaluated with Elements Used:	Electron lons h 1 results within limi	ts (up to 3 closest results for each mass)	
C: 0-13 H: 0-100 O: 4-BP	0-1	QMI DIVISION, CSIR-IIIM JAMMU Xevo G2-XS QTOF YFC2015	06-Oct-2022 13:37:00 1: TOF MS ES+ 1.92e+007
061022_12 8 (0.172) 100- 1	3.0813		- Der bor
%- 152.0627	197.0970	353.1465 365.1544 365.1544 415.0368485.2907 33	10.1849 663.4540 684.2030 686.4398 m/z
0 110.0197128.0632 0 110.0197128.0632 100 150	200 250	300 350 400 450 500 550	600 650 700 750
Minimum: Maximum:	2.0 50.0	-1.5 50.0	
Mass Calc. Mass 183.0813 183.0810	mDa PPM 0.3 1.6	DBE i-FIT Norm Conf(%) Formula 8.5 1853.8 n/a n/a C13 H11	0
		t a second	

¹HNMR Spectra of 4-Fluoro benzaldehyde (2k)²

¹³C{¹H} NMR Spectra of 4-Fluoro benzaldehyde (2k)²

DEPT Spectra of 4-Fluoro benzaldehyde (2k)²

¹⁹F Spectra of 4-Fluoro benzaldehyde (2k)²

GCMS of 4-Fluoro benzaldehyde (2k)

<< Target >> Line#.1 R.Time: 8.955(Scan#.992) MassPeaks: 257 RawMode: Averaged 8.950-8.960(991-993) BasePeak: 123.05(31725) BG Mode: Calc. from Peak Group 1 - Event 1 Q3 Scan

¹HNMR Spectra of 2-Chloro benzaldehyde (2l)⁵

¹³C{¹H} NMR Spectra of 2-Chloro benzaldehyde (2l)⁵

DEPT Spectra of 2-Chloro benzaldehyde (2l)⁵

GCMS of 2-Chloro benzaldehyde (2l)

¹HNMR Spectra of 4-Chloro benzaldehyde (2m)²

¹³C{¹H} NMR Spectra of 4-Chloro benzaldehyde (2m)²

DEPT Spectra of 4-Chloro benzaldehyde (2m)²

GCMS of 4-Chloro benzaldehyde (2m)

IIIM GCMS ANALYSIS

¹HNMR Spectra of 2-Bromobenzaldehyde (2n)²

¹³C{¹H} NMR Spectra of 2-Bromo benzaldehyde (2n)²

DEPT Spectra of 2-Bromo benzaldehyde (2n)²

GCMS of 2-Bromo benzaldehyde (2n)

GCMS ANALYSIS REPORT

¹HNMR Spectra of 4-Bromobenzaldehyde (20)²

¹³C{¹H} NMR Spectra of 4-Bromo benzaldehyde (20)²

DEPT Spectra of 4-Bromo benzaldehyde (20)²

140 130 120 110 100 f1 (ppm) 170 160

GCMS of 4-Bromo benzaldehyde (20)

IIIM GCMS ANALYSIS

S43

¹HNMR Spectra of 4-Iodo benzaldehyde (2p)²

¹³C{¹H} NMR Spectra of 4-Iodo benzaldehyde (2p)²

DEPT Spectra of 4-Iodo benzaldehyde (2p)²

GCMS Spectra of 4-Iodo benzaldehyde (2p)

¹HNMR Spectra of 4-Formylbenzonitrile (2q)²

¹³C{¹H} NMR Spectra of 4-Formylbenzonitrile (2q)²

DEPT Spectra of 4-Formylbenzonitrile (2q)²

GCMS of 4-Formylbenzonitrile (2q)

¹HNMR Spectra of 3-Nitro benzaldehyde (2r)³

¹³C{¹H} NMR Spectra of 3-Nitro benzaldehyde (2r)³

DEPT Spectra of 3-Nitro benzaldehyde (2r)³

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

GCMS of 3-Nitro benzaldehyde (2r)

GCMS ANALYSIS REPORT

<<Target >> Line#:1 R Time: 8.245(Scan#:1050) MassPeaks: 241 RawMode: Averaged 8.240-8.250(1049-1051) BasePeak: 151.00(4275355) BG Mode: Calc. from Peak Group 1 - Event 1 Q3 Scan

¹H NMR Spectra of Methyl 4-formylbenzoate (2s)²

¹³C{¹H} NMR Spectra of Methyl 4-formylbenzoate (2s)²

-191.66.04 -166.04 -139.13 ~139.13 ~130.17 ~129.51	-52.57
---	--------

DEPT Spectra of Methyl 4-formylbenzoate (2s)²

6.0 5.5 f1 (ppm)

5.0 4.5

4.0

3.5 3.0 2.5 2.0 1.5 1.0 0.5

11.0 10.5

10.0

9.5

9.0 8.5 8.0 7.5 7.0 6.5

0.0

¹³C{¹H} NMR Spectra of Methyl 3-formylbenzoate (2t)³

¹HNMR Spectra of 4-formyl-2-(trimethylsilyl) phenyltrifluoromethanesulfonate(2u)

DEPT Spectra of 4-formyl-2-(trimethylsilyl) phenyltrifluoromethanesulfonate(2u)

¹⁹F Spectra of 4-formyl-2-(trimethylsilyl) phenyltrifluoromethanesulfonate(2u)

GCMS of 4-formyl-2-(trimethylsilyl) phenyltrifluoromethanesulfonate(2u)

Hit#:2 Entry:155785 Library:NIST17M1.lib SI:60 Formula:C18H20O3Si CAS:0-00-0 MolWeight:312 RetIndex:2259 CompName:3'-Hydroxyflavanone, trimethylsilyl ether

S58

¹HNMR Spectra of 4-formyl-2-(trimethylsilyl) phenyltrifluoromethanesulfonate(2v)

¹³C{¹H} NMR Spectra of 2-formyl-5-(trimethylsilyl) phenyltrifluoromethanesulfonate (2v)

DEPT Spectra of 2-formyl-5-(trimethylsilyl) phenyltrifluoromethanesulfonate (2v)

¹⁹F Spectra of 2-formyl-5-(trimethylsilyl) phenyltrifluoromethanesulfonate (2u)

CSIR-INDIAN INSTITUTE OF INTEGRATIVE MEDICINE Quality Management and Instrumentation Division GCMS ANALYSIS REPORT

Sample Information						
Analyzed by Analyzed Level # Sample Name Sample D Sample Amount Vial # Injection Volume Data File Method File Tuning File SEndIf\$Modified by Modified	: System Administrat 105-02-2024 13:36:0 1 : PPS-312 : PPS-312 : 1 2 : 1.00 : D:\GCMS-2024\D : D:\GCMS-2024\D : D:\GCMS-2024\D : System Administrat : 05-02-2024 14:59:0	ATA\FEB-2 ETHODS/ JNNING/0 tor 05	2024/05.02 GCMS_LI 3.01.2024	.2024-2.qgd Q_1_5ms_01.qgm LIQ-5MS.qgt		
intensity					TIC	
7,470,03 6500000 5500000 5500000 4500000 4500000 3500000 3500000 2500000	0			~	Chemical Formula: C ₁₀ H ₁₃ OSi* Exact Mass: 177.0736	
2000000					Chemical Formula: CE ₂ O ₂ S*	
1000000					Exact Mass: 148 9520	
500000				© 4		
0	1					
3.0				10.0	19.0 min	
				Peak Report TIC		
Peak# R.Tu	me Area	Area%	Similarity	Name		
2 94	69 10929128	77.02	90	1-Dualoi, 5-memyr-, acetate		
3 10.4	59 332760	2.35	75	Isophthalic acid, ethyl 2-isopropylphenyl este	ſ	
4 10.7	22 261951	1.85	78	Silane, dimethyl(4-acetylphenoxy)butoxy-		
	14180557	100.00				

<< Target >> Line#:3 R.Time:10.460(Scan#:1493) MassPeaks:307 RawMode:Averaged 10.455-10.465(1492-1494) BasePeak:177.05(67507) BG Mode:Calc. from Peak. Group 1 - Event 1 Q3 Scan 100-177 80-60-40-20-267 282 387 400 251 195 209 223 121 135 95 105 163 333 345 359 414 427 450 465 479 299 311 495 70 370 430 100 340 10 130 280 190 220 40 160 250 310 460

¹HNMR Spectra of 4-Azidobenzaldehyde (2w)⁶

¹³C{¹H} NMR Spectra of 4-Azidobenzaldehyde (2w)⁶

¹HNMR Spectra of 4-Formylbenzenesulfonyl azide (2x)

¹³C{¹H} NMR Spectra of 4-Formylbenzenesulfonyl azide (2x)

DEPT Spectra of 4-Formylbenzenesulfonyl azide (2x)

¹HNMR Spectra of 4-Formylbenzenesulfonamide (2y)⁷

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectra of 4-Formylbenzenesulfonamide $(2y)^{7}$

DEPT Spectra of 4-Formylbenzenesulfonamide (2y)⁷

GCMS of 4-Formylbenzenesulfonamide (2y)

CSIR-INDIAN INSTITUTE OF INTEGRATIVE MEDICINE Quality Management and Instrumentation Division GCMS ANALYSIS REPORT

¹HNMR Spectra of 2-(allyloxy) benzaldehyde (2z)⁸

¹³C{¹H} NMR Spectra of 2-(allyloxy) benzaldehyde (2z)⁸

DEPT Spectra of 2-(allyloxy) benzaldehyde (2z)⁸

GCMS of 2-(allyloxy) benzaldehyde (2z)

GCMS ANALYSIS REPORT

¹HNMR Spectra of 2-(prop-2-yn-1-yloxy) benzaldehyde (2aa)⁸

¹³C{¹H} NMR Spectra of 2-(prop-2-yn-1-yloxy) benzaldehyde (2aa)⁸

DEPT Spectra of 2-(prop-2-yn-1-yloxy) benzaldehyde (2aa)⁸

GCMS of 2-(prop-2-yn-1-yloxy) benzaldehyde (2aa)

GCMS ANALYSIS REPORT

¹HNMR Spectra of Benzaldehyde (2ab)²

¹³C{¹H} NMR Spectra of Benzaldehyde (2ab)²

DEPT Spectra of Benzaldehyde (2ab)²

GCMS of Benzaldehyde (2ab)

Peak Report TIC										
Peak#	R.Time	Area	Area%	Similarity	Base m/z	Name				
1	4.247	92452147	86.00	98	106.05	Benzaldehyde				
2	6.513	15048198	14.00	97	105.00	Benzoic acid				
2		107500345	100.00	1000						

100	2	7	7	106														
60																		
40		51																
20-																		
~_	29 39	63	89	115	128	153	181	196		222 232	250	272	288	304	325	40 3	60 373	397
1	0 30	50 70	90	110	130	150	170	190	210	230	250	270	290	310	330	350	370	390

¹H NMR Spectra of Furan-2-carbaldehyde (2ac)²

¹³C{¹H} NMR Spectra of Furan-2-carbaldehyde (2ac)²

DEPT Spectra of Furan-2-carbaldehyde (2ac)²

¹³C{¹H} NMR Spectra of Thiophene-2-carbaldehyde (2ad)⁹

DEPT Spectra of Thiophene-2-carbaldehyde (2ad)⁹

¹HNMR Spectra of Quinoxaline-2-carbaldehyde (2aj)

¹³C{¹H} NMR Spectra of Quinoxaline-2-carbaldehyde (2aj)

DEPT Spectra of Quinoxaline-2-carbaldehyde (2aj)

¹HNMR Spectra of 1-methyl-1*H*-benzo[*d*][1,2,3]triazole-5-carbaldehyde (2ak)

¹³C{¹H} NMR Spectra of 1-methyl-1*H*-benzo[*d*][1,2,3]triazole-5-carbaldehyde (2ak)

DEPT Spectra of 1-methyl-1*H*-benzo[*d*][1,2,3]triazole-5-carbaldehyde (2ak)

HRMS of 1-methyl-1*H*-benzo[d][1,2,3]triazole-5-carbaldehyde (2ak)

Single Mas Tolerance = Element pre Number of is	ss Analysis 100.0 PPM / diction: Off sotope peaks u	DBE: m	nin = -1.5, ma FIT = 3	x = 50.0						
Monoisotopic 9 formula(e) e Elements Use C: 0-8 H: 0	Mass, Even Ele- evaluated with 1 ed: 0-100 N: 0-3	ctron Ions results wi O: 0-1	; thin limits (up	to 3 closest re	sults for ea	ch mass)				
TRIAZOLE				QMI DIVISI	ON, CSIR-II	IM JAMMU				05-Jun-2024
050624_07 5 (0.121)			ACV0 02		102015			1	: TOF MS AP+
100-	162.06	68 194.	0928							1.46e+007
%-	134.0697									
- - 1 0	18.0629		208.1058 209.1085	279.0910	22.1894 34	1.3031	415.2102	475.2956 49	5.2649 _{547.3993}	579.5340
75	100 125 150	0 175	200 225 2	50 275 300	325 35	0 375 4	400 425 45	50 475 500	525 550	575 600
Minimum: Maximum:		2.0	-1 100.0 50	.5 .0						
Mass 162.0668	Calc. Mass 162.0667	mDa 0.1	PPM DBI 0.6 6.	i-FIT 5 1792.3	Norm n/a	Conf(%) n/a	Formula C8 H8 N3	0		

¹HNMR Spectra of 1,3-dimethylindolin-2-one (2al)¹⁰

¹³C{¹H} NMR Spectra of 1,3-dimethylindolin-2-one (2al)¹⁰

DEPT Spectra of 1,3-dimethylindolin-2-one (2al)¹⁰

CSIR-INDIAN INSTITUTE OF INTEGRATIVE MEDICINE Quality Management and Instrumentation Division GCMS ANALYSIS REPORT

Library

<< Target > Line#:1 R.Time:8.985(Scan#:1198) MassPeaks:254 RawMode:Averaged 8.980-8.990(1197-1199) BasePeak: 118.05(3522739) BG Mode:Calc. from Peak Group 1 - Event 1 Q3 Scan 100 161 80-60-146 40-132 20-178 204 224 2250 268 285 304 315 331 357 371 382 401 417 444 462 475 494 130 130 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490 10 30 50 70 110 90

Spectral copies:

¹HNMR Spectra of Acetophenone (4a)¹¹

¹³C{¹H} NMR Spectra of Acetophenone (4a)¹¹

DEPT Spectra of Acetophenone (4a)¹¹

GCMS of Acetophenone (4a)

GCMS ANALYSIS REPORT

Analyzed by Analyzed Level # Sample Name Sample Nome Sample Annount Vial # Injection Volume Data File Method File Tuning File SEndIfSModified by	Sample Information : System Administrator : 21-03-2023 22:04:09 :1 : RA-1 : RA-1 : RA-1 : A : 1 : 6 : 0.50 : D\:GCMS-2023\Data\Mar-2023\21.03.2023-26.qgd : D\:GCMS-2023\Data\Mar-2023\21.03_2023-26.qgd : D\:GCMS-2023\Tuning(06.Mar_2023_Liquid.qgt : System Administrator
\$EndIf\$Modified by Modified	: System Administrator : 22-03-2023 12:12:00

Chemical Formula: C₈H₈O Exact Mass: 120.06

<<<Target >> Line#:1 R.Time:5.435(Scan#:488) MassPeaks:190 RawMode:Averaged 5.430-5.440(487-489) BasePeak:105.00(78674) BG Mode:Calc. from Peak Group 1 - Event 1 Q3 Scan 100-80-60-40-20-230 239 230 250 270

¹HNMR Spectra of 4- Bromoacetophenone (4b)¹¹

¹³C{¹H} NMR Spectra of 4- Bromoacetophenone (4b)¹¹

DEPT Spectra of 4- Bromoacetophenone (4b)¹¹

¹³C{¹H} NMR Spectra of Benzophenone (4c)²

DEPT Spectra of Benzophenone (4c)²

σ	0	ŝ
4	-	n
CI.	0	00
m,	m,	2
	ᅻ	-
	1	1

GCMS of Benzophenone (4c)

¹HNMR Spectra of Ethyl-4-methoxy benzoate (4d)¹²

¹³C{¹H} NMR Spectra of Ethyl-4-methoxy benzoate (4d)¹²

DEPT Spectra of Ethyl-4-methoxy benzoate (4d)¹²

GCMS of Ethyl-4-methoxy benzoate (4d)

GCMS ANALYSIS REPORT

 0 215 228 242 257 272280 305 210 230 250 270 290 310

<u>332 341 353 374</u> 330 350 370

390

¹HNMR Spectra of Propiophenone (4e)¹³

"

20-

¹³C{¹H} NMR Spectra of Propiophenone (4e)¹³

¹HNMR Spectra of 2-Bromo-1-phenylethan-1-one (4f)¹⁴

¹³C{¹H} NMR Spectra of 2-Bromo-1-phenylethan-1-one (4f)¹⁴

DEPT Spectra of 2-Bromo-1-phenylethan-1-one (4f)¹⁴

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20} f1 (ppm)

GCMS of 2-Bromo-1-phenylethan-1-one (4f)

GCMS ANALYSIS REPORT

¹HNMR Spectra of Isobenzofuran-1(3H)-one (4g)¹⁵

¹³C{¹H} NMR Spectra of Isobenzofuran-1(3H)-one (4g)¹⁵

DEPT Spectra of Isobenzofuran-1(3H)-one (4g)¹⁵

¹³C{¹H} NMR Spectra of Isochroman-1-one (4h)¹¹

GCMS of Isochroman-1-one (4h)

IIIM GCMS ANALYSIS

Line#:1 R.Time:18.680(Scan#:2937) MassPeaks:229 RawMode:Averaged 18.675-18.685(2936-2938) BasePeak:118.05(560644) BG Mode:Calc. from Peak Group 1 - Event 1 Q3 Scan

¹HNMR Spectra of *tert* 1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4i)¹⁶

¹³C{¹H} NMR Spectra of *tert* 1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4i)¹⁶

DEPT Spectra of tert 1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (4i)¹⁶

¹³C{¹H} NMR Spectra of 2,3-dihydro-1*H*-inden-1-one (4j)¹¹

DEPT Spectra of 2,3-dihydro-1*H*-inden-1-one (4j)¹¹

GCMS of 2,3-dihydro-1*H*-inden-1-one (4j)

GCMS ANALYSIS REPORT

-

Hit#:1 Entry:9059 Library:NIST17M1.lib SI:96 Formula:C9H8O CAS:83-33-0 MolWeight:132 RetIndex:1218 CompName:1H-Inden-1-one, 2,3-dihydro-\$\$ 1-Indanone \$\$.alpha.-Hydrindone \$\$.alpha.-Indanone \$\$ Indan-1-one \$\$ Indanone \$\$ 1-Indone \$\$ Indanone

¹HNMR Spectra of 8-(4-hydroxy-3-methylbut-2-en-1-yl)-7-methoxy-2*H*-chromen-2-one (8a)

¹³C{¹H} NMR Spectra of 8-(4-hydroxy-3-methylbut-2-en-1-yl)-7-methoxy-2*H*-chromen-2-one (8a)

DEPT Spectra of 8-(4-hydroxy-3-methylbut-2-en-1-yl)-7-methoxy-2*H*-chromen-2-one (8a)

-143.76 -127.29 -127.29 -127.29 -127.26 -77.26 -56.15 -156.15 -56

HSQC correlation in 8-(4-hydroxy-3-methylbut-2-en-1-yl)-7-methoxy-2*H*-chromen-2-one (8a)

HMBC correlations in 8-(4-hydroxy-3-methylbut-2-en-1-yl)-7-methoxy-2*H*-chromen-2-one (8a)

S114

Liciti	Compositio	nicept	/						Fage 1
Single Ma Tolerance = Element pro Number of	ass Analysis = 50.0 PPM / ediction: Off isotope peaks	DBE: m	in = -1.5, i-FIT = 3	max = 5	0.0				
Monoisotopio 6 formula(e) Elements Us C: 0-15 H	Mass, Even Elevaluated with 1 ed: : 0-100 O: 0-	ectron lor results v	ns vithin limit:	s (up to 3	closest res	ults for ea	ach mass)		
OSTHOL QMI DIVISION, CSIR-IIIM JAMMU Xeyo G2-XS QTOF YFC2015									21-Nov-20
211122_05 6 (0.138)						_		1: TOF MS AP
100]						243.107	6		2.796+00
				189.055	59				
%-						24	1063		
1	12	4.0882	0504 18	7.0399 19	0.0590 241	.0869	263.1090	284.1285	355.0709
0 h	80 100 1	20 140	160	180	200 220	240	260 280	300 320	340° 360 380 400
inimum:		2.0	50.0	-1.5 50.0					
laximum:									

¹HNMR Spectra of 3-(3-methoxy-4-(prop-2-yn-1-yloxy) phenyl) acrylaldehyde (10a)

¹³C{¹H} NMR Spectra of3-(3-methoxy-4-(prop-2-yn-1-yloxy) phenyl) acrylaldehyde (10a)

HRMS of 3-(3-methoxy-4-(prop-2-yn-1-yloxy) phenyl) acrylaldehyde (10a)

Elepiental Compositio	on Report							Page 1
Single Mass Analysis Tolerance = 50.0 PPM / Element prediction: Off Number of isotope peaks	DBE: min = -1 used for i-FIT =	5, max = 5 3	50.0					
Monoisotopic Mass, Even El 5 formula(e) evaluated with 1 Elements Used: C: 0-13 H: 0-100 O: 0-	ectron lons 1 results within lin -3	nits (up to 3	closest rest	ults for ea	ich mass)			
EUG-AL 181122_04 8 (0.172)		QMI Xe	DIVISION, C vo G2-XS Q1	SIR-IIIM J/ FOF YFC2	AMMU 015			18-Nov-2022 15:38:10 1: TOF MS AP+ 6.65e+006
100	217.0872							
%- 113.0726 125.0912	218.0903	1662 228 2	02355 0710	274 4044	45 1101	510 1389	607 5654	667 1758
50 100 150	200 250	300	350	400	450	500 550	600	650 700 m/z
Minimum: Maximum:	2.0 50.0	-1.5 50.0						
Mass Calc. Mass 217.0872 217.0865	mDa PPM 0.7 3.2	DBE 7.5	i-FIT 1030.3	Norm n/a	Conf(%) n/a	Formula C13 H13 O3		

References:

- M. Joshaghani, M. Bahadori, E. Rafiee and M. Bagherzadeh, ARKIVOC: archive for organic chemistry, 2007, 2007. 1.
- G. F. Zha, W. Y. Fang, J. Leng and H. L. Qin, Adv. Syn. & Catal., 2019, 361, 2262-2267. 2.
- H. Aman, Y.-C. Chen, J.-W. Tu, C.-C. Chang and G. J. Chuang, Chem. Select., 2020, 5, 15015-15019. 3.
- 4. E. Gaster, S. Kozuch and D. Pappo, Angew. Chem. Int. Ed., 2017, 56, 5912-5915.
- P. Hu, M. Tan, L. Cheng, H. Zhao, R. Feng, W.-J. Gu and W. Han, Nat. Commun., 2019, 10, 2425. 5.
- K. Gorska, A. Manicardi, S. Barluenga and N. Winssinger, Chem.Commun., 2011, 47, 4364-4366. 6.
- 7. S. J. Lin, W. J. Tsai, W. F. Chiou, T. H. Yang and L. M. Yang, Bioorg. Med. Chem., 2008, 16, 2697-2706. 8.
- R. Rohlmann, C.-G. Daniliuc and O. G. Mancheño, Chem. Commun., 2013, 49, 11665-11667.
- 9. X. Yang, B. Ren, H. Guo, R. Liu and R. Zhou, Green Chem., 2024, 26, 10344-10349.
- K. Szabó-Pusztay and L. J. S. Szabó, Synthesis, 1979, 1979, 276 277. 10.
- 11. J. Wang, C. Zhang, X.-Q. Ye, W. Du, S. Zeng, J.-H. Xu and H. Yin, RSC Adv., 2021, 11, 3003-3011.
- W. Zu, C. Day, L. Wei, X. Jia and L. Xu, Chem. Commun., 2020, 56, 8273-8276. 12.
- 13. K. Kato, D. Uraguchi and T. Ooi, Tetrahedron, 2021, 100, 132459.
- X. Zhu, Y. Liu, C. Liu, H. Yang and H. Fu, Green Chem., 2020, 22, 4357-4363. 14.
- 15. Y. Tang, R. I. L. Meador, C. T. Malinchak, E. E. Harrison, K. A. McCaskey, M. C. Hempel and T. W. Funk, J. Org. Chem., 2020, 85, 1823-1834.
- 16. T. Ye, Y. Li, Y. Ma, S. Tan and F. Li, J. Org. Chem., 2024, 89, 534-540.