Supplementary Information

Advanced pH-Responsive Copolymers for Stabilizing Lipid Nanoparticles and Manipulating their Internal Nanostructure

Xudong Cai^{1§}, Nicholas Kai Shiang Teo^{2§}, Bo Fan², San H. Thang², Calum J. Drummond^{1*}, Nhiem Tran^{1*}, and Jiali Zhai^{1*}

¹School of Science, STEM college, RMIT University, Melbourne, VIC 3000, Australia ²School of Chemistry, Monash University, Clayton, VIC 3800, Australia

§ Xudong Cai and Nicholas Kai Shiang Teo contributed equally to this work.

<u>*Corresponding authors:</u> Associate Professor Jiali Zhai; <u>maggie.zhai@rmit.edu.au</u> Dr Nhiem Tran; <u>nhiem.tran@rmit.edu.au</u> Professor Calum Drummond; <u>calum.drummond@rmit.edu.au</u>

Figure S1. ¹H NMR of PEG₁₁₃-CDTPA in CDCl₃: δ 4.25 (t, 2H), 3.45-3.81 (m, 412H), 3.36 (s, 3H), 3.31 (t, 2H), 2.37-2.65 (m, 4H), 1.86 (s, 3H), 1.69 (m, 2H), 1.25-1.38 (b, 18H), 0.86 (t, 3H).

Figure S2. ¹H NMR of PEG₁₁₃-PDMAEMA₁₆-CDTPA in CDCl₃: δ 3.96-4.35 (b, 30H), 3.42-3.85 (b, 457H), 3.37 (s, 3H), 2.14-3.02 (b, 168H), 1.72-2.07 (b, 21H), 1.18-1.51 (b, 22H), 0.77-1.16 (b, 30H).

Figure S3. ¹H NMR of PEG₁₁₃-PDMAEMA₂₈-CDTPA in CDCl₃: δ 4.00-4.28 (b, 56H), 3.42-3.85 (b, 454H), 3.37 (s, 3H), 2.46-2.88 (b, 100H), 2.18-2.45 (b, 240H), 1.70-2.10 (b, 74H), 1.16-1.51 (b, 39H), 0.75-1.16 (b, 112H).

Figure S4. ¹H NMR of PEG₁₁₃-PDMAEMA₄₀-CDTPA in CDCl₃: δ 3.94-4.29 (b, 80H), 3.42-3.85 (b, 447H), 3.37 (s, 3H), 2.54-2.72 (b, 57H), 2.21-2.47 (b, 204H), 1.68-2.07 (m, 56H), 1.16-1.51 (m, 35H), 0.74-1.16 (m, 81H).

Figure S5. ¹H NMR of PEG₁₁₃-PDEAEMA₁₆-CDTPA in CDCl₃: δ 3.90-4.30 (b, 32H), 3.42-3.85 (b, 454H), 3.37 (s, 3H), 2.23-2.90 (b, 119H), 1.58-2.06 (b, 36H), 1.17-1.49 (b, 32H), 0.74-1.15 (b, 145H).

Figure S6. ¹H NMR of PEG₁₁₃-PDEAEMA₂₈-CDTPA in CDCl₃: δ 3.92-4.32 (b, 56H), 3.44-3.89 (b, 456H), 3.37 (s, 3H), 2.34-2.93 (b, 194H), 1.70-2.10 (b, 51H), 1.21-1.51 (b, 32H), 0.75-1.20 (b, 241H).

Figure S7. ¹H NMR of PEG₁₁₃-PDEAEMA₄₀-CDTPA in CDCl₃: δ 3.92-4.31 (b, 78H), 3.44-3.89 (b, 475H), 3.37 (s, 3H), 2.27-2.98 (b, 291H), 1.71-2.10 (b, 71H), 1.22-1.51 (b, 37H), 0.75-1.22 (b, 339H).

Note: The degree of polymerization of all samples with respect to their individual monomer units can be calculated by comparing the singlet proton peak at δ 3.37, which corresponds to the -O-CH₃ end group on the PEG₁₁₃ moiety. This is compared with the broad proton peak at δ 3.96-4.35, which corresponds to the -CH₂-N- group on the DMAEMA or DEAEMA moiety. This comparison confirms the high conversion of all monomers into their respective polymers.

Figure S8. GPC curves of the synthesized copolymers: $PDMAEMA_n$ and $PDEAEMA_n$ (n = 16, 28 and 40).

Table S1.	GPC and	NMR	data of	the d	levelop	oed c	copolyme	ers
-----------	---------	-----	---------	-------	---------	-------	----------	-----

	NMR	GPC		
Block copolymers	M_n	M _w	<i>M</i> _n	Ð
PDMAEMA ₁₆ : PEG ₁₁₃ -PDMAEMA ₁₆ -CDTPA	7919	15200	12800	1.19
PDMAEMA ₂₈ : PEG ₁₁₃ -PDMAEMA ₂₈ -CDTPA	9805	16200	13800	1.17
PDMAEMA ₄₀ : PEG ₁₁₃ -PDMAEMA ₄₀ -CDTPA	11692	17600	14600	1.21
PDEAEMA ₁₆ : PEG ₁₁₃ -PDEAEMA ₁₆ -CDTPA	8364	13100	11500	1.13
PDEAEMA ₂₈ : PEG ₁₁₃ -PDEAEMA ₂₈ -CDTPA	10584	13800	11300	1.22
PDEAEMA ₄₀ : PEG ₁₁₃ -PDEAEMA ₄₀ -CDTPA	12804	14000	11300	1.24

Note: PEG: polyethylene glycol **DMAEMA:** 2-(dimethylamino)ethyl methacrylate **DEAEMA:** 2diethylaminoethyl methacrylate **CDTPA:** 4-cyano-4 (((dodecylthio) carbonothioyl) thio) pentanoic acid.

Table S2. The visual observation of LNPs stabilized by the developed copolymers at room temperature.

		PDMAEMA ₁₆	PDMAEMA ₂₈	PDMAEMA ₄₀	PDEAEMA ₁₆
MO-based	0.4 mol%	Milky +++	Milky +++	Milky +++	Milky +++
LNPs	0.8 mol%	Milky +++	Milky +++	Milky +++	Milky +++
	1.2 mol%	Milky +++	Milky +++	Milky +++	Milky +++
	1.5 mol%	Milky +++	Milky +++	Translucent	Translucent
				milky +++	milky +++
	2.0 mol%	Milky +++	Milky +++	Translucent	Translucent
				milky +++	milky +++
MO-based	0.4 mol%	Milky +++	Milky +++	Milky +++	Milky +++
LNPs	0.8 mol%	Milky +++	Milky +++	Milky +++	Milky +++
	1.2 mol%	Milky +++	Milky +++	Milky +++	Milky +++
	1.5 mol%	Milky +++	Milky +++	Milky +++	Milky +++
	2.0 mol%	Milky +++	Milky +++	Milky +++	Milky +++

+++: lipid nanoparticles are well dispersed without any lipid aggregates.

		0.4 mol%	0.8 mol%	1.2 mol%	1.5 mol%	2.0 mol%
MO-	Particle size	260±2	244±4	264±1	266±1	191±3
PDMAEMA ₁₆	PDI	0.22±0.01	0.19±0.04	0.15±0.01	0.19±0.01	0.22±0.03
MO-	Particle size	281±1	247±4	268±6	207±6	139±2
PDMAEMA ₂₈	PDI	0.20±0.02	0.23±0.03	0.23±0.02	0.29±0.03	0.28±0.01
MO-	Particle size	266±7	279±4	288±7	270±6	245±4
PDMAEMA ₄₀	PDI	0.21±0.03	0.26±0.03	0.16±0.03	0.22±0.03	0.23±0.01
MO-	Particle size	308±4	304±4	328±2	301±4	321±3
PDEAEMA ₁₆	PDI	0.23±0.03	0.21±0.03	0.30±0.05	0.30±0.04	0.31±0.04
PT-	Particle size	315±11	324±4	322±4	306±5	316±5
PDMAEMA ₁₆	PDI	0.21±0.01	0.19±0.05	0.19±0.05	0.17±0.02	0.12±0.06
PT-	Particle size	306±6	350±5	356±11	359±64	355±5
PDMAEMA ₂₈	PDI	0.16±0.02	0.20±0.01	0.21±0.01	0.22±0.02	0.15±0.02
PT-	Particle size	323±11	342±5	355±6	360±2	365±9
PDMAEMA ₄₀	PDI	0.18±0.01	0.26±0.02	0.21±0.02	0.23±0.01	0.20±0.05
PT-	Particle size	308±9	322±8	379±9	381±10	401±36
PDEAEMA ₁₆	PDI	0.20±0.01	0.22±0.02	0.24±0.02	0.28±0.04	0.43±0.05

Table S3. The particle size (nm) and PDI of LNPs stabilized by the developed copolymers with various concentrations at room temperature.

Figure S9. SAXS diffraction patterns of (A) MO-based LNPs stabilized by F127, and (B) PT-based LNPs stabilized by F127 in excess water and various pH conditions. All measurements were done at 37 °C.

Figure S10. The stability study of the developed LNPs at day 7 after preparing them. SAXS diffraction patterns of MO based LNPs stabilized by the synthetic copolymer (A) PDMAEMA₁₆; (B) PDMAEMA₂₈; (C) PDMAEMA₄₀; (D) PDEAEMA₁₆; and PT-based LNPs stabilized by the synthetic copolymer (E) PDMAEMA₁₆; (F) PDMAEMA₂₈; (G) PDMAEMA₄₀ and (H) PDEAEMA₁₆ at various concentrations: 0.4, 0.8, 1.2, 1.5 and 2 mol% to MO or PT. All measurements were done at 37 °C.

Table S4. Mesophase identification and calculated lattice parameter (Å) of the MO/PT-based LNPs stabilized by the synthetic copolymers under different concentrations (at day 7 after preparation).

		PDMAEMA ₁₆	PDMAEMA ₂₈	PDMAEMA ₄₀	PDEAEMA ₁₆
MO-based	0.4 mol%	Pn3m; 60	Pn3m; 60	Pn3m; 58	Im3m; 80
LNPs				Ia3d; 94	
	0.8 mol%	Im3m; 82	Pn3m; 58	Ia3d; 93	Im3m; 80
		Pn3m; 60	Ia3d; 93		H ₂ ; 41
	1.2 mol%	Pn3m; 60	Ia3d; 93	Ia3d; 93	Im3m; 83
				H ₂ ; 54	H ₂ ; 40
	1.5 mol%	Pn3m; 59	Ia3d; 93	H ₂ ; 56	H ₂ ; 39
				L ₂	
	2.0 mol%	Pn3m; 59	Ia3d; 93	L ₂	H ₂ ; 38
		H ₂ ;44			
MO-based	0.4 mol%	Pn3m; 46	Pn3m; 46	ND	Pn3m; 44
LNPs	0.8 mol%	Pn3m; 46	Pn3m; 47	ND	Pn3m; 44
	1.2 mol%	Pn3m; 47	Pn3m; 47	ND	Pn3m; 44
	1.5 mol%	Pn3m; 47	Pn3m; 47	ND	Pn3m; 44
	2.0 mol%	Pn3m; 48	Pn3m; 48	ND	Pn3m; 44
					La

Note: Im3m refers to the primitive cubic phase with the symmetry group Im3m (Q_2^{Im3m}) ; Pn3m to the double-diamond cubic phase with the symmetry group Pn3m (Q_2^{Pn3m}) ; Ia3d to the inverse gyroid cubic phase with the symmetry group Ia3d (Q_2^{Ia3d}) ; H₂ to the inverse hexagonal phase; and L₂ to the inverse micellar phase. ND refers to no distinctive diffraction pattern detected.