Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Visible Light-Promoted Nickel-NHC Photocatalysts for Free Radical

Photopolymerization and 3D Printing Application

Naralyne M. Pesqueira^{a,b}, Fabrice Morlet-Savary^{b,c}, Michael Schmitt^{b,c}, Valdemiro P.

Carvalho-Jr^a, Beatriz E. Goi,^{a,*} Jacques Lalevée^{b,c,*}

^aFaculdade de Ciências e Tecnologia, UNESP – Univ. Estadual Paulista, CEP 19060-900, Presidente Prudente, SP, Brazil
^bUniversité de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
^cUniversité de Strasbourg, F-67000 Strasbourg, France

*Correspondence to :

Jacques Lalevée (e-mail : jacques.lalevee@uha.fr)

Beatriz E. Goi (e-mail: beatriz.goi@unesp.br)

Scheme S1. Three-component system for the photopolymerization of an acrylate monomer with Ni^{II} complexes bearing Schiff base ligands as photocatalysts.¹

Analyses

The ¹H NMR spectra were acquired in CD₃OD at 298 K on an Agilent MR 400 Ultrashield spectrometer operating at 400 MHz. Chemical shifts were reported in ppm relative to the high frequency of TMS. Infrared spectra were obtained on a Perkin Elmer Frontier instrument equipped with a diamond ATR module, collected between 4000 and 250 cm⁻¹ at a scan rate of one spectrum every 64 s with a 2 cm⁻¹ resolution at 298 K. The mass analyses have been made on a Q-TOF mass spectrometer Impact II Bruker equipped with a ESI source used in positive mode. Source parameters are settled as follow: capillary voltage at 4.5kV, nebulizer pressure at 5.8 psi (ie 0.4 bar), dry gas flow at 4.0L/min. and dry temperature at 180°C. The TOF was calibrated just before analysis using a formates sodium adducts mixture in ultra-pure water infused directly into the source in the same conditions. The sample was diluted in CH₃CN in order to reach a concentration of about 1-10ng/µL and was directly infused into the source. MALDI- TOF analyses were performed on a Bruker Daltonics Autoflex III Smartbeam. Electronic spectra were recorded on a Shimadzu model UV-1800 spectrophotometer using 1 cm path length quartz cells. Solutions of the complexes and ligands in CH₂Cl₂ at a concentration of 2×10^{-4} mol L⁻¹ were used for these measurements. Elemental analyses were conducted using a Perkin-Elmer CHN 2400 instrument.

1. ¹H NMR characterization of NHC ligands

HC1: Yield: 75%. ¹H NMR (400 MHz, CDCl₃, ppm, 25 °C): $\delta = 11.29$ (t, ⁴*J*_{H,H} = 1.57 Hz, 1H, NCHN), 9.15 (d, ³*J*_{H,H} = 8.31 Hz, 1H, Ar-py), 8.80 (t, ³*J*_{H,H} = 1.80 Hz, 1H, ImH), 8.53-8.48 (m, 1H, Ar-py), 8.07 (dt, ⁴*J*_{H,H} = 1.81 Hz, ³*J*_{H,H} = 8.04 Hz, 1H, Ar-py), 7.49-7.45 (m, 1H, Ar-py), 7.38 (t, ³*J*_{H,H} = 1.60 Hz, 1H, ImH), 7.02 (s, 2H, Ar-mes), 2.32 (s, 3H, CH₃-Ar-mes), 2.16 (s, 6H, CH₃-Ar-mes).

Figure S1. ¹H NMR spectrum for HC1 in CDCl₃.

HC2: Yield: 75%. ¹H NMR (400 MHz, DMSO-d6, ppm, 25 °C): δ = 10.04 (t, ⁴*J*_{H,H} = 1.50 Hz, 1H, NCHN), 8.65 (t, ³*J*_{H,H} = 1.74 Hz, 1H, ImH), 8.20 (t, ³*J*_{H,H} = 1.70 Hz, 1H, ImH), 7.95-7.89 (m,c 2H, *o*-ph), 7.75-7.59 (m, 3H, *m*- and *p*-ph), 2.35 (s, 3H, CH₃-Ar-mes), 2.12 (s, 6H, CH₃-Ar-mes).

Figure S2. ¹H NMR spectrum for HC2 in DMSO-d6.

2. ¹H NMR characterization of Ni^{II} complexes

Figure S3. ¹H NMR spectrum for **NiC1** in CD₃OD.

Figure S4. ¹H NMR spectrum for **NiC2** in CD₃OD.

3. FTIR characterization of NHC ligands and Ni^{II} complexes

Figure S5. FTIR spectra for NiC1 (pink line) and HC1 (green line).

Figure S6. FTIR spectra for NiC2 (blue line) and HC2 (red line).

4. Experimental ESI–MS characterization of NiC1

Figure S7. Experimental ESI–MS of NiC1 in positive mode (calcd: $m/z^{2+} = 292.1100$; $[M-2PF_6^-]^{2+}$).

5. MALDI-TOF mass characterization of Ni^{II} complexes

Figure S8. MALDI-TOF mass spectrum of complex NiC1.

Figure S9. MALDI-TOF mass spectrum of complex NiC2.

6. UV-Vis characterization of Schiff-base ligands and Ni^{II} complexes

Figure S10. UV-Vis spectra for NiC1 (solid pink line) and HC1 (dash green line).

Figure S11. UV-Vis spectra for NiC2 (solid blue line) and HC2 (dash red line).

Figure S12. Emission spectra for NiC1 (solid pink line) and NiC2 (solid blue line).

7. Cyclic voltammetry of Ni^{II} complexes

Figure S13. Cyclic voltammetry of NiC1, and NiC2 from 1×10^{-3} mol L⁻¹ in acetonitrile solutions and *n*-Bu₄NPF₆ 0.1 mol·L⁻¹ vs. SCE; obtained at 100 mV·s⁻¹ at 25

°C.

8. Steady-state photolysis of the Ni^{II} complexes

Figure S14. UV–Vis absorption spectra of **NiC1** and **NiC2** in CH₂Cl₂: (a,b) Ni^{II}, (c,d) Ni^{II}/Iod, and (d,e) Ni^{II}/EDB upon exposure under air to LED@405 nm for different times.

9. Fluorescence quenching of NiC1

Figure S15. Fluorescence quenching of **NiC1** with additives in CH₂Cl₂: (a) **NiC1**/Iod; (b) Stern-Volmer coefficient determination with Iod.

Figure S16. Emission spectra of NiC1 with EDB in CH₂Cl₂.

10. FTIR spectra of photopolymerizations

Figure S17. FTIR spectra recorded before and after photopolymerization for 0.2%/2%/2% w/w/w **NiC2**/Iod/EDB under LED@405 nm. (a) under pallet; (b) in laminate.

11. ESR spin-trapping experiments of NiC1

Figure S18. ESR spectra obtained from ESR-spin trapping experiments under LED@405 nm using PBN = 5×10^{-2} mol L⁻¹ (as the spin trap agent); EDB = 1×10^{-2} mol L⁻¹, and Ni^{II} = 1×10^{-3} mol L⁻¹ in CH₂Cl₂.

1 N. M. Pesqueira, F. Morlet-Savary, M. Schmitt, V. P. Carvalho-Jr, B. E. Goi and J. Lalevée, *Eur Polym J*, 2024, **216**, 113279.