Supporting Information

Catalyst-Free Multicomponent Polymerization of Aldehyde, Amine and Trimethylsilyl Cyanide toward Poly(α-aminonitrile)s

Tianyu Cheng,^{*,1} Huadong Wang,¹ Jianqing Ding,¹ Junguo Fang,¹ Jia Wang,^{*2}

Mingzhao Li,³ Jie Chen,³ Anjun Qin^{*3}, Ben Zhong Tang⁴

¹School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China. E-mail: <u>chengty@ahpu.edu.cn</u>

²Songshan Lake Materials Laboratory, Dongguan 523808, China. E-mail: wangjia@sslab.org.cn

³State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China. Email: <u>msqinaj@scut.edu.cn</u>

⁴School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China

Contents

Figure S1. The GPC traces of P1a/2a/3-P1c/2d/3.	S4
Figure S2. ¹ H NMR spectra of (A) model compound and (B) model compound and	ompound
treated with D ₂ O	S4
Figure S3. FT-IR spectra of (A) 1a, (B) 2b and (C) P1a/2b/3.	S5
Figure S4. FT-IR spectra of (A) 1a, (B) 2c and (C) P1a/2c/3.	S 6
Figure S5. FT-IR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3.	S7
Figure S6. FT-IR spectra of (A) 1b, (B) 2a and (C) P1b/2a/3.	S 8
Figure S7. FT-IR spectra of (A) 1b, (B) 2b and (C) P1b/2b/3.	S9
Figure S8. FT-IR spectra of (A) 1b, (B) 2c and (C) P1b/2c/3.	S10
Figure S9. FT-IR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3.	S11
Figure S10. FT-IR spectra of (A) 1c, (B) 2a and (C) P1c/2a/3.	S12
Figure S11. FT-IR spectra of (A) 1c, (B) 2b and (C) P1c/2b/3.	S13
Figure S12. FT-IR spectra of (A) 1c, (B) 2c and (C) P1c/2c/3.	S14
Figure S13. FT-IR spectra of (A) 1c, (B) 2d and (C) P1c/2d/3.	S15
Figure S14. ¹ H NMR spectra of (A) 1a, (B) 2b and (C) P1a/2b/3 in DMSO-a	6. The
solvent peaks are marked with asterisks.	S16
Figure S15. ¹ H NMR spectra of (A) 1a, (B) 2c and (C) P1a/2c/3 in DMSO-da	5. The
solvent peaks are marked with asterisks.	S17
Figure S16. ¹ H NMR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3 in DMSO-a	6. The
solvent peaks are marked with asterisks.	S18
Figure S17. ¹ H NMR spectra of (A) 1b, (B) 2a and (C) P1b/2a/3 in DMSO-a	6. The
solvent peaks are marked with asterisks.	S19
Figure S18. ¹ H NMR spectra of (A) 1b, (B) 2b and (C) P1b/2b/3 in DMSO-a	<i>l</i> ₆ . The
solvent peaks are marked with asterisks.	S20
Figure S19. ¹ H NMR spectra of (A) 1b, (B) 2c and (C) P1b/2c/3 in DMSO-d	6. The
solvent peaks are marked with asterisks.	S21
Figure S20. ¹ H NMR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3 in DMSO-a	<i>l</i> ₆ . The
solvent peaks are marked with asterisks.	S22
Figure S21. ¹ H NMR spectra of (A) 1c, (B) 2a and (C) P1c/2a/3 in DMSO-da	5. The
solvent peaks are marked with asterisks.	S23
Figure S22. ¹ H NMR spectra of (A) 1c, (B) 2b and (C) P1c/2b/3 in DMSO-d	6. The
solvent peaks are marked with asterisks.	S24
Figure S23. ¹ H NMR spectra of (A) 1c, (B) 2c and (C) P1c/2c/3 in DMSO-de	. The
solvent peaks are marked with asterisks.	S25
Figure S24. ¹ H NMR spectra of (A) 1c, (B) 2d and (C) P1c/2d/3 in DMSO-d	6. The

solvent peaks are marked with asterisks.	S26
Figure S25. ¹³ C NMR spectra of (A) 1a, (B) 2b and (C) P1a/2b/3 in DMSO	$-d_6$. The
solvent peaks are marked with asterisks.	S27
Figure S26. ¹³ C NMR spectra of (A) 1a, (B) 2c and (C) P1a/2c/3 in DMSO-	d_6 . The
solvent peaks are marked with asterisks.	S28
Figure S27. ¹³ C NMR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3 in DMSO	$-d_6$. The
solvent peaks are marked with asterisks.	S29
Figure S28. ¹³ C NMR spectra of (A) 1b, (B) 2a and (C) P1b/2a/3 in DMSO	$-d_6$. The
solvent peaks are marked with asterisks.	S30
Figure S29. ¹³ C NMR spectra of (A) 1b, (B) 2b and (C) P1b/2b/3 in DMSC	d_{6} . The
solvent peaks are marked with asterisks.	S31
Figure S30. ¹³ C NMR spectra of (A) 1b, (B) 2c and (C) P1b/2c/3 in DMSO	- <i>d</i> ₆ . The
solvent peaks are marked with asterisks.	S32
Figure S31. ¹³ C NMR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3 in DMSC	<i>-d</i> ₆ . The
solvent peaks are marked with asterisks.	S33
Figure S32. ¹³ C NMR spectra of (A) 1c, (B) 2a and (C) P1c/2a/3 in DMSO-	d_6 . The
solvent peaks are marked with asterisks.	S34
Figure S33. ¹³ C NMR spectra of (A) 1c, (B) 2b and (C) P1c/2b/3 in DMSO	$-d_6$. The
solvent peaks are marked with asterisks.	S35
Figure S34. ¹³ C NMR spectra of (A) 1c, (B) 2c and (C) P1c/2c/3 in DMSO-	d_6 . The
solvent peaks are marked with asterisks.	S36
Figure S35. ¹³ C NMR spectra of (A) 1c, (B) 2d and (C) P1c/2d/3 in DMSO	$-d_6$. The
solvent peaks are marked with asterisks.	S37
Figure S36. DSC curve of polymers.	S37
Table S1. Refractive Indices, Abbé Numbers (v _D), Revised Abbé Numbers	s (v') , and
Optical Dispersions (D and D') of Thin Films of P1a/2/3.	S38
Figure S37. ¹³ C NMR spectra of (A) P1a/2a/3 and (B) postfunctionalized P	1a/2a/3 in
DMSO- d_6 . The solvent and water peaks are marked with asterisks.	S38
Scheme S1. The postmodification route of P1a/2a/3.	S38

Figure S1. The GPC traces of P1a/2a/3-P1c/2d/3, estimated by gel-permeation chromatography (GPC) on the basis of a PMMA calibration and DMF containing 0.05 M LiBr as the eluent.

Figure S2. ¹H NMR spectra of (A) model compound and (B) model compound treated with D₂O

Figure S3. FT-IR spectra of (A) 1a, (B) 2b and (C) P1a/2b/3.

Figure S4. FT-IR spectra of (A) 1a, (B) 2c and (C) P1a/2c/3.

Figure S5. FT-IR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3.

Figure S6. FT-IR spectra of (A) 1b, (B) 2a and (C) P1b/2a/3.

Figure S7. FT-IR spectra of (A) 1b, (B) 2b and (C) P1b/2b/3.

Figure S8. FT-IR spectra of (A) 1b, (B) 2c and (C) P1b/2c/3.

Figure S9. FT-IR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3.

Figure S11. FT-IR spectra of (A) **1c**, (B) **2b** and (C) P1c/2b/3.

Figure S12. FT-IR spectra of (A) 1c, (B) 2c and (C) P1c/2c/3.

Figure S13. FT-IR spectra of (A) 1c, (B) 2d and (C) P1c/2d/3.

Figure S14. ¹H NMR spectra of (A) **1a**, (B) **2b**, and (C) P**1a/2b/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S15. ¹H NMR spectra of (A) **1a**, (B) **2c**, and (C) P**1a/2c/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S16. ¹H NMR spectra of (A) **1a**, (B) **2d**, and (C) P**1a/2d/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S17. ¹H NMR spectra of (A) **1b**, (B) **2a**, and (C) P**1b/2a/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S18. ¹H NMR spectra of (A) **1b**, (B) **2b**, and (C) P**1b/2b/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S19. ¹H NMR spectra of (A) 1b, (B) 2c, and (C) P1b/2c/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S20. ¹H NMR spectra of (A) **1b**, (B) **2d**, and (C) **P1b/2d/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S21. ¹H NMR spectra of (A) **1c**, (B) **2a**, and (C) P**1c/2a/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S22. ¹H NMR spectra of (A) **1c**, (B) **2b**, and (C) P**1c/2b/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S23. ¹H NMR spectra of (A) 1c, (B) 2c, and (C) P1c/2c/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S24. ¹H NMR spectra of (A) **1c**, (B) **2d**, and (C) P**1c/2d/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S25. ¹³C NMR spectra of (A) 1a, (B) 2b, and (C) P1a/2b/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S26. ¹³C NMR spectra of (A) **1a**, (B) **2c**, and (C) P**1a/2c/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S27. ¹³C NMR spectra of (A) 1a, (B) 2d, and (C) P1a/2d/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S28. ¹³C NMR spectra of (A) 1b, (B) 2a, and (C) P1b/2a/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S29. ¹³C NMR spectra of (A) **1b**, (B) **2b**, and (C) P**1b/2b/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S30. ¹³C NMR spectra of (A) **1b**, (B) **2c**, and (C) P**1b/2c/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S31. ¹³C NMR spectra of (A) **1b**, (B) **2d**, and (C) P**1b/2d/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S32. ¹³C NMR spectra of (A) **1c**, (B) **2a**, and (C) **P1c/2a/3** in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S33. ¹³C NMR spectra of (A) 1c, (B) 2b, and (C) P1c/2b/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S34. ¹³C NMR spectra of (A) 1c, (B) 2c, and (C) P1c/2c/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S35. ¹³C NMR spectra of (A) 1c, (B) 2d, and (C) P1c/2d/3 in DMSO-*d*₆. The solvent peaks are marked with asterisks.

Figure S36. DSC curve of polymers.

Polymer	$n_{589}{}^{b}$	<i>n</i> _{632.8} ^c	$v_{\mathrm{D}}{}^{d}$	D^d	v' ^e	D'^e
P1a/2a/3	1.7447	1.7322	11.2	0.0890	39.5	0.0253
P1a/2b/3	1.7006	1.6941	20.4	0.0491	75.7	0.0132
P1a/2c/3	1.7166	1.7049	11.5	0.0867	40.8	0.0245
P1a/2d/3	1.6793	1.6701	14.0	0.0714	50.4	0.0199

Table S1. Refractive Indices, Abbé Numbers (v_D) , Revised Abbé Numbers (v'), and Optical Dispersions (D and D') of Thin Films of P1a/2/3.^{*a*}

^{*a*}Data taken from Figure 6B. ^{*b*}n = RI value at 589 nm; ^{*c*}n = RI value at 632.8 nm; ^{*d*} v_D = $(n_D - 1)/(n_F - n_C)$, where n_D , n_F and n_C are the RI values at wavelengths of Fraunhofer D, F and C spectral lines of 589.2, 486.1 and 656.3 nm, respectively; $D = 1/v_D \cdot e_V' =$ Abbé numbers = $(n_{1319} - 1)/(n_{1064} - n_{1550})$, where n_{1319} , n_{1064} and n_{1550} are the RI values at wavelengths of 1319, 1064 and 1553 nm, respectively; D' = 1/v'.

Chemical shift (ppm)

Figure S37. ¹³C NMR spectra of (A) P1a/2a/3 and (B) postfunctionalized P1a/2a/3 in DMSO-*d*₆. The solvent and water peaks are marked with asterisks.

