Supporting Information

Catalyst-Free Multicomponent Polymerization of Aldehyde, Amine and Trimethylsilyl Cyanide toward Poly(α-aminonitrile $) \mathrm{s}$

Tianyu Cheng,, ${ }^{*}$ Huadong Wang, ${ }^{1}$ Jianqing Ding, ${ }^{1}$ Junguo Fang, ${ }^{1}$ Jia Wang, ${ }^{* 2}$
Mingzhao Li, ${ }^{3}$ Jie Chen, ${ }^{3}$ Anjun Qin ${ }^{* 3}$, Ben Zhong Tang ${ }^{4}$

${ }^{1}$ School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China. E-mail: chengty@ahpu.edu.cn
${ }^{2}$ Songshan Lake Materials Laboratory, Dongguan 523808, China. E-mail: wangjia@sslab.org.cn
${ }^{3}$ State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China. Email: msqinaj@scut.edu.cn
${ }^{4}$ School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China

Contents

Figure S1. The GPC traces of $\mathrm{P} \mathbf{1 a} / \mathbf{2 a} / \mathbf{3}-\mathrm{P} \mathbf{1 c} / \mathbf{2 d} / \mathbf{3}$.
Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of (A) model compound and (B) model compound treated with $\mathrm{D}_{2} \mathrm{O}$
Figure S3. FT-IR spectra of (A) 1a, (B) $\mathbf{2 b}$ and (C) P1a/2b/3. S5
Figure S4. FT-IR spectra of (A) 1a, (B) $\mathbf{2 c}$ and (C) $\mathrm{P} 1 \mathrm{a} / \mathbf{2} \mathbf{c} / \mathbf{3}$. S6
Figure S5. FT-IR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3. S7
Figure S6. FT-IR spectra of (A) 1b, (B) 2a and (C) P1b/2a/3. S8
Figure S7. FT-IR spectra of (A) $\mathbf{1 b}$, (B) $\mathbf{2 b}$ and (C) P1b/2b/3. S9
Figure S8. FT-IR spectra of (A) 1b, (B) 2c and (C) P1b/2c/3. S10
Figure S9. FT-IR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3. S11
Figure S10. FT-IR spectra of (A) 1c, (B) 2a and (C) P1c/2a/3. S12
Figure S11. FT-IR spectra of (A) 1c, (B) 2b and (C) P1c/2b/3. S13
Figure S12. FT-IR spectra of (A) 1c, (B) 2c and (C) P1c/2c/3. S14
Figure S13. FT-IR spectra of (A) 1c, (B) 2d and (C) P1c/2d/3. S15
Figure S14. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1a, (B) $\mathbf{2 b}$ and (C) P1a/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1a, (B) $\mathbf{2 c}$ and (C) $\mathrm{P} \mathbf{1 a} / \mathbf{2} \mathbf{c} / \mathbf{3}$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1b, (B) 2a and (C) P1b/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S18. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1b, (B) $\mathbf{2 b}$ and (C) P1b/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S19. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1b, (B) $\mathbf{2 c}$ and (C) $\mathrm{P} \mathbf{1 b} / \mathbf{2 c} / \mathbf{3}$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.S21

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S21. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 c}$, (B) $\mathbf{2 a}$ and (C) P1c/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S22. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 c}$, (B) $\mathbf{2 b}$ and (C) $\mathbf{P 1} \mathbf{c} / \mathbf{2 b} / \mathbf{3}$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S23. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 c}$, (B) $\mathbf{2 c}$ and (C) P1c/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S24. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1c, (B) $\mathbf{2 d}$ and (C) P1c/2d/3 in DMSO- d_{6}. The

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1a, (B) 2b and (C) P1a/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S26. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1a, (B) $\mathbf{2 c}$ and (C) P1a/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S27. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S28. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathbf{1 b}$, (B) $\mathbf{2 a}$ and (C) P1b/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S29. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1b, (B) 2b and (C) P1b/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S30. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1b, (B) $\mathbf{2 c}$ and (C) P1b/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S31. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S32. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1c, (B) $\mathbf{2 a}$ and (C) P1c/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S33. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1c, (B) $\mathbf{2 b}$ and (C) P1c/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
Figure S34. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1c, (B) $\mathbf{2 c}$ and (C) $\mathrm{P} \mathbf{c} \mathbf{c} / \mathbf{2} \mathbf{c} / \mathbf{3}$ in DMSO- d_{6}. The solvent peaks are marked with asterisks. S36
Figure S35. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1c, (B) 2d and (C) P1c/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks. S37
Figure S36. DSC curve of polymers. S37
Table S1. Refractive Indices, Abbé Numbers (v_{D}), Revised Abbé Numbers (v^{\prime}), and Optical Dispersions (D and D^{\prime}) of Thin Films of P1a/2/3. S38
Figure S37. ${ }^{13} \mathrm{C}$ NMR spectra of (A) P1a/2a/3 and (B) postfunctionalized $\mathrm{P} \mathbf{1 a} / \mathbf{2 a} / \mathbf{3}$ in DMSO- d_{6}. The solvent and water peaks are marked with asterisks. S38
Scheme S1. The postmodification route of P1a/2a/3. S38

Figure S1. The GPC traces of $\mathrm{P} \mathbf{1 a} / \mathbf{2 a} / \mathbf{3}-\mathrm{P} \mathbf{1} \mathbf{c} / \mathbf{2 d} / \mathbf{3}$, estimated by gel-permeation chromatography (GPC) on the basis of a PMMA calibration and DMF containing 0.05 M LiBr as the eluent.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of (A) model compound and (B) model compound treated with $\mathrm{D}_{2} \mathrm{O}$

Figure S3. FT-IR spectra of (A) 1a, (B) 2b and (C) P1a/2b/3.

Figure S4. FT-IR spectra of (A) 1a, (B) 2 c and (C) P1a/2c/3.

Figure S5. FT-IR spectra of (A) 1a, (B) 2d and (C) P1a/2d/3.

Figure S6. FT-IR spectra of (A) 1b, (B) $\mathbf{2 a}$ and (C) P1b/2a/3.

Figure S7. FT-IR spectra of (A) 1b, (B) $\mathbf{2 b}$ and (C) $\mathrm{P} \mathbf{1 b} / \mathbf{2 b} / \mathbf{3}$.

Figure S8. FT-IR spectra of (A) 1b, (B) 2c and (C) P1b/2c/3.

Figure S9. FT-IR spectra of (A) 1b, (B) 2d and (C) P1b/2d/3.

Figure S10. FT-IR spectra of (A) 1c, (B) $\mathbf{2 a}$ and (C) P1c/2a/3.

Figure S11. FT-IR spectra of (A) 1c, (B) $\mathbf{2 b}$ and (C) P1c/2b/3.

Figure S12. FT-IR spectra of (A) $\mathbf{1 c}$, (B) $\mathbf{2 c}$ and (C) P1c/2c/3.

Figure S13. FT-IR spectra of (A) 1c, (B) 2d and (C) P1c/2d/3.

A

B

Chemical shift (ppm)

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 a}$, (B) $\mathbf{2 b}$, and (C) P1a/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

B

Chemical shift (ppm)

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1a, (B) 2c, and (C) P1a/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

B

Chemical shift (ppm)

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1a, (B) 2d, and (C) P1a/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A

g

Chemical shift (ppm)

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 b}$, (B) $\mathbf{2 a}$, and (C) P1b/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 b}$, (B) $\mathbf{2 b}$, and (C) $\mathbf{P} \mathbf{1 b} / \mathbf{2 b} / \mathbf{3}$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.

c

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 b}$, (B) $\mathbf{2 c}$, and (C) P1b/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A

10

Chemical shift (ppm)

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1b, (B) 2d, and (C) P1b/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1c, (B) 2a, and (C) P1c/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Chemical shift (ppm)

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 c}$, (B) $\mathbf{2 b}$, and (C) P1c/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A

g

Chemical shift (ppm)

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathbf{1 c}$, (B) 2c, and (C) P1c/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectra of (A) 1c, (B) 2d, and (C) P1c/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1a, (B) 2b, and (C) P1a/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

$200180160140120100806040 \quad 20 \quad 0$
Chemical shift (ppm)

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1a, (B) 2c, and (C) P1a/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1a, (B) 2d, and (C) P1a/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A

g

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathbf{1 b}$, (B) 2a, and (C) P1b/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A]

C

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathbf{1 b}$, (B) $\mathbf{2 b}$, and (C) P1b/2b/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathbf{1 b}$, (B) $\mathbf{2 c}$, and (C) P1b/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1b, (B) 2d, and (C) P1b/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

A

E

C
*

Chemical shift (ppm)

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathbf{1 c}$, (B) 2a, and (C) P1c/2a/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A

c

Chemical shift (ppm)

Figure S33. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathbf{1 c}$, (B) $\mathbf{2 b}$, and (C) $\mathbf{P 1} \mathbf{c} / \mathbf{2 b} / \mathbf{3}$ in DMSO- d_{6}. The solvent peaks are marked with asterisks.
A]

B]

Chemical shift (ppm)

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathbf{1 c}$, (B) $\mathbf{2 c}$, and (C) P1c/2c/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

B

C

 200180160140120100806040200 Chemical shift (ppm)

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectra of (A) 1c, (B) 2d, and (C) P1c/2d/3 in DMSO- d_{6}. The solvent peaks are marked with asterisks.

Figure S36. DSC curve of polymers.

Table S1. Refractive Indices, Abbé Numbers (v_{D}), Revised Abbé Numbers (v^{\prime}), and Optical Dispersions (D and D^{\prime}) of Thin Films of P1a/2/3. ${ }^{a}$

Polymer	$n_{589^{b}}$	$n_{632.8^{c}}$	$\nu_{\mathrm{D}}{ }^{d}$	D^{d}	$v^{\prime e}$	$D^{\prime e}$
$\mathrm{P} 1 \mathbf{a} / \mathbf{2 a} / \mathbf{3}$	1.7447	1.7322	11.2	0.0890	39.5	0.0253
$\mathrm{P} 1 \mathbf{a} / \mathbf{2 b} / \mathbf{3}$	1.7006	1.6941	20.4	0.0491	75.7	0.0132
$\mathrm{P} 1 \mathbf{a} / \mathbf{2 c} / \mathbf{3}$	1.7166	1.7049	11.5	0.0867	40.8	0.0245
$\mathrm{P} \mathbf{1 a} / \mathbf{2 d} / \mathbf{3}$	1.6793	1.6701	14.0	0.0714	50.4	0.0199

${ }^{a}$ Data taken from Figure 6B. ${ }^{b} n=\mathrm{RI}$ value at $589 \mathrm{~nm} ;{ }^{c} n=\mathrm{RI}$ value at $632.8 \mathrm{~nm} ;{ }^{d} v_{\mathrm{D}}=$ $\left(n_{\mathrm{D}}-1\right) /\left(n_{\mathrm{F}}-n_{\mathrm{C}}\right)$, where $n_{\mathrm{D}}, n_{\mathrm{F}}$ and n_{C} are the RI values at wavelengths of Fraunhofer D, F and C spectral lines of $589.2,486.1$ and 656.3 nm , respectively; $D=1 / v_{\mathrm{D}} .{ }^{\mathrm{e}} \boldsymbol{v}^{\prime}=$ Abbé numbers $=\left(n_{1319}-1\right) /\left(n_{1064}-n_{1550}\right)$, where n_{1319}, n_{1064} and n_{1550} are the RI values at wavelengths of 1319,1064 and 1553 nm , respectively; $D^{\prime}=1 / v^{\prime}$.

Figure S37. ${ }^{13} \mathrm{C}$ NMR spectra of (A) $\mathrm{P} \mathbf{1 a} / \mathbf{2 a} / \mathbf{3}$ and (B) postfunctionalized $\mathrm{P} \mathbf{1 a} / \mathbf{2 a} / \mathbf{3}$ in DMSO- d_{6}. The solvent and water peaks are marked with asterisks.

Scheme S1. The postmodification route of $\mathrm{P} 1 \mathrm{a} / \mathbf{2 a} / \mathbf{3}$.

