Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

## **Supporting Information**

## Highly Stretchable and Aqueous Solutions-Stable Poly(3,4-ethylenedioxythiophene) Doped with Elastomeric Sulfonated-SEBS

Yuhka Uda<sup>1,2</sup>, Peikai Zhang<sup>1,2</sup> and Jadranka Travas-Sejdic<sup>1,2,\*</sup>

<sup>1</sup>Centre for Innovative Materials and Health, School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand

<sup>2</sup>MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand

<sup>\*</sup>Author to whom correspondence should be addressed (j.travas-sejdic@auckland.ac.nz)

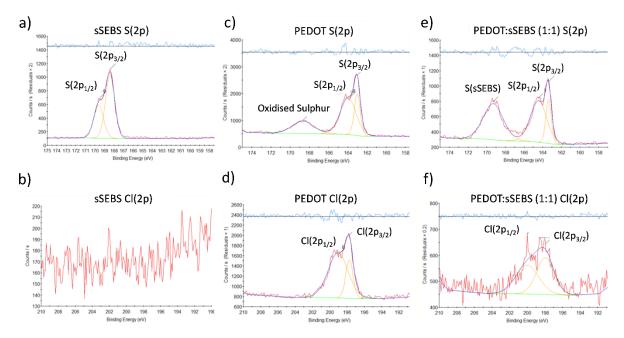



Figure S1. Core level XPS spectra of sSEBS, PEDOT, and PEDOT:sSEBS. a) S(2p) and b) Cl(2p) of sSEBS. c) S(2p) and d) Cl(2p) of pristine PEDOT. e) S(2p) and f) Cl(2p) of PEDOT:sSEBS (1:1 mass:mass).

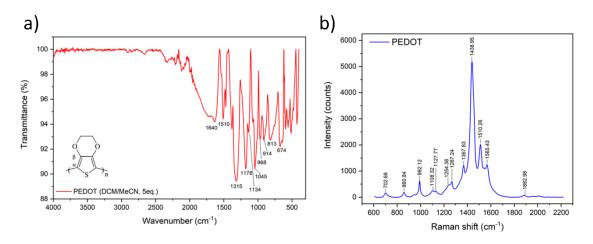



Figure S2. a) FTIR spectrum of PEDOT prepared using DCM/acetonitrile (1:2 volume ratio) and 5 molar equivalents of FeCl<sub>3</sub> against EDOT. b) Raman spectrum (532 nm excitation wavelength) of PEDOT synthesised in dichloromethane/acetonitrile (2:1 volume ratio) using 5 molar equivalents of FeCl<sub>3</sub> against EDOT.

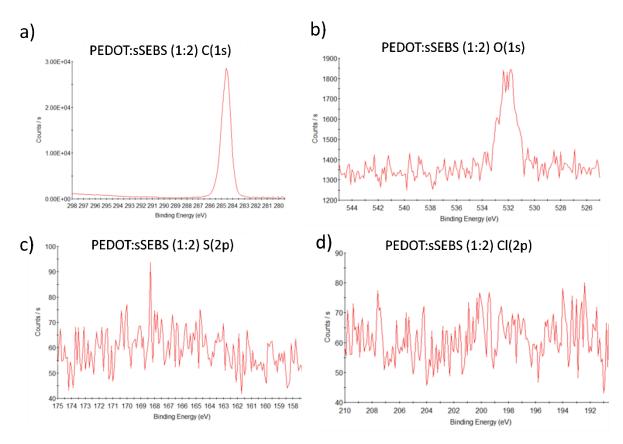



Figure S3. Core level XPS spectra of PEDOT:sSEBS (1:2 mass:mass). a) C(1s), b) O(1s), c) S(2p), and Cl(2p).

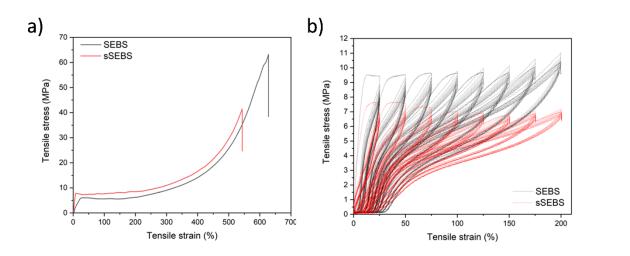



Figure S4. a) Stress-strain curve of SEBS and sSEBS stretched at 5% s<sup>-1</sup> strain rate. b) Cyclic loading of SEBS and sSEBS films with a pre-stretching cycle at 5% s<sup>-1</sup>, followed by 10 cycles of stretching to the target strain (25, 50, 75, 100, 125, 150, 175, 200%) over 5 seconds.

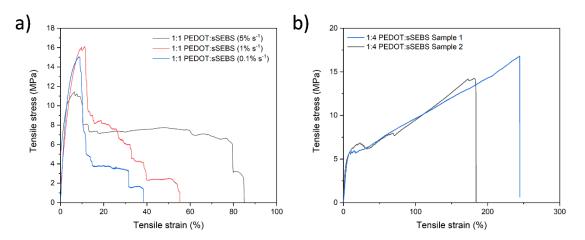



Figure S5. a) Stress-strain curves of PEDOT:sSEBS (1:1 mass ratio) films at various strain rates (5% s<sup>-1</sup>, 1% s<sup>-1</sup>, 0.1% s<sup>-1</sup>) and b) Stress-strain curves of PEDOT:sSEBS (1:4 mass ratio).