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Figure S1: 1H NMR spectrum of PBP in CDCl3.
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Figure S2: 13C NMR spectrum of PBP in CDCl3.
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Figure S3: 1H NMR spectrum of PBPZn in CDCl3.

Figure S4: 13C NMR spectrum of PBPZn in CDCl3.
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Figure S5: Absorption spectra of PBP and PBPZn associated with the emission spectra of the LEDs used in this study (LEDs@385, 405, 455 and 
530 nm).

TD-DFT calculations

Figure S6: Optimal ground-state structures of PBP (left) and PBPZn (right).
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Figure S7: Vibrationally-resolved spectrum of PBP simulated using the Vertical Hessian model and internal coordinates.

Figure S8: Vibrationally-resolved spectrum of PBP simulated using the Vertical Hessian model and Cartesian coordinates. The imaginary frequency 
for the excited states were turned real (one such frequency for S1, S2, and S4)
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Figure S9: Vibrationally-resolved spectrum of PBPZn simulated using the Vertical Hessian model and Cartesian coordinates. Note that for both 
S1 and S4, imaginary frequencies exist in the excited-state (vertical) Hessian, and they have been turned positive.

Figure S10: Vertical transition energies, associated oscillator strengths and electron density difference plots for PBP. In the latter representations, 
the blue and red lobes correspond to decrease and increase of density upon absorption (threshold 0.005 au).
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Figure S11: Vertical transition energies, associated oscillator strengths and electron density difference plots for PBPZn. See previous caption for 
more details.
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Figure S12: Transition absorption spectra of PBP and PBPZn under argon in DCM (λexc = 385 nm)
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Figure S13: Decay traces of the triplet excited state of A) PBP and B) PBPZn after a laser pulse (λex = 385 nm) with and without oxygen in DCM.
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Cyclic voltammetry 

Table S1: Redox values and photophysical properties of the photoinitiating compounds

Molecules

Eox

(eV)
Ered

(eV)
ES

(eV)
ET

(eV)

PBP 1.47 -1.18 2.03 2.95

PBPZn 1.09 -1.48 2.14 2.82

BP 0.16 -1.20 2.38 

CQ 0.12 -1.25 2.21 

MDEA 0.72 - -

Iod - -0.63 - -

cysteamine 0.92 - -

N-acetylcysteine 0.79 - -

Photostability of the porphyrin derivatives

Figure S14: Photolysis of A) PBP and B) PBPZn solution under LED@405 nm irradiation. [PBP] = 2 x 10-6 mol.L-1, [PBPZn] = 6 x 10-6 mol.L-1, [MDEA] 
= 2.8 x 10-2 mol.L-1. Solvent = DCM.
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Figure S15: The normalized experimental (1) and simulated (2) EPR spectra obtained upon continuous in situ LED@400 nm exposure in chloroform 
under irradiation for (A) PBPZn, (B) PBP with DMPO and (C) PBPZn with DMPO.
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Effect of the addition of MDEA

Figure S16 : Steady state photolysis of A) PBP/MDEA and B) PBPZn/MDEA systems under air after LED@405 nm exposure. [PBP] = 2 x 10-6 mol.L-1, 
[PBPZn] = 6 x 10-6 mol.L-1, [MDEA] = 2.8 x 10-2 mol.L-1. Solvent = DCM.

Figure S17 : Quenching of A) PBP and B) PBPZn fluorescence after a gradual addition of MDEA. [PBP] =1.2 x 10-7 mol.L-1, [PBPZn] = 5.2 x 10-6 
mol.L-1 (solvent: THF). Corresponding Stern-Volmer plot for the quenching of the singlet excited state of C) PBP (KSV

PBP/MDEA = 1.2 M-1) and D) PBPZn 
(KSV

PBPZn/MDEA = 0.7 M-1) with MDEA.
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Figure S18 : Decay traces of A) PBP and B) PBPZn triplet excited state after a laser pulse (λex = 385 nm) with a gradual addition of MDEA. 
C) Corresponding Stern-Volmer plot for the quenching of the triplet excited state of PBP with MDEA. [PBP] = 1.1 x 10-5 mol.L-1 , [PBPZn] = 1.7 x 
10-4 mol.L-1 , [MDEA] = 8.7 mol.L-1 in DCM. 

Figure S19:  The normalized experimental (1) and simulated (2) EPR spectra obtained upon continuous in situ LED@400 nm exposure of 
PBPZn/MDEA in chloroform and under argon.
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Figure S20 : The normalized experimental (1) and simulated (2) EPR spectra obtained upon continuous in situ LED@400 nm exposure of porphyrin 
derivatives in chloroform under argon in the presence DMPO spin trapping agent and MDEA for A) PBP and B) PBPZn.

Effect of the addition of Iod

Figure S21: Steady state photolysis of A) PBP/Iod and B) PBPZn/Iod systems under air after LED@405 nm exposure. [PBP] = 2 x 10-6 mol.L-1, 
[PBPZn] = 6 x 10-6 mol.L-1, [Iod] = 2.9 x 10-5 mol.L-1. Solvent = DCM
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Figure S22: Quenching of A) PBP and B) PBPZn fluorescence after a gradual addition of Iod. [PBP] =1.2 x 10-7 mol.L-1, [PBPZn] = 5.2 x 10-6 mol.L-1 

(solvent = THF). Corresponding Stern-Volmer plot for the quenching of the singlet excited state of C) PBP (KSV
PBP/Iod = 11 M-1) and D) PBPZn 

(KSV
PBPZn/Iod = 13 M-1) with the addition of Iod.
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Figure S23: Decay traces of A) PBP and B) PBPZn triplet state after a laser pulse (λex = 385 nm) with a gradual addition of Iod. Corresponding 
Stern-Volmer plot for the quenching of the triplet excited state of C) PBP and D) PBPZn with the addition of Iod. [PBP] = 1.1 x 10-5 mol.L-1 , [PBPZn] 
= 1.7 x 10-4 mol.L-1 in DCM.
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Figure S24: The normalized experimental (1) and simulated (2) EPR spectra obtained post 120-s LED@405 nm exposure of (A) PBP and (B) PBPZn. 
in chloroform under argon in the presence DMPO spin trapping agent and Iod. (* denote the artefactual triplet lines resulting from double addition 
of MePh radical on DMPO following a mechanism similar to that detailed in Figure S32 with thiyl radicals).
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Figure S25: Steady-state photolysis of A) PBP/Iod/rhodamine B and B) PBPZn/Iod/rhodamine B after irradiation by LED@405 nm under air 
conditions. Absorbance increase at 570 nm along time for C) PBP and D) PBPZn.  [PBP] = 2 x 10-6 mol.L-1, [PBPZn] = 6 x 10-6 mol.L-1, [Iod] = 2.9 x 
10-5 mol.L-1, [RhB] = 2.4 x 10-5 mol.L-1.
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Effect of the addition of cysteamine
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Figure S26: The normalized experimental (1) and simulated (2) EPR spectra obtained upon continuous in situ LED@400 nm exposure of (A) PBP 

and (B) PBPZn in chloroform and under argon in the presence DMPO spin trapping agent and cysteamine:   denotes the broad signal assigned 
to PBPZn•–.

Figure S27: Quenching of A) PBP and B) PBPZn fluorescence after a gradual addition of cysteamine. [PBP] =1.2 x 10-7 mol.L-1, [PBPZn] = 5.2 x 10-

6 mol.L-1 (solvent = THF). Corresponding Stern-Volmer plot for the quenching of the singlet excited state of C) PBP (KSV
PBP/cysteamine = 1.2 M-1) and 

D) PBPZn (KSV
PBPZn/cysteamine = 6.2 M-1).
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Figure S28: Decay traces of A) PBP and B) PBPZn triplet state after a laser pulse (λex = 385 nm) with a gradual increase of the cysteamine 
concentration. [PBP] = 1.1 x 10-5 mol.L-1 , [PBPZn] = 1.7 x 10-4 mol.L-1 in DCM.

Effect of the addition of N-acetylcysteine

Figure S29: Steady state photolysis of A) PBP/N-acetylcysteine and B) PBPZn/N-acetylcysteine systems under air after LED@405 nm exposure. 
[PBP] = 2 x 10-6 mol.L-1, [PBPZn] = 6 x 10-6 mol.L-1, [N-acetylcysteine] = 1.1 x 10-4 mol.L-1. Solvent = DCM.
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Figure S30: Decay traces of A) PBP and B) PBPZn triplet state after laser pulses (λex = 385 nm) with a gradual addition of N-acetylcysteine. 
Corresponding Stern-Volmer plot for the quenching of the triplet excited state of C) PBP with N-acetylcysteine. [PBP] = 1.1 x 10-5 mol.L-1 , [PBPZn] 
= 1.7 x 10-4 mol.L-1 in DCM.
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Figure S31: The normalized experimental (1) and simulated (2) EPR spectra obtained upon continuous in situ LED@405 nm exposure of (A) PBP 
and (B) PBPZn in chloroform and under argon in the presence of DMPO spin trapping agent and N-acetylcysteine.
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Figure S32: A) Dismutation reaction between two DMPO-SR adduct a leading to the formation of hydroxylamine b and nitrone c by redox reaction. 
B) Reaction between nitrone c and thiyl radical leading to nitroxide d.
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Figure S33: Forrester-Hepburn mechanism

Figure S34: Polymerization profiles (acrylate function conversion vs. irradiation time) for SOA in laminate (solid line) and under air (dash line) in 
the presence of 1) BP/MDEA (0.5%/2% w/w), 2) BP/Iod (0.5%/2% w/w), 3) BP/cysteamine (0.5%/1% w/w), 4) BP/N-acetylcysteine (0.5%/2% w/w) 
upon irradiation of (a) LED@385 nm in laminate, (b) LED@385 nm under air, (c) LED@405 nm in laminate, (d) LED@405 nm under air, (e) 
LED@505 nm under air and (f) LED@530 nm in laminate.
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Figure S35: Polymerization profiles (acrylate function conversion vs. irradiation time) for SOA in laminate (solid line) and under air (dash line) in 
the presence of 1) CQ/MDEA (0.5%/2% w/w), 2) CQ/Iod (0.5%/2% w/w), 3) BP/N-acetylcysteine (0.5%/2% w/w) upon irradiation with (a) 
LED@385 nm in laminate, (b) LED@385 nm under air, (c) LED@405 nm in laminate, (d) LED@405 nm under air, (e) LED@505 nm in laminate, (d) 
LED@505 nm under air, (f) LED@530 nm in laminate and (g) LED@530 nm under air.
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Figure S36: Polymerization profiles (acrylate conversion vs. irradiation time) for SOA in laminate (solid line) and under air (dash line) in the 
presence of 1) PBP/MDEA (0.5%/2% w/w), 2) PBP/Iod (0.5%/2% w/w), 3) PBP/cysteamine (0.5%/1% w/w) and 4) PBP/N-acetylcysteine (0.5%/2% 
w/w) upon irradiation with (a) LED@385 nm in laminate, (b) LED@385 nm under air, (c) LED@405 nm in laminate, (d) LED@405 nm under air, 
(e) LED@505 nm in laminate, (d) LED@505 nm under air, (f) LED@530 nm in laminate and (g) LED@530 nm under air.

Figure S37: Polymerization profiles (acrylate function conversion vs. irradiation time) for SOA in laminate (solid line) and under air (dash line) in 
the presence of 1) PBPZn/MDEA (0.5%/2% w/w), 2) PBPZn/Iod (0.5%/2% w/w), 3) PBPZn/cysteamine (0.5%/1% w/w) and 4) PBPZn/N-
acetylcysteine (0.5%/2% w/w) upon irradiation with (a) LED@385 nm in laminate, (b) LED@385 nm under air, (c) LED@405 nm in laminate, (d) 
LED@405 nm under air, (e) LED@505 nm in laminate, (d) LED@505 nm under air, (f) LED@530 nm in laminate and (g) LED@530 nm under air.

Figure S38: Optical image of the PBPZn-based pellet


