Preparation of fluorinated polyesters by reversible

addition-fragmentation chain transfer step-

growth polymerization

Gaohuai Mei,^a Shujing Lei,^a Qili Li,^a Jianquan Xu,^a and Meng Huo^{*a}

^a Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

* E-Mail: huomeng@zstu.edu.cn (M. H.)

Step-growth polymerization theoretical calculation formula

According to Flory's theory on step-growth polymerization,¹ for step-growth polymerization under balanced stoichiometry, the theoretical number-average molecular weight ($M_{n, th}$) can be calculated by Eq. S1, where M_0 is the average molecular weight of monomers, and p is the extent of reaction. For step-growth polymerization under non-stoichiometric conditions, the $M_{n, th}$ can be calculated by eqn (S2), where M_0 is the average molecular weight of monomers, p is the extent of reaction groups.

$$M_{n, th} = M_0 \frac{1}{1-p}$$
 (S1)

$$M_{n, th} = M_0 \frac{1+r}{1+r-2rp}$$
(S2)

Fig. S1 ¹H NMR spectrum of BDMAT_{8F} in CDCl₃.

Fig. S2 ¹³C NMR spectrum of BDMAT_{8F} in CDCl₃.

Fig. S3 ¹⁹F NMR spectrum of BDMAT_{8F} in CDCl₃.

Fig. S4 ¹H NMR of the RAFT step-growth polymerization of BDMAT_{8F} and M_{2A} in DMF. Z-group of BDMAT_{8F} (peak a, CH_3) was used as an internal reference. The *p* was calculated according to the change of the vinyl protons of the maleimide groups (peak g).

Fig. S5 ^1H NMR spectrum of BDMAT_2A in CDCl3.

Fig. S6 ¹H NMR of the RAFT step-growth polymerization of BDMAT_{2A} and M_{2A} in DMF. Z-group of BDMAT_{2A} (peak a, CH_3) was used as an internal reference. The *p* was calculated according to the change of the vinyl protons of the maleimide groups (peak i).

Fig. S7 Preparation of P(BDMAT_{2A}-*alt*-M_{2A}) *via* RAFT step-growth polymerization in DMF at 70 °C. $[M_{2A}]_0/[BDMAT_{2A}]_0/[AIBN]_0 = 0.500/0.500/0.0500.$ (a) The evolution of the extent of reaction *p* against time. (b) SEC elution curves of obtained F-free polyesters. The evolution of (c) M_n , (d) M_w and (e) M_z of P(BDMAT_{2A}-*alt*-M_{2A}) against the extent of reaction (*p*), plotted together with the theoretical curve predicted by Flory's equation. (f) The water contact angle of P(BDMAT_{2A}-*alt*-M_{2A}).

Fig. S8 The evolution of (a) M_n , (b) M_w and (c) M_z of P(BDMAT_{8F}-*alt*-M_{2A}) against the extent of reaction (*p*), plotted together with theoretical curve predicted by Flory's equation.

Fig. S9 SEC curve of the P(BDMAT_{8F}-*alt*-M_{2A}) copolymer that was synthesized using TCE as the reaction solvent. [BDMAT_{8F}]₀/[M_{2A}]₀/[AIBN]₀ = 0.500/0.500/0.0500. p = 0.983 after 10 h of polymerization. $M_{n, SEC}$ = 10.8 kDa, D = 1.12.

Fig. S10 SEC curves of synthesized fluorinated polyesters and F-free polyester.

Fig. S11 ¹H NMR spectrum of BDMAT_{4F} in CDCl₃.

Fig. S12 ¹³C NMR spectrum of BDMAT_{4F} in CDCl₃.

Fig. S13¹⁹F NMR spectrum of BDMAT_{4F} in CDCl₃.

Fig. S14 ¹H NMR spectrum of TTC_{8F} in CDCl₃.

Fig. S15 ¹³C NMR spectrum of TTC_{8F} in CDCl₃.

Fig. S16 19 F NMR spectrum of TTC_{8F} in CDCl₃.

Time / h	Solvent	pª	$M_{\rm n,th}$ / kDa ^b	$M_{n, SEC} / kDa^{c}$	D^{d}	<i>f</i> _c / % ^f
0	DMF	0	0.545	5.26	1.01	-
0.25	DMF	0.252	0.729	9.03	1.48	5.85
1.00	DMF	0.652	1.57	12.6	1.28	11.3
1.50	DMF	0.795	2.66	14.2	1.40	12.4
2.00	DMF	0.864	4.01	14.7	1.41	11.0
4.00	DMF	0.967	16.5	16.2	1.37	11.3
6.00	DMF	0.986	38.9	17.5	1.40	10.4
8.00	DMF	0.993	77.9	18.4	1.45	10.9

Table S1. Kinetic study of the RAFT step-growth polymerization of $BDMAT_{8F}$ and M_{2A} under balanced stoichiometry.

^a Calculated according to ¹H NMR.

^b Calculated according to eqn (S1).

^c Determined by SEC.

^d $D = M_w/M_n$.

^e Fraction of cyclic polyesters calculated according to the integral area of the SEC curves.

Time / h	Solvent	p^{a}	$M_{\rm n,th}$ / kDa ^b	$M_{n, SEC} / kDa^{c}$	D^{d}	<i>f</i> _c / % ^f
0	DMF	0	0.473	4.85	1.01	-
0.25	DMF	0.337	0.713	8.13	1.26	14.5
1.00	DMF	0.936	7.39	43.6	1.33	7.14
1.50	DMF	0.971	16.3	61.5	1.54	5.20
2.00	DMF	0.986	33.8	72.7	1.71	3.92
4.00	DMF	0.995	94.6	89.5	2.06	2.29

Table S2. Kinetic study of the RAFT step-growth polymerization of $BDMAT_{2A}$ and M_{2A} in DMF under balanced stoichiometry.

^a Calculated according to ¹H NMR.

^b Calculated according to eqn (S1).

^c Determined by SEC.

^d $D = M_w/M_n$.

^e Fraction of cyclic polyesters calculated according to the integral area of the SEC curves.

Entry	[BDMAT _{8F}] ₀ /[M _{2A}] ₀	Time / h	r	${oldsymbol{ ho}}^{a}$	M _{n, th} / kDa ^b	M _{n, SEC} / kDa ^c	D^{d}
1	0.250 M/0.250 M	4	1.00	0.547	1.20	9.41	1.05
2	0.500 M/0.500 M	4	1.00	0.967	16.5	16.2	1.37
3	1.00 M/1.00 M	4	1.00	0.973	20.2	12.4	1.29
4	0.525 M/0.475 M	4	0.905	0.971	6.90	13.1	1.37
5	0.550 M/0.450 M	4	0.818	0.989	4.95	12.7	1.27

Table S3. The syntheses and molecular characterization of P(BDMAT_{8F}-*alt*-M_{2A}) under imbalanced stoichiometry and different concentrations.

^a Calculated according to ¹H NMR.

^b Calculated according to eqn (S1) or eqn (S2).

^c Determined by SEC.

^d $D = M_w/M_n$.

Entry	M _{n, SEC} a (kDa)	D^{b}	Mass loss of first stage (%)	Theoretical mass ratio of trithiocarbonate (%)	T _{1,} ^{max} (°C)	T _{2,} ^{max} (°C)	Т _g (°С)	7 _m (°C)
P(BDMAT _{8F} - <i>alt</i> -M _{2A})	16.3	1.60	30.8	30.4	256	445	72.9	-
P(BDMAT _{8F} - <i>alt</i> -M _{2B})	21.0	1.74	23.8	25.4	258	442	97.3	-
P(BDMAT _{4F} - <i>alt</i> -M _{2A})	13.0	1.66	36.0	33.4	267	460	-	84.7
P(TTC _{8F} -alt- M _{2A})	15.0	1.37	41.0	42.3	263	458	45.6	-
P(BDMAT _{2A} - <i>alt</i> -M _{2A})	141	1.49	34.2	35.0	260	424	80.2	-

Table S4 Molecular characteristics and thermal properties of the fluorinated polyesters after purification.

^a Determined by SEC.

^b $D = M_w/M_n$.

References

1. P. J. Flory, J. Am. Chem. Soc., 1936, 58, 1877-1885.