Supporting Information

Transition-metal-free phosphorylation of polyfluoroarenes with

P(O)H compounds

Bingqian Sun,^{a,†} Yu-Ting Liang,^{a,†} Meng-Ting Xiang,^a Jun-Tao Ai,^b Shuai Wang,^{a,c} Hong Zhonga,^c Jia Yang,^{a,c,*} and Hao-Yue Xiang^{a,d,*}

^a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China

^b Hunan Drug Inspection Center, Changsha, 410001, P. R. China.

^c Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China

^d College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China

† B. Sun and Y. T. Liang contributed equally.

E-mail: yangjia90@csu.edu.cn; xianghaoyue@csu.edu.cn,

Table of Contents

1. General Information	S2
2. Synthesis of Starting Materials	S2–S3
3. Experimental Procedures	S 3
4. Mechanistic Studies	S4–S5
5. Reaction Optimization	S5
6. Characterization and Analytical Data of Products 3	S6–S13
7. References	S14
8. Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR and ³¹ P NMR spectra	S15–S62

1. General Information

All reactions were carried out in oven-dried Schlenk tubes under N₂ atmosphere. Dry solvents were obtained by purification according to standard methods or purchased from commercial suppliers. Reagents were used as received unless otherwise noted. All solvents and bases were stored inside a N₂-filled glove box. Column chromatography was performed using Silica Gel 60 (particle size 38–75 μ m). The pure products were obtained by means of column chromatography. ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR data were acquired on a 400 MHz spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 162 MHz for ³¹P NMR spectroscopy and 377 MHz for ¹⁹F NMR spectroscopy). Chemical shifts for ¹H NMR are referred to internal Me₄Si (0 ppm) and reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. Data for ³¹P NMR were relative to H₃PO₄ (85% solution in D₂O, 0 ppm).

2. Synthesis of the Starting Materials

Polyfluoroarenes **1a-1g**, **1h**, **1i** and **1k**, P-H compounds **2a-2n** are commercially available. Polyfluoroarenes **1g** and **1j** were known compounds which were synthesized according to the reported method.¹

A flask was charged with $Pd(OAc)_2$ (5.60 mg, 0.025 mmol), tricyclohexyl phosphine (14.00 mg, 0.05 mmol), phenylboronic acid or 3-thiopheneboronic acid (6.00 mmol, 1.2 equiv) and potassium phosphate tribasic hydrate (3.18 g, 3.0 equiv) in toluene (20 mL) and H₂O (1 mL). The mixture was stirred for 30 min at room temperature under nitrogen atmosphere. Then bromopentafluorobenzene (0.63 mL, 5.00 mmol) was added to the reaction mixture. After the reaction mixture was stirred for 12 h under reflux. The reaction mixture was then cooled to room temperature. The reaction mixture was quenched with ethyl acetate, the organic layer was separated, dried over Na₂SO₄ and concentrated. The crude material was purified by chromatography on silica gel using hexane to

afford the product.

3. Experimental Procedures

Typical procedure for C-F phosphorylation of aryl fluorides

Under N₂ atmosphere, 0.1 mmol pentafluorobenzene **1a**, 0.2 mmol diisopropyl phosphite **2a**, 0.1 mmol NaH and 1.0 mL DMF were charged into a 10 mL schlenk tube, and the mixture was stirred at room temperature for 20 h. The reaction mixture was extracted with EtOAc, the organic layer was separated, dried over Na₂SO₄ and concentrated. The residues were passed through a short silica chromatography (particle size 38–75 μ m, pether/ethyl acetate as eluent) to afford analytically pure organophosphorus compound **3a**.

Preparation of 3a at 1 mmol scale

Under N₂ atmosphere, 1 mmol pentafluorobenzene **1a**, 1.5 mmol diisopropyl phosphite **2a**, 1 mmol NaH and 5.0 mL DMF were stirred at room temperature for 20 h. The reaction mixture was extracted with ethyl acetate, the organic layer was separated, dried over Na₂SO₄. After removal of the volatile, the crude product was passed through a short silica chromatography (particle size 38–75 μ m, pether/ethyl acetate as eluent) to give the analytically pure **3a** in 86% yield.

4. Mechanistic Studies

Figure S2. ³¹P NMR spectra of reaction mixture in DMF

General procedure: The reaction was done in DMF, and the reaction solution was added to the NMR tube in the glove box.

Several control experiments were conducted, and the reactions were monitored by ³¹P NMR

spectroscopy (Figure S1, S2). As shown in Figure S1, the treatment of diisopropyl phosphite 2a (0.1 mmol, 5.25 ppm) with NaH (1.0 equiv) caused the formation of sodium phosphinite (144.75 ppm) in DMF at room temperature. ² The addition of pentafluorobenzene 1a (0.4 mmol) causes the production of 3a (2.05 ppm), and the proportion of 3a increases over time (Figure S2).

5. Reaction Optimization

F	F F	ba	se F	P(O)(Ph) ₂ F F F F	
F	F (Ph);	P(O)Hsolvent, te	emperature F		
	1a 2	2g		3q	
Entry	Base	Solvent	Temp(°C)	Yield (%) ^b	
1	NaH	DMF	rt	43	
2	KHMDS	DMF	rt	n.d.	
3	^t BuOK	DMF	rt	n.d.	
4	'BuONa	DMF	rt	n.d.	
5	Na ₃ PO ₄	DMF	rt	trace	
6	Cs ₂ CO ₃	DMF	rt	n.d.	
7°	NaH	DMF	rt	53	
8 ^c	NaH	DMA	rt	52	
9°	NaH	DMSO	rt	41	
10 ^c	NaH	CH ₃ CN	rt	22	
11 ^c	NaH	THF	rt	n.d.	
12 ^c	NaH	toluene	rt	n.d.	
13 ^c	NaH	DCM	rt	n.d.	
14 ^d	NaH	DMF	rt	65	
15 ^e	NaH	DMF	rt	58	
16 ^d	NaH	DMF	50	55	
17 ^f	NaH	DMF	rt	56	

Table S4 Base-promoted reactions of 1a with 2g.

^a Reaction conditions: **1a** (0.2 mmol), **2g** (0.1 mmol), base (2 equiv.), solvent (1.0 mL), N₂, rt, 20 h. ^b GC yield using tridecane as an internal standard. ^c NaH (1.0 equiv). ^d NaH (1.0 equiv), **1a** (0.3mmol). ^e NaH (1.0 equiv), **1a** (0.4mmol). ^f NaH (1.0 equiv), **1a** (0.3mmol), 24 h.

6. Characterization and Analytical Data of Products 3

Diisopropyl (2,3,5,6-tetrafluorophenyl) phosphonate (3a). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 7.24–7.14 (m, 1H), 4.85–4.76 (m, 2H), 1.36–1.33 (m, 6H), 1.27–1.25 (m, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.7 (dm, $J_{C-F} = 253.7$ Hz), 146.0 (dm, $J_{C-F} = 249.7$ Hz), 111.2 (dt, $J_{C-P} = 181.3$ Hz, $J_{C-F} = 18.6$ Hz), 109.9 (td, $J_{C-F} = 23.8$ Hz, $J_{C-P} = 1.8$ Hz), 72.8 (d, $J_{C-P} = 6.1$ Hz), 24.0 (d, $J_{C-P} = 4.1$ Hz), 23.6 (d, $J_{C-P} = 5.3$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 2.39–2.22 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -131.36–131.49 (m), -137.32–137.50 (m). HRMS (ESI): Cal. for C₁₂H₁₅F₄O₃PNa ([M+Na]⁺) : 337.0588. Found: 337.0584.

Diisopropyl (2,3,5,6-tetrafluoro-4-methylphenyl) phosphonate (3b). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 4.90–4.85 (m, 2H), 2.33 (s, 3H), 1.44–1.41 (m, 6H), 1.35–1.32 (m, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.6 (dm, $J_{C-F} = 251.6$ Hz), 145.1 (dm, $J_{C-F} = 240.5$ Hz), 121.1 (t, $J_{C-F} = 18.8$ Hz), 107.4 (dt, $J_{C-P} = 183.8$ Hz, $J_{C-F} = 18.9$ Hz), 72.5 (d, $J_{C-P} = 6.0$ Hz), 24.0 (d, $J_{C-P} = 4.1$ Hz), 23.6 (d, $_{C-P} = 5.1$ Hz), 7.9, ³¹P NMR (162 MHz CDCl₃): δ 3.02–2.86 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -133.02–-133.15 (m), -142.19–-142.32 (m). HRMS (ESI): Cal. for C₁₃H₁₇F₄O₃PNa ([M+Na]⁺) : 351.0744. Found: 351.0745.

Diisopropyl (2,3,5,6-tetrafluoro-4-methoxyphenyl) phosphonate (3c). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 4.90–4.81 (m, 2H), 4.16 (t, J = 2.0 Hz, 3H), 1.41 (d, J = 6.0 Hz, 6H), 1.32 (d, J = 6.0 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 147.6 (dm, $J_{C-F} = 255.2$ Hz), 141.7 (t, $J_{C-F} = 4.8$ Hz), 140.3 (dm, $J_{C-F} = 249.7$ Hz), 102.5 (dt, $J_{C-P} = 186.4$ Hz, $J_{C-F} = 20.9$ Hz), 72.5 (d, $J_{C-P} = 6.1$ Hz), 61.9 (t, $J_{C-P} = 4.2$ Hz), 24.1 (d, $J_{C-P} = 4.2$ Hz), 23.7 (d, $J_{C-P} = 5.1$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 3.28–3.12 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -132.38–132.48 (m), -157.06–157.19 (m). HRMS (ESI): Cal. for C₁₃H₁₇F₄O₄PNa ([M+Na]⁺) : 367.0693. Found: 367.0694.

Diisopropyl (2,3,5,6-tetrafluoro-4-(trifluoromethyl) phenyl) phosphonate (3d). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 4.97–4.89 (m, 2H), 1.45 (d, *J* = 6.4 Hz, 6H), 1.37 (d, *J* = 6.4 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.9 (dm, *J*_{C-F} = 249.8 Hz), 144.1 (dm, *J*_{C-F} = 262.5 Hz), 120.4 (q, *J*_{C-F} = 273.7 Hz), 115.0 (dt, *J*_{C-P} = 179.0 Hz, *J*_{C-F} = 19.0 Hz), 113.2–112.6 (m), 73.5 (d, *J*_{C-P} = 6.2 Hz), 24.0 (d, *J*_{C-P} = 4.2 Hz), 23.6 (d, *J*_{C-P} = 5.2 Hz), ³¹P NMR (162 MHz CDCl₃): δ 0.48–0.32 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -57.0 (t, *J*_{C-F} = 21.9 Hz), -128.94–-129.06 (m), -138.95–-139.12 (m). HRMS (ESI): Cal. for C₁₃H₁₄F₇O₃PNa ([M+Na]⁺) : 405.0461. Found: 405.0460.

Diisopropyl (4-cyano-2,3,5,6-tetrafluorophenyl) phosphonate (3e). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 4.96–4.88 (m, 2H), 1.44 (d, J = 6.0 Hz, 6H), 1.35 (d, J = 6.0 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 147.1 (dm, J_{C-F} = 261.0 Hz), 146.7 (dm, J_{C-F} = 253.1 Hz), 132.1–131.9 (m), 117.1 (dt, J_{C-P} = 176.8 Hz, J_{C-F} = 19.0 Hz), 106.8 (t, J_{C-F} = 3.8 Hz), 97.7–97.4 (m), 73.9 (d, J_{C-F} = 6.3 Hz), 23.9 (dd, J_{C-P} = 38.0 Hz, J_{C-P} = 4.1 Hz), ³¹P NMR (162 MHz CDCl₃): δ -0.09–-0.25 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -127.79–-127.91 (m), -130.69–-130.83 (m). HRMS (ESI): Cal. for C₁₃H₁₄F₄NO₃PNa ([M+Na]⁺) : 362.0540. Found: 362.0528.

Methyl 4-(diisopropoxyphosphoryl)-2,3,5,6-tetrafluorobenzoate (3f). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 4.94–4.86 (m, 2H), 4.01 (s, 3H), 1.43 (d, J = 6.0 Hz, 6H), 1.35 (d, J = 6.4 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 159.5–159.4 (m), 146.9 (dm, $J_{C-F} = 254.4$ Hz), 144.3 (dm, $J_{C-F} = 258.7$ Hz), 116.0 (td, $J_{C-F} = 15.4$ Hz, $J_{C-P} = 2.6$ Hz), 113.2 (dt, $J_{C-P} = 179.5$ Hz, $J_{C-F} = 18.8$ Hz), 73.2 (d, $J_{C-P} = 6.2$ Hz), 53.5, 24.0 (d, $J_{C-P} = 4.2$ Hz), 23.6 (d, $J_{C-P} = 5.2$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 1.20–1.04 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -129.95–130.08 (m), -138.27–138.40 (m). HRMS (ESI): Cal. for C₁₄H₁₇F₄O₅PNa ([M+Na]⁺) : 395.0642. Found: 395.0645.

Diisopropyl (2,3,5,6-tetrafluoro-[1,1'-biphenyl]-4-yl) phosphonate (3g). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.51–7.46 (m, 5H), 4.96–4.88 (m, 2H), 1.45 (d, J = 6.4 Hz, 6H), 1.37 (d, J = 6.4 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 147.2 (dm, J_{C-F} = 253.3 Hz), 143.9 (dm, J_{C-F} = 248.9 Hz), 130.0, 129.7, 128.7, 126.7, 124.8 (t, J_{C-F} = 16.5 Hz), 109.0 (dt, J_{C-P} = 183.4 Hz, J_{C-F} = 18.9 Hz), 72.8 (d, J_{C-P} = 6.1 Hz), 24.1 (d, J_{C-F} = 4.1 Hz), 23.7 (d, J_{C-F} = 5.2 Hz), ³¹P NMR (162 MHz CDCl₃): δ 2.69–2.53 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -131.65–131.77 (m), -142.40–142.60 (m). HRMS (ESI): Cal. for C₁₈H₁₉F₄O₃PNa ([M+Na]⁺) : 413.0901. Found: 413.0906.

Diisopropyl (perfluoro-[1,1'-biphenyl]-4-yl) phosphonate (3h). White solid; ¹H NMR (400 MHz CDCl₃): δ 4.99–4.91 (m, 2H), 1.46 (d, J = 6.4 Hz, 6H), 1.39 (d, J = 6.4 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.9 (dm, $J_{C-F} = 250.6$ Hz), 144.4 (dm, $J_{C-F} = 248.0$ Hz), 144.2 (dm, $J_{C-F} = 255.3$ Hz), 142.7 (dm, $J_{C-F} = 257.1$ Hz), 137.9 (dm, $J_{C-F} = 250.2$ Hz), 112.7 (dt, $J_{C-P} = 181.2$ Hz, $J_{C-F} = 18.6$ Hz), 110.3–109.9 (m), 102.1–101.7 (m), 73.3 (d, $J_{C-F} = 6.2$ Hz), 24.1 (d, $J_{C-P} = 4.0$ Hz), 23.7 (d, $J_{C-P} = 5.5$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 1.61–1.45 (m), ¹⁹F NMR (377 MHz CDCl₃): δ - 130.05–-130.18 (m), -136.64–-136.79 (m), -136.91–-137.05 (m), -149.32–-149.46 (m), -160.10–-160.27 (m). HRMS (ESI): Cal. for C₁₈H₁₄F₉O₃PNa ([M+Na]⁺) : 503.0430. Found: 503.0428.

Diisopropyl (perfluoropyridin-4-yl) phosphonate (3i).³ Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 4.98–4.90 (m, 2H), 1.45 (d, J = 7.2 Hz, 6H), 1.37 (d, J = 6.0 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 143.8 (dm, J_{C-F} = 258.3 Hz), 141.7 (dm, J_{C-F} = 264.9 Hz), 124.2 (dt, J_{C-P} = 175.3 Hz, J_{C-F} = 18.0 Hz), 73.9 (d, J_{C-P} = 6.4 Hz), 24.1 (d, J_{C-P} = 4.0 Hz), 23.7 (d, J_{C-P} = 5.3 Hz), ³¹P NMR (162 MHz CDCl₃): δ -0.88–1.06 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -89.15–89.35 (m), - 132.63–132.83 (m).

Diisopropyl (2,3,5,6-tetrafluoro-4-(thiophen-3-yl) phenyl) phosphonate (3j). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 7.81–7.79 (m, 1H), 7.48–7.44 (m, 2H), 4.93–4.88 (m, 2H), 1.44 (d, J = 6.4 Hz, 6H), 1.36 (d, J = 6.4 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 147.2 (dm, $J_{C-F} = 252.8$ Hz), 143.8 (dm, $J_{C-F} = 249.3$ Hz), 128.4 (t, $J_{C-F} = 5.2$ Hz), 128.2 (t, $J_{C-F} = 4.3$ Hz),126.2 (t, $J_{C-F} = 2.2$ Hz), 125.8, 119.6 (t, $J_{C-F} = 15.5$ Hz), 108.1 (dt, $J_{C-P} = 184.1$ Hz, $J_{C-F} = 19.1$ Hz), 72.8 (d, $J_{C-P} = 6.1$ Hz), 24.1 (d, $J_{C-P} = 4.1$ Hz), 23.7 (d, $J_{C-P} = 5.1$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 2.67–2.51 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -131.86–131.98 (m), -140.99–141.12 (m). HRMS (ESI): Cal. for C₁₆H₁₇F₄O₃PSNa ([M+Na]⁺) : 419.0465. Found: 419.0458.

P(O)(O'Pr)₂

Diisopropyl (2,3,5-trifluorophenyl) phosphonate (3k). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 7.42–7.34 (m, 1H), 7.17–7.10 (m, 1H), 4.84–4.76 (m, 2H), 1.41 (d, *J* = 6.0 Hz, 6H), 1.29 (d, *J* = 6.0 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 157.2 (dm, *J*_{C-F} = 247.5 Hz), 150.4 (dm, *J*_{C-F} = 252.7 Hz), 147.5 (dm, *J*_{C-F} = 249.6 Hz), 121.3 (ddd, *J*_{C-P} = 186.2 Hz, *J*_{C-F} = 17.3 Hz, *J*_{C-F} = 7.3 Hz), 114.0 (dm, *J*_{C-F} = 24.5 Hz), 109.6 (ddd, *J*_{C-F} = 27.2 Hz, *J*_{C-F} = 20.8 Hz, *J*_{C-F} = 2.7 Hz), 72.2 (d, *J*_{C-P} = 5.9 Hz), 23.9 (d, *J*_{C-P} = 4.1 Hz), 23.6 (d, *J*_{C-P} = 4.7 Hz), ³¹P NMR (162 MHz CDCl₃): δ 7.47–7.36 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -113.65–-113.79 (m), -131.44–-131.53 (m), -134.62–-134.72 (m). HRMS (ESI): Cal. for C₁₂H₁₆F₃O₃PNa ([M+Na]⁺) : 319.0682. Found: 319.0682.

Dibutyl(2,3,5,6-tetrafluorophenyl) phosphine oxide (3l). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.37–7.29 (m, 1H), 3.93 (d, J = 11.6 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.8 (dm, $J_{C-F} = 253.1$ Hz), 146.1 (dm, $J_{C-F} = 245.2$ Hz), 110.5 (td, $J_{C-F} = 22.3$ Hz, $J_{C-P} = 2.1$ Hz), 108.9 (dt, $J_{C-P} = 181.9$ Hz, $J_{C-F} = 19.1$ Hz), 53.6 (d, $J_{C-P} = 5.9$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 8.02–7.92 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -131.97–-132.11 (m), -136.70–-136.91 (m). HRMS (ESI): Cal. for C₈H₇F₄O₃PNa ([M+Na]⁺) : 280.9962. Found: 280.9967.

Diethyl (2,3,5,6-tetrafluorophenyl) phosphonate (3m).⁴ Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 7.33–7.24 (m, 1H), 4.35–4.22 (m, 4H), 1.43–1.38 (m, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.8 (dm, $J_{C-F} = 246.1$ Hz), 146.0 (dm, $J_{C-F} = 254.4$ Hz), 110.2 (td, $J_{C-F} = 22.3$ Hz, $J_{C-P} = 2.0$ Hz), 110.1 (dt, $J_{C-P} = 181.0$ Hz, $J_{C-F} = 18.9$ Hz), 63.5 (d, $J_{C-P} = 5.9$ Hz), 16.2 (d, $J_{C-P} = 6.4$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 4.88 (t, $J_{P-F} = 9.4$ Hz), ¹⁹F NMR (377 MHz CDCl₃): δ -131.86–132.01 (m), -137.01–137.17 (m).

P(O)(*n*-BuO)₂

Dibutyl (2,3,5,6-tetrafluorophenyl) phosphonate (3n). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 7.30–7.22 (m, 1H), 4.28–4.14 (m, 4H), 1.75–1.68 (m, 4H), 1.48–1.39 (m, 4H), 0.94 (t, *J* = 7.6 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.7 (dm, *J*_{C-F} = 253.2 Hz), 146.1 (dm, *J*_{C-F} = 250.4 Hz), 110.1 (td, *J*_{C-F} = 21.6 Hz, *J*_{C-P} = 2.2 Hz), 110.0 (dt, *J*_{C-P} = 180.8 Hz, *J*_{C-F} = 18.9 Hz), 67.1 (d, *J*_{C-P} = 6.3 Hz), 32.3 (d, *J*_{C-P} = 6.6 Hz), 18.59, 13.4 (d, *J*_{C-P} = 2.1 Hz), ³¹P NMR (162 MHz CDCl₃): δ 5.29–5.14 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -131.63–131.79 (m), -136.99–137.16 (m). HRMS (ESI): Cal. for C₁₄H₁₉F₄O₃PNa ([M+Na]⁺) : 365.0901. Found: 365.0903.

Dibenzyl (2,3,5,6-tetrafluorophenyl) phosphonate (30). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.37–7.30 (m, 10H), 7.21–7.16 (m, 1H), 5.24–5.14 (m, 4H), ¹³C NMR (100 MHz CDCl₃): δ 146.6 (dm, $J_{C-F} = 254.6$ Hz), 146.0 (dm, $J_{C-F} = 250.0$ Hz), 135.2 (d, $J_{C-F} = 6.4$ Hz), 128.8, 128.6, 128.2, 110.4 (td, $J_{C-F} = 21.9$ Hz, $J_{C-P} = 2.1$ Hz), 109.9 (dt, $J_{C-P} = 182.6$ Hz, $J_{C-P} = 18.5$ Hz), 68.9 (d, $J_{C-P} = 5.8$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 5.87–5.74 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -131.07–131.19 (m), -136.83–137.00 (m). HRMS (ESI): Cal. for C₂₀H₁₅F₄O₃PNa ([M+Na]⁺) : 433.0588. Found: 433.0579.

P(O)Ph(EtO)

Ethyl phenyl(2,3,5,6-tetrafluorophenyl) phosphinate (3p). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 7.85–7.79 (m, 2H), 7.51–7.37 (m, 3H), 7.17–7.09 (m, 1H), 4.28–4.10 (m, 2H), 1.34 (t, *J*

= 6.8 Hz, 3H), ¹³C NMR (100 MHz CDCl₃): δ 146.6 (dm, J_{C-F} = 252.5 Hz), 146.1 (dm, J_{C-F} = 254.5 Hz), 133.1 (d, J_{C-P} = 3.0 Hz), 131.2 (d, J_{C-P} = 10.9 Hz), 131.0 (d, J_{C-P} = 150.7 Hz), 128.7 (d, J_{C-P} = 14.3 Hz), 113.1 (dt, J_{C-P} = 118.0 Hz, J_{C-F} = 18.7 Hz), 110.2 (td, J_{C-F} = 22.3 Hz, J_{C-P} = 1.9 Hz), 62.4 (d, J_{C-P} = 6.2 Hz), 16.2 (d, J_{C-P} = 6.7 Hz), ³¹P NMR (162 MHz CDCl₃): δ 20.93–20.80 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -131.72–-131.84 (m), -136.76–-136.90 (m). HRMS (ESI): Cal. for C₁₄H₁₁F₄O₂PNa ([M+Na]⁺) : 341.0325. Found: 341.0328.

Diphenyl(2,3,5,6-tetrafluorophenyl) phosphine oxide (3q). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.82–7.77 (m, 4H), 7.61–7.57 (m, 2H), 7.53–7.48 (m, 4H), 7.37–7.27 (m, 1H), ¹³C NMR (100 MHz CDCl₃): δ 146.8 (dm, $J_{C-F} = 252.3$ Hz), 146.3 (dm, $J_{C-F} = 256.6$ Hz), 132.7 (d, $J_{C-P} = 3.0$ Hz), 131.6 (d, $J_{C-P} = 112.0$ Hz), 131.1 (d, $J_{C-P} = 10.6$ Hz), 128.8 (d, $J_{C-P} = 13.1$ Hz), 114.0 (dt, $J_{C-P} = 85.3$ Hz, $J_{C-F} = 17.9$ Hz), 110.6 (td, $J_{C-F} = 22.4$ Hz, $J_{C-P} = 0.8$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 20.9 (t, $J_{P-F} = 4.9$ Hz), ¹⁹F NMR (377 MHz CDCl₃): δ -129.06–-129.16 (m), -136.23–-136.39 (m). HRMS (ESI): Cal. for C₁₈H₁₂F4OP ([M+H]⁺) : 351.0557. Found: 351.0584.

P(O)(4-Me-Ph)₂

(2,3,5,6-tetrafluorophenyl) di-p-tolylphosphine oxide (3r). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.67–7.61 (m, 4H), 7.32–7.29 (m, 4H), 7.24–7.22 (m, 1H), 2.42 (s, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.9 (dm, $J_{C-F} = 253.9$ Hz), 146.1 (dm, $J_{C-F} = 257.9$ Hz), 143.3 (d, $J_{C-P} = 3.0$ Hz), 131.2 (d, $J_{C-P} = 11.1$ Hz), 129.5 (d, $J_{C-P} = 13.5$ Hz), 128.6 (d, $J_{C-P} = 114.0$ Hz), 114.6 (dt, $J_{C-P} = 84.2$ Hz, $J_{C-F} = 17.4$ Hz), 110.3 (td, $J_{C-F} = 22.0$ Hz, $J_{C-P} = 1.3$ Hz), 21.7 (d, $J_{C-P} = 1.5$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 21.4 (t, $J_{P-F} = 4.9$ Hz), ¹⁹F NMR (377 MHz CDCl₃): δ -128.90–-129.26 (m), -136.54–-136.70 (m). HRMS (ESI): Cal. for C₂₀H₁₅F₄OPNa ([M+Na]⁺) : 401.0689. Found: 401.0686.

P(O)(4-MeO-Ph)₂ F

Dis(4-methoxyphenyl) (2,3,5,6-tetrafluorophenyl) phosphine oxide (3s). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.71–7.64 (m, 4H), 7.31–7.22 (m, 1H), 7.03–6.89 (m, 4H), 3.87–3.84 (m, 6H), ¹³C NMR (100 MHz CDCl₃): δ 163.0 (d, J_{C-P} = 3.1 Hz), 146.8 (dm, J_{C-F} = 251.8 Hz), 146.2 (dm, J_{C-F} = 261.7 Hz), 133.2 (d, J_{C-P} = 12.3 Hz), 123.0 (d, J_{C-P} = 119.6 Hz), 115.2 (t, J_{C-F} = 17.8 Hz), 114.7 (dt, J_{C-P} = 85.3 Hz, J_{C-F} = 17.8 Hz), 110.2 (td, J_{C-F} = 21.9 Hz, J_{C-F} = 1.0 Hz), 55.38, ³¹P NMR

(162 MHz CDCl₃): δ 20.9 (t, J_{P-F} = 5.5 Hz), ¹⁹F NMR (377 MHz CDCl₃): δ -129.52–-129.67 (m), -136.65–-136.80 (m). HRMS (ESI): Cal. for C₂₀H₁₅F₄O₃PNa ([M+Na]⁺) : 433.0588. Found: 433.0589.

Bis(3,5-dimethylphenyl) (2,3,5,6-tetrafluorophenyl) phosphine oxide (3t). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.26 (d, J = 13.6 Hz, 4H), 7.16–7.11 (m, 1H), 7.08–7.06 (m, 2H), 2.21–2.19(m, 12H), ¹³C NMR (100 MHz CDCl₃): δ 146.8 (dm, J_{C-F} = 248.4 Hz), 146.1 (dm, J_{C-F} = 240.7 Hz), 138.5 (d, J_{C-P} = 13.8 Hz), 134.4 (d, J_{C-P} = 3.0 Hz), 131.5 (d, J_{C-P} = 109.9 Hz), 128.6 (d, J_{C-P} = 10.5 Hz), 114.5 (dt, J_{C-P} = 83.8 Hz, J_{C-F} = 17.9 Hz), 110.3 (t, J_{C-F} = 22.4 Hz), 21.2 (d, J_{C-P} = 1.7 Hz), ³¹P NMR (162 MHz CDCl₃): δ 21.6, ¹⁹F NMR (377 MHz CDCl₃): δ -129.02–-129.15 (m), -136.52–-136.63 (m). HRMS (ESI): Cal. for C₂₂H₁₉F4OPNa ([M+Na]⁺) : 429.1002. Found: 429.1006.

6-(2,3,5,6-tetrafluorophenyl) dibenzo[c,e][1,2]oxaphosphinine 6-oxide (3u). White solid; ¹H NMR (400 MHz CDCl₃): δ 8.08–7.92 (m, 3H), 7.76 (t, J = 8.0 Hz, 1H), 7.40 (t, J = 8.4 Hz, 1H), 7.58–7.53 (m, 1H), 7.29–7.25 (m, 2H), 7.23–7.17 (m, 1H), ¹³C NMR (100 MHz CDCl₃): δ 148.6 (d, $J_{C-P} = 8.4$ Hz), 146.6 (dm, $J_{C-F} = 261.2$ Hz), 146.1 (dm, $J_{C-F} = 247.6$ Hz), 136.1 (d, $J_{C-P} = 7.6$ Hz), 134.4 (d, $J_{C-P} = 2.5$ Hz), 131.5 (dt, $J_{C-P} = 10.6$ Hz, $J_{C-P} = 2.1$ Hz), 131.0, 128.8 (d, $J_{C-P} = 14.6$ Hz), 125.2, 125.1, 123.9 (d, $J_{C-P} = 11.0$ Hz), 123.7 (d, $J_{C-P} = 138.6$ Hz), 121.5 (d, $J_{C-P} = 12.0$ Hz), 120.6 (d, $J_{C-P} = 7.1$ Hz), 111.9 (dt, $J_{C-P} = 124.6$ Hz, $J_{C-F} = 19.0$ Hz), 110.9 (td, $J_{C-F} = 20.8$ Hz, $J_{C-P} = 2.2$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 13.8 (t, $J_{P-F} = 6.5$ Hz), ¹⁹F NMR (377 MHz CDCl₃): δ -131.42–-131.53 (m), -136.17–-136.30 (m). HRMS (ESI): Cal. for C₁₈H₉F₄O₂PNa ([M+Na]⁺) : 387.0169. Found: 387.0186.

Dis(4-fluorophenyl) (2,3,5,6-tetrafluorophenyl) phosphine oxide (3v). Colorless liquid; ¹H NMR (400 MHz CDCl₃): δ 7.72–7.65 (m, 4H), 7.27–7.19 (m, 1H), 7.17–7.11 (m, 4H), ¹³C NMR (100 MHz CDCl₃): δ 165.6 (dd, $J_{C-P} = 253.8$ Hz, $J_{C-P} = 3.5$ Hz), 146.8 (dm, $J_{C-F} = 244.3$ Hz), 146.3 (dm, $J_{C-F} = 252.3$ Hz), 133.8 (dd, $J_{C-P} = 12.2$ Hz, $J_{C-F} = 8.9$ Hz), 127.5 (dd, $J_{C-P} = 115.3$ Hz, $J_{C-P} = 3.9$ Hz), 116.4 (dd, $J_{C-F} = 21.6$ Hz, $J_{C-P} = 14.5$ Hz), 113.6 (dt, $J_{C-F} = 88.1$ Hz, $J_{C-F} = 17.9$ Hz), 110.9 (td, $J_{C-P} = 21.4$ Hz, $J_{C-P} = 1.4$ Hz), ³¹P NMR (162 MHz CDCl₃): δ 18.9 (t, $J_{P-F} = 5.7$ Hz), ¹⁹F NMR (377 MHz CDCl₃): δ -104.8 (t, $J_{C-F} = 21.9$ Hz), -129.04–-129.16 (m), -135.86–-136.80 (m). HRMS (ESI): Cal. for C₁₈H₉F₆OPNa ([M+Na]⁺) : 409.0188. Found: 409.0191.

P(O)Ph(n-Bu)

Butyl(phenyl)(2,3,5,6-tetrafluorophenyl) phosphine oxide (3w). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.81–7.78 (m, 2H), 7.61–7.49 (m, 3H), 7.30–7.20 (m, 1H), 2.60–2.30 (m, 2H), 1.73–1.26 (m, 4H), 0.94–0.87 (m, 3H), ¹³C NMR (100 MHz CDCl₃): δ 146.6 (dm, $J_{C-F} = 250.8$ Hz), 146.3 (dm, $J_{C-F} = 251.3$ Hz), 132.4 (d, $J_{C-P} = 2.9$ Hz), 132.1 (d, $J_{C-P} = 103.8$ Hz), 130.2 (d, $J_{C-P} = 10.2$ Hz), 128.8 (d, $J_{C-P} = 12.6$ Hz), 114.6 (dt, $J_{C-P} = 77.3$ Hz, $J_{C-F} = 19.7$ Hz), 110.0 (td, $J_{C-F} = 23.7$ Hz, $J_{C-P} = 1.4$ Hz), 31.4 (dt, $J_{C-P} = 74.2$ Hz, $J_{C-F} = 4.0$ Hz), 24.0 (d, $J_{C-P} = 16.7$ Hz), 23.2 (d, $J_{C-P} = 4.3$ Hz), 13.5, ³¹P NMR (162 MHz CDCl₃): δ 29.9 (t, $J_{P-F} = 4.1$ Hz), ¹⁹F NMR (377 MHz CDCl₃): δ -131.26–-131.40 (m), -136.36–-136.48 (m). HRMS (ESI): Cal. for C₁₆H₁₅F₄OPNa ([M+Na]⁺) : 353.0689. Found: 353.0693.

P(O)(*n*-Bu)₂

Dibutyl(2,3,5,6-tetrafluorophenyl) phosphine oxide (3x). White solid; ¹H NMR (400 MHz CDCl₃): δ 7.34–7.25 (m, 1H), 2.15–2.07 (m, 4H), 1.73–1.41 (m, 8H), 0.93 (t, *J* = 7.2 Hz, 6H), ¹³C NMR (100 MHz CDCl₃): δ 146.7 (dm, *J*_{C-F} = 249.9 Hz), 146.2 (dm, *J*_{C-F} = 246.9 Hz), 113.0 (dt, *J*_{C-P} = 68.8 Hz, *J*_{C-F} = 19.8 Hz), 109.9 (td, *J*_{C-F} = 22.3 Hz, *J*_{C-F} = 1.8 Hz), 30.8 (dt, *J*_{C-P} = 70.7 Hz, *J*_{C-F} = 2.5 Hz), 23.9 (d, *J*_{C-P} = 15.7 Hz), 23.5 (d, *J*_{C-P} = 4.6 Hz), 13.5, ³¹P NMR (162 MHz CDCl₃): δ 42.50–42.36 (m), ¹⁹F NMR (377 MHz CDCl₃): δ -132.92–133.05 (m), -136.44–136.56 (m). HRMS (ESI): Cal. for C₁₄H₁₉F₄OPNa ([M+Na]⁺) : 333.1002. Found: 333.1001.

7. References

X. Li, B. Fu, Q. Zhang, X. Yuan, Q. Zhang, T. Xiong and Q. Zhang. *Angew. Chem., Int. Ed.*, 2020, **59**, 23056
M. Kalek and J. Stawinski. *Organometallics*, 2008, **27**, 5876

(3) W. Boenigk and G. Hägele. Chem. Ber., 1983, 116, 2418

(4) I. Ghosh, J. Khamrai, A. Savateev, N. Shlapakov, M. Antonietti and B. König . Science, 2019, 365, 360

2.385 2.360 2.331 2.234 2.224 2.224 2.223

 $\left(\begin{array}{c}1.199\\1.170\\1.148\\1.121\\1.091\\1.073\\1.043\end{array}\right)$

1.606 1.556 1.556 1.528 1.502 1.478

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

5.288 5.265 5.240 5.212 5.187 5.160 5.160

75.865 75.836 5.738 5.737 5.737

