Accessing polysubstituted 2-cyclopentenones *via* base mediated annulation of β-keto esters and phenacyl bromides

Mohit Kumar,^{a,b} Vincent Paul,^a Rama Krishna Gamidi^a and Beeran Senthilkumar*,^{a,b}

^aDivision of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

*E-mail: b.senthilkumar@ncl.res.in

Table of Contents

S. No.	Contents	Page no.
1.	General Information	S2
2.	General Procedure	S2
3.	Characterization Data	S3-S20
4.	¹ H and ¹³ C NMR Spectra	S21-S92
5.	LC-MS spectrum of intermediate IV	S93
6.	X-ray crystallographic data	S94-S97
7.	References	S97

1. General Information

All reactions were performed under argon atmosphere with oven or flame dried glassware with septum sealed. Anhydrous Acetonitrile, 1,4-Dioxane, Ethanol, Methanol were purchased from commercial sources and used as such while performing the reactions. Chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. Visualization was accomplished with short UV light, anisaldehyde staining solutions followed by heating. ¹H and ¹³C NMR spectra were recorded on Bruker AV 400 and 500 in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.27 ppm, δ C = 77.00 ppm), the following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; td, triplet doublet; and br, broad. HRMS data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump, FT-IR instrument (Bruker Alpha Model) at normal temperature with a NaCl pellet (IR grade).

2. General procedure for the Synthesis Of Highly Functionalized Cyclopent-2-Enones (A):

To a solution of aryl β -Keto ester (1, 1 equiv) in 4 mL of 1,4-Dioxane, phenacyl bromide (2, 2 equiv) and K₂CO₃ (2 equiv) were added in a dry 25 mL single neck round bottom flask under the argon atmosphere and the mixture was stirred for 4-7 h at 60 °C. After completion of the reaction, ethyl acetate (20 mL) and water (20 mL) were added. The two phases were separated, and the combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (100-200 mesh size) using petroleum ether/ethyl acetate as eluting system to obtain cyclopent-2-enones derivatives in 41-93% yields.

3. Characterization of the Products.

3a

Methyl 2-oxo-1-(2-oxo-2-phenylethyl)-4-phenyl-3-(2,4,5-trifluorophenyl) cvclopent-3-ene-1carboxylate (3a). Following the general procedure A, 3a was prepared from methyl 3-oxo-4-(2,4,5trifluorophenyl)butanoate 1a (0.200 g, 0.813 mmol), 2-bromo-1-phenylethan-1-one 2a (0.323 g, 1.626 mmol), and K_2CO_3 (0.224 g, 1.626 mmol) in 1.4 dioxane at 60 °C as a white solid. Yield: 0.306 g (81%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 109-111 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.89 – 7.98 (m, 2H), 7.48 - 7.58 (m, 1H), 7.39 - 7.45 (m, 2H), 7.24 - 7.39 (m, 5H), 7.05 (ddd, J = 10.07, 8.88, 6.44 Hz, 1H), 6.87 (td, J = 9.44, 6.63 Hz, 1H), 4.19 (d, J = 18.39 Hz, 1H), 4.06 (d, J = 18.76 Hz, 1H), 3.67 (s, 3H), 3.30 (d, J = 18.39 Hz, 1H), 3.04 (d, J = 18.76 Hz, 1H); ¹³C NMR (100 MHz, CDCl3): δ ppm 200.2, 195.9, 170.0, 168.8, 155.4 – 152.9 (ddd, J = 249.67, 11.16, 2.29 Hz), 150.4 – 147.8 (ddd, J = 253.30, 12.30, 2.29 Hz), 147.1 – 144.7 (ddd, *J* = 255.19, 12.82, 2.29 Hz), 135.1, 133.3, 132.7, 130.2, 128.5, 127.7 (2C), 127.7 (2C), 127.1 (2C), 126.7 (2C), 118.1 (dd, *J* = 18.31, 3.82 Hz), 115.5 (dd, *J* = 17.31, 3.62 Hz), 105.1 (dd, J = 27.47, 20.60 Hz), 55.6, 52.2, 43.0, 40.6 ; ¹⁹F NMR (376 MHz, CDCl3): δ ppm -113.27 (dd, J = 15.78 Hz), -132.41 (dd, J = 23.68 Hz), -142.0 (dd, J = 23.68 Hz); **HRMS** (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{20}O_4F_3^+$, 465.1308, found, 465.1303.

3b

methyl 4-(4-bromophenyl)-1-(2-(4-bromophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclo pent-3-ene-1-carboxylate (3b). Following the general procedure A, 3b was prepared from methyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate 1b (0.200 g, 0.813 mmol), 2-bromo-1-(4-bromophenyl)ethan-1-one 2b (0.452 g, 1.626 mmol), and K₂CO₃ (0.224 g, 1.626 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.389 g (77%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 160 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.73 – 7.83 (m, 2H), 7.53 – 7.60 (m, 2H), 7.38 – 7.46 (m, 2H), 7.15 – 7.22 (m, 2H), 7.04 (ddd, *J* = 10.1, 8.8, 6.4 Hz, 1H), 6.88 (ddd, *J* = 9.8, 9.0, 6.6 Hz, 1H), 4.12 (d, *J* = 18.4 Hz, 1H), 3.96 (d, *J* = 18.6 Hz, 1H), 3.66 (s, 3H), 3.26 (d, *J* = 18.4 Hz, 1H), 3.01 ppm (d, *J* = 18.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl3): δ ppm 199.3, 194.5, 168.2, 166.9, 155.1 – 152.6 (ddd, J = 246.67, 9.96, 2.29 Hz), 150.9 – 148.4 (ddd, J = 254.82, 14.50, 12.21 Hz), 149.7, 147.2 – 144.8 (ddd, J = 246.19, 12.21, 2.29 Hz), 147.8, 139.6, 139.2, 131.1, 128.2 (2C), 127.3 (2C), 123.0 (2C), 118.0 (dd, J = 19.84, 4.58 Hz), 113.9 (dd, J = 19.31, 4.58 Hz), 106.3, 105.5 (dd, J = 28.23, 21.36 Hz), 55.6, 52.5, 42.9, 40.5; ¹⁹F NMR (376 MHz, CDCl3): δ ppm –113.10 (dd, J = 15.26 Hz), -131.70 (dd, J = 20.81 Hz), -141.52 (dd, J = 20.81 Hz); HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₈O₄Br⁸¹BrF₃⁺, 622.9539, found, 622.9553.

methyl 4-(2-chlorophenyl)-1-(2-(2-chlorophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclo pent-3-ene-1-carboxylate (3c). Following the general procedure **A**, **3c** was prepared from methyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate **1c** (0.200 g, 0.813 mmol), 2-bromo-1-(2-chlorophenyl)ethan-1-one **2c** (0.379 g, 1.626 mmol), and K₂CO₃ (0.224 g, 1.626 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.178 g (41%); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), **M.P:** 62 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.56 – 7.61 (m, 1H), 7.39 – 7.44 (m, 3H), 7.31 – 7.38 (m, 2H), 7.26 – 7.30 (m, 1H), 7.17 – 7.22 (m, 1H), 7.02 (ddd, *J* = 10.32, 8.82, 6.38 Hz, 1H), 6.82 (td, *J* = 9.54, 6.57 Hz, 1H), 4.12 (d, *J* = 18.64 Hz, 1H), 3.96 (d, *J* = 19.14 Hz, 1H), 3.45 (d, *J* = 18.64 Hz, 1H), 3.23 (d, *J* = 19.14 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 199.5, 198.7, 171.0, 168.5, 155.4 – 152.9 (ddd, *J* = 248.72, 11.44, 1.53 Hz), 150.4 – 147.9 (ddd, *J* = 254.90, 12.97, 3.05 Hz), 146.7 – 144.3 (ddd, *J* = 245.67, 12.21, 3.05 Hz), 137.2, 133.7, 132.5, 131.2, 130.2, 130.0, 129.7, 129.6, 129.2, 128.1, 127.5, 126.1, 126.0, 117.7 (dd, *J* = 19.84, 5.34 Hz), 114.1 (dd, *J* = 19.07, 6.87 Hz), 104.8 (dd, *J* = 27.47, 20.60 Hz), 56.2, 52.3, 46.3, 42.0; ¹⁹**F NMR** (376 MHz, CDCl3): δ ppm -113.14 (dd, *J* =15.78 Hz), -132.22 (dd, *J* = 15.79 Hz), -142.51 (dd, *J* = 19.73 Hz); **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₈O₄Cl₂F₃⁺, 533.0529, found, 533.0528.

3d

methyl 4-(3-chlorophenyl)-1-(2-(3-chlorophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclo - pent-3-ene-1-carboxylate (3d). Following the general procedure A, 3d was prepared from methyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate 1d (0.200 g, 0.813 mmol), 2-bromo-1-(3-chlorophenyl)ethan-1-one 2d

(0.379 g, 1.626 mmol), and K₂CO₃ (0.224 g, 1.626 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.277 g (64%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 98 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.96 (t, *J* = 1.69 Hz, 1H), 7.87 (d, *J* = 7.75 Hz, 1H), 7.55 – 7.60 (m, 1H), 7.37 – 7.47 (m, 3H), 7.20 – 7.29 (m, 2H), 7.13 (ddd, *J* = 10.01, 8.88, 6.38 Hz, 1H), 6.95 (td, *J* = 9.41, 6.57 Hz, 1H), 4.19 (d, *J* = 18.51 Hz, 1H), 4.02 (d, *J* = 18.64 Hz, 1H), 3.74 (s, 3H), 3.37 (d, *J* = 18.51 Hz, 1H), 3.09 (d, *J* = 18.64 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 199.7, 194.7, 168.5, 168.1, 155.3 – 152.8 (ddd, *J* = 249.72, 9.44, 2.29 Hz), 150.7 – 148.2 (ddd, *J* = 254.72, 12.44, 2.29 Hz), 147.1 – 144.7 (ddd, *J* = 242.72, 12.44, 3.81 Hz), 136.5, 135.1, 134.1, 133.9, 132.6, 130.0, 129.1, 129.0, 127.3, 126.5, 125.2, 124.7, 118.1 (dd, *J* = 19.84, 3.05 Hz), 114.7 (dd, *J* = 18.31, 3.82 Hz), 105.3 (dd, *J* = 27.47, 20.60 Hz), 55.5, 52.3, 42.8, 40.5; ¹⁹**F NMR** (376 MHz, CDCl3): δ ppm -113.1 (dd, *J* = 19.73 Hz), -131.61 (dd, *J* = 19.73 Hz), -141.57 (dd, *J* = 23.67 Hz); **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₈O₄Cl₂F₃⁺, 533.0529, found, 533.0529.

methyl 4-(4-chlorophenyl)-1-(2-(4-chlorophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclo pent-3-ene-1-carboxylate (3e). Following the general procedure **A**, **3e** was prepared from methyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate **1e** (0.200 g, 0.813 mmol), 2-bromo-1-(4-chlorophenyl)ethan-1-one **2e** (0.379 g, 1.626 mmol), and K₂CO₃ (0.224 g, 1.626 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.325 g (75%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 162-164 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 9.40 (br. s., 1H), 7.11 – 7.03 (m, 1H), 6.95 (td, J = 9.47, 2.88 Hz, 1H), 5.57 (br. s., 1H), 4.00 (s, 2H), 3.74 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 199.8, 194.7, 168.6, 168.3, 155.0 – 153.0 (ddd, J =247.96, 9.63, 2.29 Hz), 150.3 – 148.3 (ddd, J = 253.68, 13.35, 3.86 Hz), 146.9 – 145.0 (ddd, J = 243.19, 9.54, 2.86 Hz), 139.2, 136.4, 133.3, 131.7, 128.8, 128.5 (2C), 128.1 (2C), 128.1 (2C), 127.9 (2C), 118.1 (dd, J = 19.83, 3.05 Hz), 114.9 (dd, J = 18.31, 3.82 Hz), 105.3 (dd, J = 27.45, 20.55 Hz), 55.5, 52.3, 42.7, 40.4 ; ¹⁹**F NMR** (376 MHz, CDCl3): δ ppm –113.10 (dd, J = 15.79 Hz), -131.76 (dd, J = 23.67 Hz), -141.55 (dd, J = 23.67 Hz); HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₈O₄Cl₂F₃⁺, 533.0529, found, 533.0526.

(3f)

methyl 4-(4-fluorophenyl)-1-(2-(4-fluorophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclo - pent-3-ene-1-carboxylate (3f). Following the general procedure A, 3f was prepared from methyl 3-oxo-4-

(2,4,5-tri fluorophenyl)butanoate **1f** (0.200 g, 0.813 mmol), 2-bromo-1-(4-fluorophenyl)ethan-1-one **2f** (0.353 g, 1.626 mmol), and K₂CO₃ (0.224 g, 1.626 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.301 g (74%); *Rf*: 0.3 (Ethyl acetate: pet ether 1:10), **M.P:** 130-132 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.98 – 8.07 (m, 2H), 7.35 – 7.49 (m, 2H), 7.13 – 7.18 (m, 2H), 7.08 – 7.13 (m, 1H), 7.01 – 7.07 (m, 2H), 6.95 (ddd, *J* = 9.9, 9.0, 6.6 Hz, 1H), 4.21 (d, *J* = 18.3 Hz, 1H), 4.07 (d, *J* = 18.5 Hz, 1H), 3.74 (s, 3H), 3.34 (d, *J* = 18.4 Hz, 1H), 3.11 ppm (d, *J* = 18.6 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 199.9, 194.4, 168.7, 168.4, 166.3 – 163.8 (d, *J* = 253.30 Hz), 164.5 – 161.9 (d, *J* = 254.06 Hz), 155.3 – 152.8 (ddd, *J* = 248.72, 9.92, 3.05 Hz), 150.6 – 148.0 (ddd, *J* = 253.30, 12.21, 2.27 Hz), 147.2 – 144.8 (ddd, *J* = 246.43, 12.21, 3.81 Hz), 131.5 (2C), 129.8 (2C), 129.4 (2C), 128.9 (2C), 128.3, 118.1 (dd, *J* = 19.84, 3.82 Hz), 115.1 (dd, *J* = 21.36, 16.02 Hz), 105.5 (dd, *J* = 27.47, 20.60 Hz), 55.5, 52.2, 42.8, 40.5; ¹⁹**F NMR** (376 MHz, CDCl3): δ ppm –103.96, –107.28, –113.19 (dd, *J* = 15.78 Hz), -131.96 (dd, *J* = 23.67 Hz), -141.67 (dd, *J* = 19.73 Hz); **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₇O₄F₅Na⁺, 523.0939, found, 523.0938.

(3g)

methyl 4-(4-nitrophenyl)-1-(2-(4-nitrophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl)cyclopent-3-ene-1-carboxylate (3g). Following the general procedure **A**, **3g** was prepared from methyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate **1g** (0.200 g, 0.813 mmol), 2-bromo-1-(4-nitrophenyl)ethan-1-one **2g** (0.397 g, 1.626 mmol), and K₂CO₃ (0.224 g, 1.626 mmol) in 1,4 dioxane at 60 °C as a yellow solid. Yield: 0.365 g (81%); *Rf*: 0.3 (Ethyl acetate: pet ether 2:10), **M.P:** 96-98 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.34 (d, *J* = 8.4 Hz, 2H), 8.21 (d, *J* = 8.4 Hz, 2H), 8.16 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.11 – 7.24 (m, 1H), 6.88 – 7.04 (m, 1H), 4.26 (d, *J* = 18.5 Hz, 1H), 4.03 (d, *J* = 18.6 Hz, 1H), 3.77 (s, 3H), 3.52 (d, *J* = 18.5 Hz, 1H), 3.20 ppm (d, *J* = 18.6 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 199.3, 194.5, 168.2, 166.9, 155.1 – 152.6 (ddd, *J* = 249.72, 9.15, 3.05 Hz), 150.9 – 148.4 (ddd, *J* = 255.58, 14.50, 12.21 Hz), 149.7, 147.3 – 144.8 (ddd, *J* = 247.19, 12.97, 3.81 Hz), 147.7, 139.6, 139.2 (2C), 131.1, 128.2 (2C), 127.3 (2C), 122.9 (2C), 118.0 (dd, *J* = 19.84, 3.82 Hz), 114.1, 113.9 (dd, *J* = 18.31, 4.58 Hz), 105.5 (dd, *J* = 27.47, 20.60 Hz), 55.6, 52.6, 42.9, 40.5; ¹⁹**F NMR** (376 MHz, CDCl3): δ ppm –113.03 (dd, *J*=15.26 Hz), -130.58 (dd, *J* = 20.81 Hz), -140.99 (dd, *J* = 22.19 Hz); **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₁₇O₈N₂F₃Na⁺, 577.0829; found, 577.0829.

methyl 2-oxo-1-(2-oxo-2-(p-tolyl)ethyl)-4-(p-tolyl)-3-(2,4,5-trifluorophenyl) cvclopent-3-ene-1carboxylate (3h). Following the general procedure A, 3h was prepared from methyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate 1h (0.200 g, 0.813 mmol), 2-bromo-1-(p-tolyl)ethan-1-one 2h (0.346 g, 1.626 mmol), and K_2CO_3 (0.224 g, 1.626 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.260 g (65%); *Rf*: 0.3 (Ethyl acetate: pet ether 2:10), **M.P:** 163-165 °C; ¹**H** NMR (400 MHz, CDCl₃) δ ppm 7.81 (d, *J* = 8.1 Hz, 2H), 7.21 (t, J = 8.1 Hz, 4H), 7.06 (d, J = 8.1 Hz, 2H), 6.98 – 7.04 (m, 1H), 6.87 (td, J = 9.4, 6.6 Hz, 1H), 4.15 (d, J = 18.3 Hz, 1H), 4.04 (d, J = 18.6 Hz, 1H), 3.65 (s, 3H), 3.24 (d, J = 18.3 Hz, 1H), 3.01 (d, J = 18.8 Hz, 1H), 2.34 (s, 3H), 2.28 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 200.3, 195.6, 169.9, 168.9, 155.3 - 152.9 (ddd, J = 251.01, 9.16, 2.29 Hz), 150.3 - 147.8 (ddd, J = 252.53, 12.21, 3.86),147.1 – 144.7 (ddd, J = 249.48, 9.54, 2.86 Hz), 143.6, 140.9, 132.6, 130.3, 128.5 (2C), 128.4 (2C), 127.5, 127.2 (2C), 126.8 (2C), 118.2 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.13 Hz), 115.7 (dd, J = 18.26, 3.82 Hz), 105.1 (dd, J = 19.76, 3.14 Hz), 105.1 (dd, J = 19.76, 3.15 Hz), 105.1 (dd, J = 19.76, 105.1 (dd, J = 128.45, 21.55 Hz), 55.5, 52.1, 43.0, 40.4, 20.7, 20.5; ¹⁹F NMR (376 MHz, CDCl3): δ ppm -113.25 (dd, J =15.26 Hz), -132.65 (dd, J = 20.81 Hz), -142.10 (dd, J = 20.81 Hz); **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₉H₂₄O₄F₃⁺, 493.1621, found, 493.1616.

(**3i**)

2-oxo-1-(2-oxo-2-phenylethyl)-4-phenyl-3-(2,4,5-trifluorophenyl) cvclopent-3-ene-1-Ethyl carboxylate (3i). Following the general procedure A, 3i was prepared from ethyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate 1i (0.200 g, 0.769 mmol), 2-bromo-1-phenylethan-1-one 2i (0.306 g, 1.538 mmol), and K₂CO₃ (0.212 g, 1.538 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.295 g (80%); Rf: 0.6 (Ethyl acetate: pet ether 1:10), **M.P:** 124-126 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.96 – 8.06 (m, 2H), 7.57 - 7.63 (m, 1H), 7.45 - 7.51 (m, 2H), 7.37 - 7.44 (m, 3H), 7.31 - 7.37 (m, 2H), 7.10 (ddd, J = 10.2, 8.8, 6.4 Hz, 1H), 6.94 (ddd, J = 10.0, 8.9, 6.6 Hz, 1H), 4.14 – 4.30 (m, 3H), 4.09 (d, J = 18.6 Hz, 1H), 3.36 $(d, J = 18.3 \text{ Hz}, 1\text{H}), 3.13 (d, J = 18.6 \text{ Hz}, 1\text{H}), 1.20 \text{ ppm} (t, J = 7.1 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3):$ δ ppm 200.3, 196.0, 169.9, 168.3, 155.4 – 152.9 (ddd, J = 249.06, 11.23, 2.29 Hz), 150.4 – 147.9 (ddd, J = 249.06) 252.56. 11.53, 3.84 Hz), 147.1 –144.7 (ddd, J = 249.36, 10.21, 2.89 Hz), 135.2, 133.3, 132.6, 130.1, 128.6, 127.7 (2C), 127.7 (2C), 127.1 (2C), 126.7 (2C), 118.1 (dd, *J* = 19.33, 3.25 Hz), 115.5 (dd, *J* = 18.65, 3.55 Hz), 105.1 (dd, J = 27.25, 21.46 Hz), 61.1, 55.7, 42.8, 40.6, 12.9; ¹⁹F NMR (376 MHz, CDCl3): δ ppm -113.27 (dd, J = 15.78 Hz), -132.41 (dd, J = 23.68 Hz), -142.0 (dd, J = 23.68 Hz); **HRMS** (ESI) m/z: $[M+H]^+$ calcd for $C_{28}H_{22}O_4F_3^+$, 479.1465, found, 479.1460.

	-	٠	1
1	- 4	1	1
L	-		
			,

Ethyl 4-(3-bromophenyl)-1-(2-(3-bromophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclo - **pent-3-ene-1-carboxylate (3j).** Following the general procedure **A**, **3j** was prepared from ethyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate **1j** (0.200 g, 0.769 mmol), 2-bromo-1-(3-bromophenyl)ethan-1-one **2j** (0.427 g, 1.538 mmol), and K₂CO₃ (0.212 g, 1.538 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.328 g (67%); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), **M.P:** 65 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.12 (t, *J* = 1.63 Hz, 1H), 7.91 (d, *J* = 7.88 Hz, 1H), 7.70 – 7.75 (m, 1H), 7.51 – 7.58 (m, 2H), 7.37 (t, *J* = 7.88 Hz, 1H), 7.25 – 7.30 (m, 1H), 7.17 – 7.24 (m, 1H), 7.10 (ddd, *J* = 10.07, 8.82, 6.38 Hz, 1H), 6.95 (td, *J* = 9.41, 6.57 Hz, 1H), 4.10 – 4.27 (m, 3H), 3.98 (d, *J* = 18.51 Hz, 1H), 3.36 (d, *J* = 18.39 Hz, 1H), 3.09 (d, *J* = 18.64 Hz, 1H), 1.21 (t, *J* = 7.07 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 200.8, 195.7, 168.9, 156.4 – 153.9 (ddd, *J* = 254.09, 9.15, 2.29 Hz), 151.7 – 149.2 (ddd, *J* = 245.09, 12.21, 2.29 Hz), 148.2 – 145.8 (ddd, *J* = 246.43, 12.97, 3.05 Hz), 137.9, 136.5, 136.5, 133.9, 131.2, 130.8, 130.4, 130.3, 130.3, 126.7, 126.1, 123.1, 123.0, 119.1 (dd, *J* = 18.93, 3.29 Hz), 115.9 (dd, *J* = 18.25, 3.87 Hz), 106.3 (dd, *J* = 27.25, 21.46 Hz), 62.3, 56.7, 43.5, 41.6, 13.9; ¹⁹**F NMR** (376 MHz, CDCl3): δ ppm -113.16 (dd, *J* = 15.26 Hz), -131.65 (dd, *J* = 20.81 Hz), -141.57 (dd, *J* = 22.19 Hz); **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₀O₄Br⁸¹Br⁵, 636.9654, found, 636.9623.

(3k)

Ethyl 4-(4-chlorophenyl)-1-(2-(4-chlorophenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclo pent-3-ene-1-carboxylate (3k). Following the general procedure **A**, **3k** was prepared from ethyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate **1k** (0.200 g, 0.769 mmol), 2-bromo-1-(4-chlorophenyl)ethan-1-one **2k** (0.452 g, 1.538 mmol), and K₂CO₃ (0.212 g, 1.538 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.332 g (79%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 69 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.90 – 7.98 (m, 2H), 7.42 – 7.49 (m, 2H), 7.33 (s, 4H), 7.10 (ddd, *J* = 10.1, 8.8, 6.4 Hz, 1H), 6.95 (ddd, *J* = 9.9, 8.9, 6.5 Hz, 1H), 4.11 – 4.28 (m, 3H), 4.02 (d, *J* = 18.5 Hz, 1H), 3.33 (d, *J* = 18.4 Hz, 1H), 3.10 (d, *J* = 18.5 Hz, 1H), 1.19 ppm (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 200.0, 194.8, 168.3, 168.0, 155.3 – 152.8 (ddd, *J* = 248.72, 9.15, 2.29 Hz), 150.5 – 148.1 (ddd, *J* = 253.30, 12.21, 2.29 Hz), 147.1 – 144.8 (ddd, *J* = 246.43, 12.93, 3.05 Hz), 139.2, 136.3, 133.5, 131.8, 129.0, 128.5, 128.1, 128.1, 127.9, 118.1 (dd, *J* = 19.84, 3.81 Hz), 115.0 (dd, *J* = 18.73, 3.85 Hz), 105.3 (dd, *J* = 27.22, 20.49 Hz), 61.2, 55.7, 42.5, 40.5, 12.9; ¹⁹**F NMR** (376 MHz, CDCl3): δ ppm -113.34 (dd, J =15.78 Hz), -132.49 (dd, J = 20.81 Hz), -142..06 (dd, J = 23.67 Hz); **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₀O₄Br⁸¹BrF₃⁺, 636.9654; found, 636.9668.

(**3l**)

Ethyl 4-(4-methoxyphenyl)-1-(2-(4-methoxyphenyl)-2-oxoethyl)-2-oxo-3-(2,4,5-trifluorophenyl) cyclopent-3-ene-1-carboxylate (3l). Following the general procedure A, 3l was prepared from ethyl 3-oxo-4-(2,4,5-tri fluorophenyl)butanoate 1l (0.200 g, 0.789 mmol), 2-bromo-1-(4-methoxyphenyl)ethan-1-one 2l (0.352 g, 1.538 mmol), and K₂CO₃ (0.212 g, 1.538 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.277 g (67%); *Rf*: 0.2 (Ethyl acetate: pet ether 1:10), M.P: 137 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.90 (d, *J* = 8.88 Hz, 2H), 7.25 – 7.36 (m, 2H), 7.02 (ddd, *J* = 10.19, 8.88, 6.44 Hz, 1H), 6.82 – 6.94 (m, 3H), 6.71 – 6.82 (m, 2H), 3.97 – 4.19 (m, 4H), 3.81 (s, 3H), 3.75 (s, 3H), 3.19 (d, *J* = 18.14 Hz, 1H), 3.03 (d, *J* = 18.51 Hz, 1H), 1.12 (t, *J* = 7.13 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 200.3, 194.6, 169.0, 168.5, 162.8, 161.0, 155.5 – 153.0 (ddd, *J* = 248.19, 9.15, 2.29 Hz), 150.4 – 147.2 (ddd, *J* = 245.46, 12.59, 2.29 Hz), 145.4 – 143.9 (ddd, *J* = 246.47, 12.25, 3.05 Hz), 129.4, 128.8, 128.4, 126.6, 125.6, 118.2 (dd, *J* = 18.58, 3.29 Hz), 116.1 (dd, *J* = 19.29, 3.47 Hz), 113.1, 112.8, 105.1 (dd, *J* = 15.78 Hz), -132.82 (dd, *J* = 20.81 Hz), -140.7 (dd, *J* = 20.81 Hz); HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₀H₂₅O₆F₃Na⁺, 561.1495, found, 561.1492.

(3m)

Methyl 3-(3,4-dichlorophenyl)-2-oxo-1-(2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1carboxylate (3m). Following the general procedure **A**, **3m** was prepared from methyl 4-(3,4dichlorophenyl)-3-oxobutanoate **1m** (0.200 g, 0.766 mmol), 2-bromo-1-phenylethan-1-one **2m** (0.305 g, 1.532 mmol), and K₂CO₃ (0.212 g, 1.532 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.301 g (82%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 164 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.95 – 8.02 (m, *J* = 7.5 Hz, 2H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.37 – 7.44 (m, 5H), 7.30 – 7.37 (m, 2H), 7.08 (d, *J* = 8.3 Hz, 1H), 4.24 (d, *J* = 18.3 Hz, 1H), 4.05 (d, *J* = 18.8 Hz, 1H), 3.73 (s, 3H), 3.39 (d, *J* = 18.3 Hz, 1H), 3.04 ppm (d, *J* = 18.8 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 200.6, 195.9, 168.9, 168.6, 135.1, 133.3, 133.2, 132.6, 131.7, 131.3, 130.8, 130.4, 129.9, 129.5, 127.9 (2C), 127.7 (2C), 127.3 (2C), 127.1 (2C), 55.6, 52.2, 43.0, 40.7; **HRMS** (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{21}O_4Cl_2^+$, 479.0811; found, 479.0813.

Methyl 4-(4-chlorophenyl)-1-(2-(4-chlorophenyl)-2-oxoethyl)-3-(3,4-dichlorophenyl)-2-oxocyclopent -3-ene-1-carboxylate (3n). Following the general procedure A, 3n was prepared from methyl 4-(3,4-dichlorophenyl)-3-oxobutanoate 1n (0.200 g, 0.766 mmol), 2-bromo-1-(4-chlorophenyl)ethan-1-one 2n (0.358 g, 1.532 mmol), and K₂CO₃ (0.212 g, 1.532 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.390 g (93%); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), **M.P:** 188 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, J = 8.25 Hz, 2H), 7.37 – 7.51 (m, 4H), 7.32 (s, 4H), 7.06 (d, J = 8.25 Hz, 1H), 4.18 (d, J = 18.26 Hz, 1H), 3.98 (d, J = 18.64 Hz, 1H), 3.73 (s, 3H), 3.36 (d, J = 18.26 Hz, 1H), 3.02 (d, J = 18.64 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 200.2, 194.7, 168.7, 166.7, 139.2, 136.1, 133.7, 133.3, 131.9, 131.6, 131.5, 130.5, 130.3, 129.7, 128.6 (2C), 128.5 (2C), 128.1 (2C), 128.1 (2C), 127.8, 55.5, 52.3, 42.8, 40.5; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₉O₄Cl₃³⁷Cl⁺, 549.0002; found, 549.0013.

(30)

Methyl 4-(4-bromophenyl)-1-(2-(4-bromophenyl)-2-oxoethyl)-3-(3,4-dichlorophenyl) -2-oxocyclo pent-3-ene-1-carboxylate (30). Following the general procedure **A**, **30** was prepared from methyl 4-(3,4dichlorophenyl)-3-oxobutanoate **10** (0.200 g, 0.766 mmol), 2-bromo-1-(4-bromophenyl)ethan-1-one **20** (0.426 g, 1.532 mmol), and K₂CO₃ (0.212 g, 1.532 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.444 g (91%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 147 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.77 (m, *J* = 8.63 Hz, 2H), 7.56 (m, *J* = 8.63 Hz, 2H), 7.38 – 7.46 (m, 2H), 7.30 – 7.38 (m, 2H), 7.12 – 7.24 (m, 3H), 6.98 (dd, *J* = 8.25, 2.00 Hz, 1H), 4.10 (d, *J* = 18.26 Hz, 1H), 3.90 (d, *J* = 18.64 Hz, 1H), 3.66 (s, 3 H), 3.28 (d, *J* = 18.39 Hz, 1H), 2.94 (d, *J* = 18.64 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 200.2, 194.9, 168.7, 166.8, 133.8, 133.7, 132.0, 131.9, 131.7, 131.1 (2C), 130.4, 130.3 (2C), 129.7, 128.7 (2C), 128.6 (2C), 128.0, 127.8, 124.5, 55.5, 52.3, 42.7, 40.4; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₉O₄Br⁸¹BrCl₂⁺, 636.9001; found, 636.9009.

17)
1.3	n
v	\mathbf{P}

Methyl 3-(3,4-dichlorophenyl)-4-(4-fluorophenyl)-1-(2-(4-fluorophenyl)-2-oxoethyl)-2-oxocyclopent-3-ene-1-carboxylate (3p). Following the general procedure A, 3p was prepared from methyl 4-(3,4dichlorophenyl)-3-oxobutanoate 1p (0.200 g, 0.766 mmol), 2-bromo-1-(4-fluorophenyl)ethan-1-one 2p (0.332 g, 1.532 mmol), and K₂CO₃ (0.212 g, 1.532 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.343 g (87%); *Rf*: 0.3 (Ethyl acetate: pet ether 1:10), **M.P:** 164 °C; ¹H **NMR** (400 MHz, CDCl₃) δ ppm 7.95 – 7.95 (m, 2H), 7.33 – 7.37 (m, 4H), 7.09 – 7.11 (m, 2H), 6.98 – 7.07 (m, 3H), 4.15 (d, *J* = 18.26 Hz, 1H), 3.95 (d, *J* = 18.64 Hz, 1H), 3.68 (s, 3H), 3.30 (d, *J* = 18.26 Hz, 1H), 2.98 (d, *J* = 18.64 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ ppm 200.3, 194.4, 168.8, 166.9, 166.3 – 163.8 (d, *J* = 255.58 Hz), 164.2 – 161.7 (d, *J* = 253.30 Hz), 133.2, 131.8, 131.5, 131.5, 130.7, 130.3, 129.9, 129.8, 129.6, 129.6, 129.5, 129.3, 129.2, 127.9, 115.1, 114.9, 114.9, 114.8, 55.6, 52.2, 42.8, 40.6; ¹⁹F **NMR** (376 MHz, CDCl3): δ ppm -103.99, -107.20; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₁₉O₄Cl₂F₂⁺, 515.0623, found, 515.0625.

Methyl 3-(3,4-dichlorophenyl)-4-(naphthalen-2-yl)-1-(2-(naphthalen-2-yl) -2-oxoethyl)-2-oxocyclo pent-3-ene-1-carboxylate (3q). Following the general procedure A, 3q was prepared from methyl 4-(3,4dichlorophenyl)-3-oxobutanoate 1q (0.200 g, 0.766 mmol), 2-bromo-1-(naphthalen-2-yl)ethan-1-one 2q (0.381 g, 1.532 mmol), and K₂CO₃ (0.212 g, 1.532 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.333 g (75%); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), M.P: 91 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 8.46 (s, 1H), 7.93 – 8.00 (m, 2H), 7.88 (d, J = 7.88 Hz, 1H), 7.76 – 7.85 (m, 2H), 7.72 (d, J = 7.88 Hz, 2H), 7.63 (d, J = 8.75 Hz, 1H), 7.39 – 7.58 (m, 5H), 7.30 (d, J = 8.25 Hz, 1H), 7.24 (dd, J = 8.69, 1.69 Hz, 1H), 7.04 (dd, J = 8.32, 1.94 Hz, 1H), 4.35 (d, J = 18.14 Hz, 1H), 4.15 (d, J = 18.64 Hz, 1H), 3.68 (s, 3H), 3.48 (d, J = 18.26 Hz, 1H), 3.15 (d, J = 18.64 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 200.7, 195.9, 169.0, 168.3, 134.8, 133.4, 133.2, 132.4, 131.9, 131.7, 131.4, 131.4, 130.9, 130.7, 130.5, 129.5, 129.2, 128.6, 128.1, 127.8, 127.8, 127.7, 127.6, 127.2, 126.9, 126.8, 126.7, 125.9, 125.9, 124.2, 122.5, 55.8, 52.2, 43.2, 40.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₅H₂₅O₄Cl₂⁺, 579.1124; found, 579.1127.

(3r)

Methyl 3-(4-fluorophenyl)-2-oxo-1- (2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1-carboxylate (**3r**). Following the general procedure **A**, **3r** was prepared from methyl 4-(4-fluorophenyl)-3-oxobutanoate **1r** (0.200 g, 0.951 mmol), 2-bromo-1-phenylethan-1-one **2r** (0.379 g, 1.904 mmol), and K₂CO₃ (0.263 g, 1.904 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.257 g (63%); *Rf*: 0.3 (Ethyl acetate: pet ether 1:10), **M.P:** 85 °C; ¹**H** NMR (400 MHz, CDCl₃) δ ppm 7.96 – 8.03 (m, 2H), 7.59 (t, *J* = 7.38 Hz, 1H), 7.48 (t, *J* = 7.69 Hz, 2H), 7.33 – 7.41 (m, 3H), 7.28 – 7.33 (m, 2H), 7.22 – 7.28 (m, 2H), 7.03 (t, *J* = 8.76 Hz, 2H), 4.26 (d, *J* = 18.39 Hz, 1H), 4.07 (d, *J* = 18.76 Hz, 1H), 3.73 (s, 3H), 3.35 (d, *J* = 18.39 Hz, 1H), 3.03 (d, *J* = 18.64 Hz, 1H); ¹³**C** NMR (100 MHz, CDCl₃): δ ppm 201.2, 196.1, 169.1, 167.5, 161.5 (d, *J* = 247.95 Hz), 135.2, 134.5, 133.7, 132.6, 130.4 (d, *J* = 8.39 Hz), 129.5, 127.7, 127.6, 127.3, 127.1, 126.7, 126.7, 114.6 (d, *J* = 22.12 Hz), 55.5, 52.1, 43.2, 40.6; ¹⁹**F** NMR (376 MHz, CDCl₃): δ ppm -113.14; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₂O₄F⁺, 429.1497; found, 429.1496.

(3s)

Methyl 3-(4-fluorophenyl)-2-oxo-1-(2-oxo-2-(p-tolyl)ethyl)-4-(p-tolyl)cyclopent-3-ene-1-carboxylate (3s). Following the general procedure A, 3s was prepared from methyl 4-(4-fluorophenyl)-3-oxobutanoate 1s (0.200 g, 0.951 mmol), 2-bromo-1-(p-tolyl)ethan-1-one 2s (0.405 g, 1.904 mmol), and K₂CO₃ (0.263 g, 1.904 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.321 g (74%); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), M.P: 180 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.81 – 7.92 (m, *J* = 7.9 Hz, 2H), 7.27 – 7.35 (m, 4H), 7.23 – 7.26 (m, 4H), 6.97 – 7.12 (m, *J* = 7.9 Hz, 2H), 4.22 (d, *J* = 18.3 Hz, 1H), 4.05 (d, *J* = 18.8 Hz, 1H), 3.68 (s, 3H), 3.25 (d, *J* = 18.3 Hz, 1H), 2.98 (d, *J* = 18.6 Hz, 1H), 2.38 (s, 3H), 2.30 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 202.3, 196.8, 170.3, 168.2, 161.5 (d, *J* = 247.95 Hz), 144.4, 141.0, 135.9, 133.8, 131.0 (d, *J* = 8.39 Hz), 129.6, 129.4, 129.2, 128.5, 128.3, 128.0, 114.6 (d, *J* = 22.12 Hz), 56.6, 53.0, 44.3, 41.5, 21.7, 21.5; ¹⁹F NMR (376 MHz, CDCl₃): δ ppm -113.65; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₂₆O₄F⁺, 457.1810, found, 457.1808.

(3t)

Methyl 4-(4-bromophenyl)-1-(2-(4-bromophenyl)-2-oxoethyl)-3-(4-fluorophenyl)-2-oxocyclopent-3ene-1-carboxylate (3t). Following the general procedure A, 3t was prepared from methyl 4-(4fluorophenyl)-3-oxobutanoate 1t (0.200 g, 0.951 mmol), 2-bromo-1-(4-bromophenyl)ethan-1-one 2t (0.529 g, 1.904 mmol), and K₂CO₃ (0.263 g, 1.904 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.352 g (63%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 200 °C; ¹H **NMR** (400 MHz, CDCl₃) δ ppm 7.71 – 7.84 (m, 2H), 7.49 – 7.60 (m, 2H), 7.31 – 7.44 (m, 2H), 7.11 – 7.19 (m, 4H), 6.98 (t, *J* = 8.7 Hz, 2H), 4.13 (d, *J* = 18.4 Hz, 1H), 3.92 (d, *J* = 18.5 Hz, 1H), 3.65 (s, 3H), 3.24 (d, *J* = 18.4 Hz, 1H), 2.92 ppm (d, *J* = 18.5 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ ppm 201.8, 196.1, 169.9, 166.7, 162.7 (d, *J* = 248.72 Hz), 136.1, 136.0, 134.9, 134.8, 133.5, 133.5, 132.1, 131.9, 131.3 (d, *J* = 8.39 Hz), 129.9, 129.8, 129.6, 129.0, 127.3, 125.1, 115.8 (d, *J* = 21.36 Hz), 56.5, 53.2, 43.9, 41.3; ¹⁹F **NMR** (376 MHz, CDCl₃): δ ppm -112.55; **HRMS** (ESI) m/z: [M–H]⁻ calcd for C₂₇H₁₈O₄Br⁸¹BrF⁻, 584.9530, found, 584.9557.

(**3**u)

Methyl 3-(4-fluorophenyl)-4-(4-nitrophenyl)-1-(2-(4-nitrophenyl)-2-oxoethyl)-2-oxocyclopent-3-ene-1-carboxylate (3u). Following the general procedure **A**, **3u** was prepared from methyl 4-(4-fluorophenyl)-3-oxobutanoate **1u** (0.200 g, 0.951 mmol), 2-bromo-1-(4-nitrophenyl)ethan-1-one **2u** (0.464 g, 1.904 mmol), and K₂CO₃ (0.263 g, 1.904 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.355 g (72%); *Rf*: 0.5 (Ethyl acetate: pet ether 2:10), **M.P:** 201 °C; **¹H NMR** (400 MHz, CDCl₃) δ ppm 8.34 (m, *J* = 8.38 Hz, 2H), 8.17 (t, *J* = 8.76 Hz, 4H), 7.55 (m, *J* = 8.50 Hz, 2H), 7.16 – 7.32 (m, 2H), 7.07 (t, *J* = 8.44 Hz, 2H), 4.27 (d, *J* = 18.51 Hz, 1H), 3.99 (d, *J* = 18.64 Hz, 1H), 3.76 (s, 3H), 3.48 (d, *J* = 18.64 Hz, 1H), 3.10 (d, *J* = 18.51 Hz, 1H); **¹³C NMR** (100 MHz, CDCl₃): δ ppm 199.8, 194.1, 167.9, 163.4, 161.5 (d, *J* = 249.48 Hz), 149.2, 147.0, 139.6, 138.8, 136.8, 129.8 (d, *J* = 8.39 Hz), 127.7, 127.7, 124.9, 124.8, 122.5, 122.4, 114.5 (d, *J* = 21.36 Hz), 55.1, 52.0, 42.6, 39.9; ¹⁹F NMR (376 MHz, CDCl₃): δ ppm -111.42; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₀O₈N₂F⁺, 519.1198; found, 519.1199.

Methyl 3-(4-chlorophenyl)-2-oxo-1-(2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1-carboxylate (3v). Following the general procedure A, 3v was prepared from methyl 4-(4-chlorophenyl)-3-oxobutanoate 1v (0.200 g, 0.882 mmol), 2-bromo-1-phenylethan-1-one 2v (0.351 g, 1.725 mmol), and K₂CO₃ (0.243 g, 1.725 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.321 g (82%); *Rf*: 0.5 (Ethyl acetate: pet ether 2:10), M.P: 122 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.95 – 8.03 (m, 2H), 7.59 (t, *J* = 7.44 Hz, 1H), 7.47 (t, *J* = 7.69 Hz, 2H), 7.34 – 7.42 (m, 3H), 7.27 – 7.34 (m, 4H), 7.18 – 7.24 (m, 2H), 4.26 (d, *J* = 18.26 Hz, 1H), 4.06 (d, *J* = 18.64 Hz, 1H), 3.73 (s, 3H), 3.36 (d, *J* = 18.39 Hz, 1H), 3.03 (d, *J* = 18.76 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 201.9, 197.0, 170.1, 168.8, 136.2, 135.4, 134.6, 134.1, 133.6, 130.9 (2C), 130.6, 130.2, 128.8 (2C), 128.7 (2C), 128.6 (2C), 128.3 (2C), 128.1 (2C), 56.6, 53.1, 44.2, 41.7; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₂O₄Cl⁺, 445.1201, found, 445.1201.

(3w)

Methyl 4-(3-chlorophenyl)-3-(4-chlorophenyl)-1-(2-(3-chlorophenyl)-2-oxoethyl)-2-oxocyclopent-3-ene-1-carboxylate (3w). Following the general procedure **A**, **3w** was prepared from methyl 4-(4-chlorophenyl)-3-oxobutanoate **1w** (0.200 g, 0.882 mmol), 2-bromo-1-(3-chlorophenyl)ethan-1-one **2w** (0.412 g, 1.765 mmol), and K₂CO₃ (0.244 g, 1.765 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.308 g (68%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 136 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.96 (s, 1H), 7.86 (d, *J* = 7.75 Hz, 1H), 7.57 (d, *J* = 8.00 Hz, 1H), 7.39 – 7.46 (m, 2H), 7.30 – 7.37 (m, 3H), 7.17 – 7.25 (m, 4H), 4.20 (d, *J* = 18.39 Hz, 1H), 3.97 (d, *J* = 18.64 Hz, 1H), 3.73 (s, 3H), 3.35 (d, *J* = 18.51 Hz, 1H), 3.00 (d, *J* = 18.64 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 201.6, 195.8, 169.7, 166.8, 137.6, 136.4, 135.1, 134.8, 134.5, 133.6, 130.8 (2C), 130.5, 130.1, 129.9, 129.5, 128.9 (2C), 128.3, 128.1, 126.5, 126.2, 56.5, 53.3, 43.9, 41.6; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₀O₄Cl₃⁺, 513.0422, found, 513.0423.

(3x)

Methyl 3,4-bis(4-chlorophenyl)-1-(2-(4-chlorophenyl)-2-oxoethyl)-2-oxocyclopent-3-ene-1carboxylate (3x). Following the general procedure A, 3x was prepared from methyl 4-(4-chlorophenyl)-3-

oxobutanoate **1x** (0.200 g, 0.882 mmol), 2-bromo-1-(4-chlorophenyl)ethan-1-one **2x** (0.412 g, 1.765 mmol), and K₂CO₃ (0.244 g, 1.765 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.408 g (90%); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), **M.P:** 189 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.82 – 7.88 (m, *J* = 8.5 Hz, 2H), 7.36 – 7.41 (m, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.18 – 7.25 (m, 4H), 7.12 (d, *J* = 8.4 Hz, 2H), 4.13 (d, *J* = 18.4 Hz, 1H), 3.92 (d, *J* = 18.5 Hz, 1H), 3.65 (s, 3H), 3.25 (d, *J* = 18.3 Hz, 1H), 2.93 ppm (d, *J* = 18.5 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 200.6, 194.8, 168.8, 166.0, 139.2, 135.8, 134.8, 133.4, 131.9, 129.8 (2C), 128.8 (2C), 128.6 (2C), 128.5 (2C), 128.1 (2C), 127.9 (2C), 55.5, 52.2, 42.9, 40.4; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₀O₄Cl₃⁺, 513.0422, found, 513.0425.

(**3**y)

Methyl 2-oxo-1-(2-oxo-2-phenylethyl)-3,4-diphenylcyclopent-3-ene-1-carboxylate (3y). Following the general procedure **A**, **3y** was prepared from methyl 3-oxo-4-phenylbutanoate **1y** (0.200 g, 1.040 mmol), 2-bromo-1-phenylethan-1-one **2y** (0.414 g, 2.081 mmol), and K₂CO₃ (0.288 g, 2.081 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.265 g (62 %); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), **M.P:** 83 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.92 (d, *J* = 7.75 Hz, 2H), 7.51 (t, *J* = 7.32 Hz, 1H), 7.40 (t, *J* = 7.63 Hz, 2H), 7.32 (d, *J* = 7.63 Hz, 2H), 7.23 – 7.30 (m, 4H), 7.15 – 7.23 (m, 4H), 4.21 (d, *J* = 18.39 Hz, 1H), 4.02 (d, *J* = 18.76 Hz, 1H), 3.65 (s, 3H), 3.25 (d, *J* = 18.39 Hz, 1H), 2.95 (d, *J* = 18.64 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 202.3, 197.2, 170.2, 168.3, 136.5, 136.2, 134.8, 133.6, 131.9, 130.5 (2C), 129.6 (2C), 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.2 (2C), 56.6, 53.2, 44.4, 41.6; **HRMS** (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₃O₄⁺, 407.1642, found, 407.1638.

(3z)

Methyl 2-oxo-1-(2-oxo-2-(p-tolyl)ethyl)-3-phenyl-4-(p-tolyl) cyclopent-3-ene-1-carboxylate (3z). Following the general procedure **A**, **3z** was prepared from methyl 3-oxo-4-phenylbutanoate **1z** (0.200 g, 1.040 mmol), 2-bromo-1-(p-tolyl)ethan-1-one **2z** (0.443 g, 2.081 mmol), and K₂CO₃ (0.288 g, 2.081 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.319 g (70 %); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), **M.P**: 85 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.86 – 7.91 (m, *J* = 7.8 Hz, 2H), 7.30 – 7.38 (m, 4H), 7.25 – 7.29 (m, 5H), 7.05 – 7.11 (m, *J* = 7.9 Hz, 2H), 4.25 (d, *J* = 18.3 Hz, 1H), 4.08 (d, *J* = 18.6 Hz, 1H), 3.72 (s, 3H), 3.28 (d, *J* = 18.3 Hz, 1H), 3.01 ppm (d, *J* = 18.6 Hz, 1H), 2.41 (s, 3 H), 2.33 ppm (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 202.3, 196.8, 170.3, 168.2, 144.4, 140.9, 135.9, 133.8, 132.2, 131.9, 129.6 (2C), 129.3 (2C), 129.2 (2C), 128.5 (2C), 128.3 (2C), 128.0 (2C), 56.5, 53.0, 44.3, 41.5, 21.7, 21.5; **HRMS** (ESI) m/z: $[M+H]^+$ calcd for $C_{29}H_{27}O_4^+$, 438.1831, found, 438.1826.

(3aa)

Methyl 4-(4-chlorophenyl)-1-(2-(4-chlorophenyl)-2-oxoethyl)-2-oxo-3-phenyl cyclopent-3-ene-1carboxylate (3aa). Following the general procedure, 3aa was prepared from methyl 3-oxo-4phenylbutanoate 1aa (0.200 g, 1.040 mmol), 2-bromo-1-(4-chlorophenyl)ethan-1-one 2aa (0.486 g, 2.081 mmol), and K₂CO₃ (0.288 g, 2.081 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.264 g (53 %); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), M.P: 131 °C; ¹H NMR (400 MHz, CDCl₃): δ ppm 7.83 – 7.90 (m, *J* = 8.6 Hz, 2H), 7.35 – 7.41 (m, *J* = 8.5 Hz, 2H), 7.27 – 7.31 (m, 3H), 7.25 (d, *J* = 8.8 Hz, 2H), 7.13 – 7.21 (m, 4H), 4.15 (d, *J* = 18.4 Hz, 1H), 3.95 (d, *J* = 18.5 Hz, 1H), 3.65 (s, 3H), 3.22 (d, *J* = 18.3 Hz, 1H), 2.94 ppm (d, *J* = 18.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 200.8, 194.9, 168.9, 165.4, 139.1, 136.0, 135.5, 133.5, 132.1, 130.4, 128.7 (2C), 128.5 (2C), 128.4 (2C), 128.0 (2C), 127.8 (2C), 127.7 (2C), 127.4, 55.5, 52.2, 43.0, 40.3; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₁O₄Cl₂⁺, 479.0811; found, 479.0815.

(3ab)

Methyl 4-(4-fluorophenyl)-1-(2-(4-fluorophenyl)-2-oxoethyl)-2-oxo-3-phenylcyclopent-3-ene-1carboxylate (3ab). Following the general procedure, 3ab was prepared from methyl 3-oxo-4phenylbutanoate 1ab (0.200 g, 1.040 mmol), 2-bromo-1-(4-fluorophenyl)ethan-1-one 2ab (0.452 g, 2.081 mmol), and K₂CO₃ (0.288 g, 2.081 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.325 g (70 %); *Rf*: 0.3 (Ethyl acetate: pet ether 1:10), **M.P:** 144 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.95 (dd, J = 8.6, 5.4 Hz, 2H), 7.33 (dd, J = 8.6, 5.6 Hz, 2H), 7.24 – 7.30 (m, 3H), 7.13 – 7.21 (m, 2H), 7.08 (t, J = 8.6 Hz, 2H), 6.90 (t, J = 8.6 Hz, 2H), 4.17 (d, J = 18.3 Hz, 1H), 3.97 (d, J = 18.5 Hz, 1H), 3.65 (s, 3H), 3.22 (d, J = 18.3 Hz, 1H), 2.94 ppm (d, J = 18.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 201.9, 195.6, 170.0, 166.6, 166.1 (d, J = 255.59 Hz), 163.8 (d, J = 252.53 Hz), 136.6, 132.7, 132.7, 131.7, 130.6 (d, J = 8.39Hz), 130.8 (d, J = 9.15 Hz), 129.5, 128.7, 128.3, 115.7 (d, J = 22.12 Hz), 115.8 (d, J = 21.36 Hz), 56.6, 53.1, 44.1, 41.5; ¹⁹F NMR (376 MHz, CDCl₃): δ ppm -104.15, -108.66; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₁O₄F₂⁺, 447.1402, found, 447.1400.

(3ac)

Methyl 4-(naphthalen-2-yl)-1-(2-(naphthalen-2-yl)-2-oxoethyl)-2-oxo-3-phenylcyclopent-3-ene-1carboxylate (3ac). Following the general procedure **A**, **3ac** was prepared from methyl 3-oxo-4phenylbutanoate **1ac** (0.200 g, 1.040 mmol), 2-bromo-1-phenylethan-1-one **2ac** (0.518 g, 2.081 mmol), and K_2CO_3 (0.288 g, 2.081 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.388 g (73 %); *Rf*: 0.4 (Ethyl acetate: pet ether 1:10), **M.P:** 194 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.48 (s, 1H), 7.93 – 8.00 (m, 2H), 7.88 (d, *J* = 7.88 Hz, 1H), 7.77 – 7.85 (m, 2H), 7.69 (d, *J* = 8.00 Hz, 2H), 7.47 – 7.60 (m, 3H), 7.41 (quind, *J* = 7.29, 7.29, 7.29, 7.29, 1.13 Hz, 2H), 7.22 – 7.29 (m, 6H), 4.40 (d, *J* = 18.26 Hz, 1H), 4.19 (d, *J* = 18.64 Hz, 1H), 3.68 (s, 3H), 3.43 (d, *J* = 18.26 Hz, 1H), 3.15 (d, *J* = 18.51 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 202.3, 197.2, 170.3, 168.0, 136.8, 135.8, 134.1, 133.6, 132.9, 132.5, 132.4, 131.9, 130.2, 129.7 (2C), 129.6, 128.8, 128.8, 128.7, 128.6, 128.5 (2C), 128.3, 127.8, 127.7, 127.6, 126.9, 126.7, 125.6, 123.6, 56.8, 53.2, 44.5, 41.7; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₃₅H₂₇O₄⁺, 511.1904, found, 511.1900.

(3ad)

methyl 3-(4-nitrophenyl)-2-oxo-1-(2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1-carboxylate (3ad). Following the general procedure **A**, 3ad was prepared from methyl 4-(4-nitrophenyl)-3-oxobutanoate 1ad (0.200 g, 0.843 mmol), 2-bromo-1-phenylethan-1-one 2ad (0.336 g, 1.690 mmol), and K₂CO₃ (0.233 g, 1.690 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.345 g (90 %); *Rf*: 0.5 (Ethyl acetate: pet ether 2:10), **M.P:** 125-128 °C; ¹H **NMR** (400 MHz, CDCl₃) δ ppm 8.19 (d, *J* = 8.9 Hz, 2H), 7.97 – 8.02 (m, 2H), 7.54 – 7.63 (m, 2H), 7.44 – 7.50 (m, 4H), 7.31 – 7.37 (m, 4H), 4.25 (d, *J* = 18.4 Hz, 1H), 4.08 (d, *J* = 18.9 Hz, 1H), 3.75 (s, 3H), 3.45 ppm (d, *J* = 18.4 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ ppm 200.3, 195.9, 169.9, 168.9, 146.4, 137.8, 135.0, 133.6, 133.1, 132.7, 130.1, 129.6, 127.8 (2C), 127.7 (2C), 127.3 (2C), 127.1 (2C), 122.6, 76.3, 76.0, 75.7, 55.8, 52.3, 43.0, 40.9; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₂O₆N⁺, 456.1442, found, 456.1435.

(3ae)

methyl 3-(4-methoxyphenyl)-2-oxo-1-(2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1-carboxylate (3ae). Following the general procedure A, 3ae was prepared from methyl 4-(4-methoxyphenyl)-3-oxobutanoate 1ae (0.200 g, 0.899 mmol), 2-bromo-1-phenylethan-1-one 2ae (0.358 g, 1.801 mmol), and K₂CO₃ (0.249 g, 1.801 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.258 g (65 %); *Rf*: 0.5 (Ethyl acetate: pet ether 2:10), M.P: 101-103 °C; ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 – 8.01 (m, 4H), 7.40 – 7.50 (m, 6H), 7.21 (d, J = 8.8 Hz, 2H), 6.88 (s, 2H), 4.27 (d, J = 18.4 Hz, 1H), 4.03 (d, J = 11.1 Hz, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.31 (d, J = 18.4 Hz, 1H), 3.01 ppm (d, J = 18.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 201.5, 196.2, 169.2, 158.4, 135.2, 135.0, 134.1, 132.5, 129.8, 129.2, 127.7 (2C), 127.4 (2C), 127.3 (2C), 127.1 (2C), 113.0, 55.5, 54.2, 52.0, 43.3, 40.5; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₅O₅⁺, 441.1697, found, 441.1690.

(5)

Diethyl 2-oxo-1-(2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1,3-dicarboxylate (5). Following the general procedure , **5** was prepared from diethyl 3-oxopentanedioate **4** (0.200 g, 0.989 mmol), 2-bromo-1-phenylethan-1-one **2a** (0.394 g, 1.978 mmol), and K₂CO₃ (0.273 g, 1.978 mmol) in 1,4 dioxane at 60 °C as a white solid. Yield: 0.283 g (68%); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 101 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.94 – 8.00 (m, 2H), 7.56 – 7.62 (m, 3H), 7.42 – 7.53 (m, 5H), 4.28 – 4.35 (m, 2H), 4.25 (d, *J* = 18.26 Hz, 1H), 4.16 – 4.22 (m, 2H), 4.13 (d, *J* = 19.01 Hz, 1H), 3.25 (d, *J* = 18.39 Hz, 1H), 3.03 (d, *J* = 19.01 Hz, 1H), 1.26 (t, 3H), 1.19 (t, *J* = 7.13 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 198.8, 196.9, 173.5, 168.7, 164.3, 136.1, 133.7 (2C), 133.4, 131.8, 130.3, 128.7 (2C), 128.1 (2C), 127.9 (2C), 62.2, 61.6, 57.3, 43.9, 41.7, 13.9 (2C); **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₅O₆⁺, 421.1646, found, 421.1664.

2-(4-chlorophenyl)-5-(2-oxo-2-phenylethyl)-3-phenylcyclopent-2-en-1-one (6). A 25 mL round-bottom flask was stirred with a Teflon-coated magnetic stir bar. methyl 3-(4-chlorophenyl)-2-oxo-1-(2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1-carboxylate **3w** (0.1 g, 0.2248 mmol, 1.0 equiv) and sodium methoxide (0.024 g, 0.4495 mmol, 2 equiv) were stirred in 4 mL of methanol at room temperature for 30 min. The reaction was monitored by TLC in a 10% ethyl acetate + pet ether system, and upon the completion of the reaction, the solvent was carefully removed by vacuum. Then, the residue was purified by silica gel (230–400 mesh) column chromatography to give the desired solid product (6) as a white solid. Yield: 0.061 g (70 %); *Rf*: 0.5 (Ethyl acetate: pet ether 1:10), **M.P:** 61 °C; ¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.97 – 8.04 (m, 2H), 7.59 (t, *J* = 7.32 Hz, 1H), 7.48 (t, *J* = 7.63 Hz, 2H), 7.35 (d, *J* = 2.00 Hz, 1H), 7.24 – 7.31 (m, 4H), 7.21 (d, *J* = 8.50 Hz, 2H), 3.72 – 3.84 (m, 1H), 3.47 (dd, *J* = 18.39, 6.13 Hz, 1H), 3.20 – 3.27 (m, 2H), 2.79 (dd, *J* = 18.39, 2.50 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ ppm 207.2, 197.1, 166.4, 136.7, 135.5, 134.2, 132.8, 132.4, 129.9 (2C), 129.7, 129.1, 127.7 (2C), 127.7 (2C), 127.5 (2C), 127.1 (2C), 127.1 (2C), 40.5, 39.4, 36.4; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₀O₂Cl⁺, 387.1146, found, 387.1139.

(8)

3-([1,1'-biphenyl]-3-yl)-2-oxo-1-(2-oxo-2-phenylethyl)-4-phenyl Methyl cyclopent-3-ene-1carboxylate (8). A 25 mL round-bottom flask was stirred with a Teflon-coated magnetic stir bar. methyl 3-(3-bromophenyl)-2-oxo-1-(2-oxo-2-phenylethyl)-4-phenylcyclopent-3-ene-1-carboxylate 7 (0.1 g, 0.2043 mmol, 1.0 eq.), phenyl boronic acid (0.025 g, 0.2043 mmol, 1.0 eq.), Pd(PPh₃)₄ (0.007 g, 0.0061 mmol, 0.03 eq.) and sodium carbonate (0.022 g, 0.2043 mmol, 1 eq.) were stirred in 4 mL of toluene at 85 °C for 5 h. The reaction was monitored by TLC in a 10% ethyl acetate + pet ether system, and upon the completion of the reaction, the solvent was carefully removed by vacuum. Then, the residue was purified by silica gel (100–200 mesh) column chromatography to give the desired solid product (8) as a white solid. Yield: 0.075 g (76 %); Rf: 0.4 (Ethyl acetate: pet ether 1:10), M.P: 59 °C: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91 – 8.04 (m, 3H), 7.54 – 7.65 (m, 2H), 7.43 – 7.53 (m, 5H), 7.39 (d, *J* = 7.75 Hz, 4H), 7.28 – 7.35 (m, 2H), 7.20 (q, J = 8.80 Hz, 3H), 4.26 (d, J = 18.26 Hz, 1H), 4.07 (d, J = 18.89 Hz, 1H), 3.74 (s, 3H), 3.36 (d, J = 18.26 Hz, 1H), 3.05 (d, J = 18.64 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ ppm 200.8, 196.0, 169.0, 168.1, 135.1, 134.1, 133.3, 133.0, 132.6, 131.9, 131.4, 130.2, 129.7, 129.2, 129.0 (2C), 127.7 (2C), 127.6 (2C), 127.4 (2C), 127.2 (2C), 127.1 (2C), 121.5 , 55.6 , 52.1 , 43.1 , 40.6; **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₃₅H₂₇O₄⁺, 511.1904, found, 511.1900.

¹H NMR (400 MHz, CDCl₃) spectrum of 3a

¹³C NMR (101 MHz, CDCl₃) spectrum of 3a

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3a

¹H NMR (400 MHz, CDCl₃) spectrum of 3b

¹³C NMR (101 MHz, CDCl₃) spectrum of 3b

¹H NMR (400 MHz, CDCl₃) spectrum of 3c

¹³C NMR (101 MHz, CDCl₃) spectrum of 3c

¹H NMR (400 MHz, CDCl₃) spectrum of 3d

¹³C NMR (101 MHz, CDCl₃) spectrum of 3d

¹H NMR (400 MHz, CDCl₃) spectrum of 3e

¹³C NMR (101 MHz, CDCl₃) spectrum of 3e

¹H NMR (400 MHz, CDCl₃) spectrum of 3f

¹³C NMR (101 MHz, CDCl₃) spectrum of 3f

¹H NMR (400 MHz, CDCl₃) spectrum of 3g

¹³C NMR (101 MHz, CDCl₃) spectrum of 3g

¹H NMR (400 MHz, CDCl₃) spectrum of 3h

¹³C NMR (101 MHz, CDCl₃) spectrum of 3h

¹H NMR (400 MHz, CDCl₃) spectrum of 3i

¹³C NMR (101 MHz, CDCl₃) spectrum of 3i

¹H NMR (400 MHz, CDCl₃) spectrum of 3j

¹³C NMR (101 MHz, CDCl₃) spectrum of 3j

¹H NMR (400 MHz, CDCl₃) spectrum of 3k

¹³C NMR (101 MHz, CDCl₃) spectrum of 3k

¹H NMR (400 MHz, CDCl₃) spectrum of 31

¹H NMR (400 MHz, CDCl₃) spectrum of 3m

¹³C NMR (101 MHz, CDCl₃) spectrum of 3m

¹H NMR (400 MHz, CDCl₃) spectrum of 3n

¹³C NMR (101 MHz, CDCl₃) spectrum of 3n

¹H NMR (400 MHz, CDCl₃) spectrum of 30

¹³C NMR (101 MHz, CDCl₃) spectrum of 30

¹H NMR (400 MHz, CDCl₃) spectrum of 3p

¹³C NMR (101 MHz, CDCl₃) spectrum of 3p

¹H NMR (400 MHz, CDCl₃) spectrum of 3q

¹³C NMR (101 MHz, CDCl₃) spectrum of 3q

¹H NMR (400 MHz, CDCl₃) spectrum of 3r

¹³C NMR (101 MHz, CDCl₃) spectrum of 3r

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3r

¹H NMR (400 MHz, CDCl₃) spectrum of 3s

¹³C NMR (101 MHz, CDCl₃) spectrum of 3s

¹H NMR (400 MHz, CDCl₃) spectrum of 3t

¹³C NMR (101 MHz, CDCl₃) spectrum of 3t

¹H NMR (400 MHz, CDCl₃) spectrum of 3u

¹³C NMR (101 MHz, CDCl₃) spectrum of 3u

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3u

¹H NMR (400 MHz, CDCl₃) spectrum of 3v

¹³C NMR (101 MHz, CDCl₃) spectrum of 3v

¹H NMR (400 MHz, CDCl₃) spectrum of 3w

¹³C NMR (101 MHz, CDCl₃) spectrum of 3w

¹H NMR (400 MHz, CDCl₃) spectrum of 3x

¹³C NMR (101 MHz, CDCl₃) spectrum of 3x

¹H NMR (400 MHz, CDCl₃) spectrum of 3y

¹³C NMR (101 MHz, CDCl₃) spectrum of 3y

¹H NMR (400 MHz, CDCl₃) spectrum of 3z

¹³C NMR (101 MHz, CDCl₃) spectrum of 3z

¹H NMR (400 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (101 MHz, CDCl₃) spectrum of 3aa

¹H NMR (400 MHz, CDCl₃) spectrum of 3ab

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ab

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ac

¹H NMR (400 MHz, CDCl₃) spectrum of 3ad

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ad

¹H NMR (400 MHz, CDCl₃) spectrum of 3ae

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ae

¹H NMR (400 MHz, CDCl₃) spectrum of 5

¹³C NMR (101 MHz, CDCl₃) spectrum of 6

¹H NMR (400 MHz, CDCl₃) spectrum of 8

¹³C NMR (101 MHz, CDCl₃) spectrum of 8

2: MS2 ES-13909 246 (2.173) Cm (246:271) 363.2427 1.71e6 100-481.3120 MeO-Ö Intermediate IV % 463.3077 482.3198589.3317 364.2900 707.3934 517.3343 607.3273 100.8105 417.1981 1000 m/z 0 300 400 500 700 800 900 200 600

5. LC-MS spectrum of intermediate IV

6. X-ray crystallographic data

SC-XRD: The single crystals of intermediate **IIIA**, **IIIB** and **3e** were obtained from the ethyl acetate solvent by the slow evaporation method. The single crystal X-ray diffraction measurements were performed to determine the crystal structure at 100 K using APEX3 (Bruker, 2016; Bruker D8 VENTURE Kappa Duo PHOTON II CPAD) diffractometer having graphite-monochromatized (MoK α (0.71073)). The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of unit cell parameters and an orientation matrix were calculated from 36 frames, and the cell refinement was performed by SAINT-Plus (Bruker, 2016). An optimized strategy used for data collection consisted of different sets of φ and ω scans with 0.5^o steps φ/ω . The data were collected with a time frame of 10 sec by setting the sample to detector distance fixed at 40 cm. All the data points were corrected for Lorentzian, polarization, and absorption effects using SAINT-Plus and SADABS programs (Bruker, 2016). SHELXS-97 (Sheldrick, 2008) was used for structure solution, and full-matrix least-squares refinement on F^{2,1,2} The molecular graphics of ORTEP diagrams were performed by Mercury software. The crystal symmetry of the components was cross-checked by running the cif files through PLATON (Spek, 2020) software and notified that no additional symmetry was observed. The Encifer software was used to correct the cif files.

Figure 1. ORTEP diagram of compound **IIIA**, the asymmetric unit contains one molecule of **IIIA**. Herein, the ellipsoids are drawn with a 50% probability.

Figure 2. ORTEP diagram of compound **IIIB**, the asymmetric unit contains one molecule of **IIIB**. Herein, the ellipsoids are drawn with a 50% probability.

Figure 3. ORTEP diagram of compound **3e**, the asymmetric unit contains one molecule of **3e**. Herein, the ellipsoids are drawn with a 50% probability.

Crystal data	IIIA	IIIB	3e		
Chemical	$C_{20}H_{17}F_{3}O_{4}$	$2(C_{20}H_{17}F_{3}O_{5})$	C ₂₇ H ₁₇ Cl ₂ F ₃ O ₄		
formula					
Formula weight	378.33	788.67	533.31		
(M _r)					
Crystal system	Monoclinic	Triclinic	Monoclinic		
Space group	C_2/c	P-1	$P2_{1}/c$		
Temperature T	100	100	100		
(K)					
a (Å)	38.220 (9)	5.5852 (10)	6.2659 (9)		
b (Å)	5.6457 (12)	8.4012 (14)	14.989 (2)		
c (Å)	16.281 (4)	18.790 (3)	24.786 (3)		
α (°)	90	83.603 (6)	90		
β (°)	99.503 (8)	82.238 (6)	94.532 (5)		
γ (°)	90	89.317 (7)	90		
Ζ	8	1	4		
Volume (Å ³)	3464.8 (14)	868.2 (3)	2320.7 (6)		
Source of	ΜοΚα (0.71073)	ΜοΚα (0.71073)	ΜοΚα (0.71073)		
radiation					
D_{calc} (g cm ⁻³)	1.451	1.509	1.526		
Crystal size	0.21×0.1×0.09	0.19×0.1×0.08	0.24×0.11×0.09		
(mm)					
μ (mm ⁻¹)	0.12	0.13	0.34		
Data collection					
Diffractometer	Bruker D8 VENTURE	Bruker D8 VENTURE	Bruker D8		
	Kappa Duo PHOTON II	Kappa Duo PHOTON II	VENTURE Kappa		
	CPAD	CPAD	Duo PHOTON II		

Table 1. Crystallographic information details of compounds, IIIA, IIIB and 3e.

			CPAD	
Absorption	Multi-scan (SADABS;	Multi-scan (SADABS;	Multi-scan	
correction	Bruker, 2016)	Bruker, 2016)	(SADABS; Bruker,	
			2016)	
No. of measured,	73737, 3776, 3121	31105, 3759, 3473	35836, 5037, 3549	
independent and				
observed [I >				
$2\sigma(I)$] reflections				
Theta range (°)	2.537-26.992	2.30-27.46	2.82-26.86	
R _{int}	0.177	0.048	0.103	
Refinement				
$R[F^2 > 2\sigma (F^2)],$	0.098, 0.201	0.032, 0.084	0.045, 0.108	
$wR(F^2)$				
GOF on F ²	1.24	1.03	1.01	
No. of	3776	3759	5037	
independent				
reflections				
No. of	247	256	327	
parameters				
F_000	1568	408	1088	
No. of restraints	0	0	0	
H-atom	Constr	Constr	Constr	
treatment				
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min}$ (e	0.31, -0.30	0.33, -0.18	0.34, -0.29	
$A^{\circ-3}$				
CCDC number	2284904	2284905	2303221	

Table 2. Hydrogen-bond geometry $(A^{\circ}, {}^{\circ})$ of IIIA, IIIB and 3e are given as below.

Name of the compound	<i>D</i> –H··· <i>A</i>	<i>D</i> –Н	H···A	D…A	<i>D</i> –Н··· <i>A</i>
IIIA	С7-Н7•••О1	0.9500	2.4200	3.2571(8)	147
	C16-H16•••F1	0.9500	2.4000	3.3228(8)	163
	C20-H20B•••F3	0.9800	2.3200	3.1400(8)	141
IIIB	C12-H12C•••O1	0.9800	2.4800	3.3593(6)	149
	C17–H17•••F1	0.9500	2.4000	3.3020(6)	159
	С20-Н20•••О3	0.9500	2.5800	3.4566(6)	154
3e	C5-H5A•••F2	0.990	2.550	3.290(3)	132

С5-Н5В•••О1	0.990	2.360	2.837(3)	108
С7-Н7•••О1	0.950	2.390	3.275(3)	155
С10-Н10•••О4	0.950	2.430	3.371(3)	169
C14-H14A•••O1	0.990	2.560	3.233(3)	125
C14-H14A•••F2	0.990	2.480	3.240(3)	133

7. References

- 1. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. (2015). C71, 3-8.
- 2. G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Cryst.* (2015). A71, 3–8.