Supplementary Information (SI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information

Stereoregular cyclic poly(3-hydroxybutyrate) enabled by catalyst-controlled tacticity and topology

Celine R. Parker,^{1,‡} Zhen Zhang,^{1,‡} Ethan C. Quinn,^{1,‡} Liam T. Reilly¹, and Eugene Y.-X. Chen^{1,*}

¹ Department of Chemistry, Colorado State University, Fort Collins, CO 80523–1872, United States

[‡] These authors contributed equally to this work.

*Corresponding author. Email to eugene.chen@colostate.edu

Table of Contents

Figure S1. (A) MALDI-TOF-MS spectrum of <i>c/it</i> -P3HB produced directly using 1	ł
Figure S2. (A) MALDI-TOF-MS spectrum of <i>c/sr</i> -P3HB produced directly using 3	ł
Figure S3. (A) Two-dimensional height sensor data collected from AFM analysis of l/it -P3HB (141 kg mol ⁻¹ , $D = 1.07$). (B) Two-dimensional height sensor data collected from AFM analysis of c/it -P3HB (170 kg mol ⁻¹ , $D = 1.26$).	5
Figure S4 . (A) Triplicate stress-strain curves of c/sr -P3HB ($M_n = 163 \text{ kg mol}^{-1}$, $D = 1.28$). (B) Triplicate stress-strain curves of l/sr -P3HB ($M_n = 283 \text{ kg mol}^{-1}$, $D = 1.26$). Strain rate = 5 mm min ⁻¹	1
Table S1. Triplicate tensile data for P3HB materials.	5
Figure S5. SEC trace of c/it -P3HB prepared from 200/1 rac -8DL ^{Me} /2 (M_n = 93.3 kg mol ⁻¹ , D = 1.28)	5
Figure S6 . SEC trace of <i>I</i> / <i>it</i> -P3HB prepared from 600/1/1 <i>rac</i> -8DL ^{Me} / 2 /BnOH ($M_n = 141 \text{ kg mol}^{-1}$, $D = 1.07$)	7
Figure S7. SEC trace of c/it -P3HB prepared from 200/1 rac -8DL ^{Me} /2 (M_n = 164 kg mol ⁻¹ , D = 1.21)	7
Figure S8. SEC trace of c/sr -P3HB prepared from 150/1 meso-8DL ^{Me} /3 (M_n = 143 kg mol ⁻¹ , D = 1.22)8	3
Figure S9. SEC trace of <i>I/sr</i> -P3HB prepared from 1000/1/1 <i>meso</i> -8DL ^{Me} /3/BnOH ($M_n = 152 \text{ kg mol}^{-1}$, $D = 1.17$)8	3
Figure S10 . SEC trace of <i>c/sr</i> -P3HB prepared from 150/1 <i>meso</i> -8DL ^{Me} / 3 ($M_n = 164 \text{ kg mol}^{-1}$, $D = 1.28$))
Figure S11 . SEC trace of <i>I/sr</i> -P3HB prepared from 1000/2/1 <i>meso</i> -8DL ^{Me} / 3 /BnOH ($M_n = 283 \text{ kg mol}^{-1}$, $D = 1.26$).)
Figure S12. ¹³ C NMR spectrum (CDCl ₃ , 23 °C) of <i>c/it</i> -P3HB prepared with a ratio of 20/1 <i>rac</i> -8DL ^{Me} /110)
Figure S13 . ¹³ C NMR spectrum (CDCl ₃ , 23 °C) of <i>c/it</i> -P3HB prepared with a ratio of 200/1 <i>rac</i> -8DL ^{Me} / 2 (M_n = 93.3 kg mol ⁻¹ , D = 1.28))
Figure S14 . ¹³ C NMR spectrum (CDCl ₃ , 23 °C) of <i>l/it</i> -P3HB prepared with a ratio of 600/1/1 <i>rac</i> -8DL ^{Me} / 2 /BnOH ($M_n = 141 \text{ kg mol}^{-1}$, $D = 1.07$).	L
Figure S15 . ¹³ C NMR spectrum (CDCl ₃ , 23 °C) of <i>c/sr</i> -P3HB prepared with a ratio of 150/1 <i>meso</i> -8DL ^{Me} / 3 (M_n = 143 kg mol ⁻¹ , D = 1.22)	L
Figure S16 . ¹³ C NMR spectrum (CDCl ₃ , 23 °C) of <i>I/sr</i> -P3HB prepared with a ratio of 1000/1/1 <i>meso</i> -8DL ^{Me} / 3 /BnOH (M_n = 152 kg mol ⁻¹ , D = 1.17)	2
Figure S17 . DSC curve of <i>c/it</i> -P3HB produced at a ratio of 200/1 <i>rac</i> -8DL ^{Me} /2 ($M_n = 93.3 \text{ kg mol}^{-1}$, $D = 1.28$)13	3
Figure S18 . DSC curve of <i>I/it</i> -P3HB prepared with a ratio of $600/1/1 \text{ rac-8DL}^{Me}/2$ /BnOH (<i>M</i> _n = 141 kg mol ⁻¹ , <i>Đ</i> = 1.07).	3
Figure S19 . DSC curve of <i>c/sr</i> -P3HB prepared with a ratio of 150/1 <i>meso</i> -8DL ^{Me} / 3 ($M_n = 143 \text{ kg mol}^{-1}$, $D = 1.22$).	1
Figure S20. DSC curve of <i>I/sr</i> -P3HB prepared with a ratio of $1000/1/1 \text{ meso-8DL}^{Me}/3/BnOH$ ($M_n = 152 \text{ kg mol}^{-1}$, $D = 1.17$)	1
Figure S21. TGA curve of <i>c/it</i> -P3HB produced at a ratio of 200/1 <i>rac</i> -8DL ^{Me} /2 ($M_n = 93.3 \text{ kg mol}^{-1}$, $D = 1.28$)15	5
Figure S22 . TGA curve of <i>I</i> / <i>it</i> -P3HB prepared with a ratio of 600/1/1 <i>rac</i> -8DL ^{Me} / 2 /BnOH ($M_n = 141 \text{ kg mol}^{-1}$, $D = 1.07$).	5
Figure S23 . TGA curve of <i>c/sr</i> -P3HB prepared with a ratio of 150/1 <i>meso</i> -8DL ^{Me} / 3 ($M_n = 143 \text{ kg mol}^{-1}$, $D = 1.22$).	5
Figure S24 . TGA curve of <i>I/sr</i> -P3HB prepared with a ratio of 1000/1/1 <i>meso</i> -8DL ^{Me} / 3 /BnOH (M_n = 152 kg mol ⁻¹ , <i>E</i> = 1.17)) 5
Figure S25 . ¹ H NMR spectrum (CDCl ₃ , 23 °C) of <i>c/sr</i> -P3HB prepared with a ratio of 150/1 <i>meso</i> -8DL ^{Me} / 3 (M_n = 143 kg mol ⁻¹ , D = 1.22)	7

Supplementary Note 1.	
$(M_{\rm p} = 152 \text{ kg mol}^{-1}, D = 1.17)$.	
Figure S26. ¹ H NMR spectrum (CDCl ₃ , 23 °C) of <i>I/sr</i> -P3HB prepared with a ratio of 1000	0/1/1 <i>meso</i> -8DL ^{Me} / 3 /BnOH

Additional Tables and Figures

Figure S1. (A) MALDI-TOF-MS spectrum of c/it-P3HB produced directly using **1**. c/it-P3HB prepared using DCM (0.2 M) with a 20:1 ratio of rac-8DL^{Me} : **1** and quenched after stirring 7 h. Cyclic product indicated with red dot, linear product indicated with blue dot. (B) Plot of m/z values (y) vs the number of P3HB repeat units n (x) for first set of peaks showing no end groups. (C) Plot of m/z values (y) vs the number of P3HB repeat units n (x) for the second set of peaks showing an end group, indicating linear byproduct.

Figure S2. (A) MALDI-TOF-MS spectrum of c/sr-P3HB produced directly using **3**. c/sr-P3HB prepared using DCM (0.2 M) with a 20:1 ratio of *meso*-8DL^{Me}: **3** and quenched after stirring 7 h. (B) Plot of m/z values (y) vs the number of P3HB repeat units n (x).

Figure S3. (**A**) Two-dimensional height sensor data collected from AFM analysis of l/it-P3HB (141 kg mol⁻¹, D = 1.07). (**B**) Two-dimensional height sensor data collected from AFM analysis of c/it-P3HB (170 kg mol⁻¹, D = 1.26).

Figure S4. (**A**) Triplicate stress-strain curves of c/sr-P3HB ($M_n = 163 \text{ kg mol}^{-1}$, D = 1.28). (**B**) Triplicate stress-strain curves of l/sr-P3HB ($M_n = 283 \text{ kg mol}^{-1}$, D = 1.26). Strain rate = 5 mm min⁻¹.

Polymer	<i>M</i> n (kg mol⁻¹) ^[a]	Đ ^[a]	Sample	Young's Modulus (<i>E</i>)	Standard Dev. (±)	Tensile strength (<i>σ,</i> MPa)	Standard Dev. (±)	elongation at break (ε, %)	Standard Dev. (±)
<i>c/sr</i> -РЗНВ	163	1.28	1	223	-	40	-	372	
			2	335		41		366	
			3	337		40		387	
			Average	298	65	40	0.8	375	11
<i>l/sr</i> -РЗНВ	283	1.26	1	207		35.8		274	
			2	231		38.1		295	
			3	251		40.2		328	
			Average	230	22	38.1	2.2	299	27

Table S1. Triplicate tensile data for P3HB materials.

^[a] M_n and D were determined by size-exclusion chromatography (SEC) at 40 °C in CHCl₃ coupled with a DAWN HELEOS multi (18)-angle light scattering detector and an Optilab TrEX dRI detector.

Figure S5. SEC trace of *c/it*-P3HB prepared from 200/1 *rac*-8DL^{Me}/2 (M_n = 93.3 kg mol⁻¹, D = 1.28).

Figure S6. SEC trace of *I*/*it*-P3HB prepared from 600/1/1 *rac*-8DL^{Me}/**2**/BnOH (M_n = 141 kg mol⁻¹, D = 1.07).

Figure S7. SEC trace of *c/it*-P3HB prepared from 200/1 *rac*-8DL^{Me}/2 (M_n = 164 kg mol⁻¹, D = 1.21).

Figure S8. SEC trace of *c/sr*-P3HB prepared from 150/1 *meso*-8DL^{Me}/**3** (M_n = 143 kg mol⁻¹, D = 1.22).

Figure S9. SEC trace of *I*/*sr*-P3HB prepared from 1000/1/1 *meso*-8DL^{Me}/**3**/BnOH ($M_n = 152 \text{ kg mol}^{-1}$, D = 1.17).

Figure S10. SEC trace of *c/sr*-P3HB prepared from 150/1 *meso*-8DL^{Me}/**3** ($M_n = 164 \text{ kg mol}^{-1}$, D = 1.28).

Figure S11. SEC trace of *I*/*sr*-P3HB prepared from 1000/2/1 *meso*-8DL^{Me}/**3**/BnOH (M_n = 283 kg mol⁻¹, D = 1.26).

Figure S12. ¹³C NMR spectrum (CDCl₃, 23 °C) of *c/it*-P3HB prepared with a ratio of 20/1 *rac*-8DL^{Me}/1.

Figure S13. ¹³C NMR spectrum (CDCl₃, 23 °C) of *c/it*-P3HB prepared with a ratio of 200/1 *rac*-8DL^{Me}/**2** (M_n = 93.3 kg mol⁻¹, D = 1.28).

Figure S14. ¹³C NMR spectrum (CDCl₃, 23 °C) of *l/it*-P3HB prepared with a ratio of 600/1/1 *rac*-8DL^{Me}/**2**/BnOH (M_n = 141 kg mol⁻¹, D = 1.07).

Figure S15. ¹³C NMR spectrum (CDCl₃, 23 °C) of *c/sr*-P3HB prepared with a ratio of 150/1 *meso*-8DL^{Me}/**3** (M_n = 143 kg mol⁻¹, D = 1.22).

Figure S16. ¹³C NMR spectrum (CDCl₃, 23 °C) of *I/sr*-P3HB prepared with a ratio of 1000/1/1 *meso*-8DL^{Me}/**3**/BnOH ($M_n = 152 \text{ kg mol}^{-1}$, D = 1.17).

Figure S17. DSC curve of *c*/*it*-P3HB produced at a ratio of 200/1 *rac*-8DL^{Me}/**2** (M_n = 93.3 kg mol⁻¹, D = 1.28).

Figure S18. DSC curve of *I*/*it*-P3HB prepared with a ratio of $600/1/1 \operatorname{rac-8DL^{Me}/2}/BnOH$ ($M_n = 141 \text{ kg mol}^{-1}$, D = 1.07).

Figure S19. DSC curve of *c/sr*-P3HB prepared with a ratio of 150/1 *meso*-8DL^{Me}/**3** (M_n = 143 kg mol⁻¹, D = 1.22).

Figure S20. DSC curve of *l/sr*-P3HB prepared with a ratio of 1000/1/1 *meso*-8DL^{Me}/**3**/BnOH ($M_n = 152 \text{ kg mol}^{-1}$, D = 1.17).

Figure S21. TGA curve of *c*/*it*-P3HB produced at a ratio of 200/1 *rac*-8DL^{Me}/**2** (M_n = 93.3 kg mol⁻¹, D = 1.28).

Figure S22. TGA curve of *I*/*it*-P3HB prepared with a ratio of $600/1/1 \operatorname{rac-8DL^{Me}/2}/BnOH$ ($M_n = 141 \text{ kg mol}^{-1}$, D = 1.07).

Figure S23. TGA curve of *c/sr*-P3HB prepared with a ratio of 150/1 *meso*-8DL^{Me}/**3** (M_n = 143 kg mol⁻¹, D = 1.22).

Figure S24. TGA curve of *I/sr*-P3HB prepared with a ratio of 1000/1/1 *meso*-8DL^{Me}/**3**/BnOH ($M_n = 152 \text{ kg mol}^{-1}$, D = 1.17).

Figure S25. ¹H NMR spectrum (CDCl₃, 23 °C) of *c/sr*-P3HB prepared with a ratio of 150/1 *meso*-8DL^{Me}/**3** (M_n = 143 kg mol⁻¹, D = 1.22).

Figure S26. ¹H NMR spectrum (CDCl₃, 23 °C) of *I/sr*-P3HB prepared with a ratio of 1000/1/1 *meso*-8DL^{Me}/**3**/BnOH (M_n = 152 kg mol⁻¹, D = 1.17).

Supplementary Note 1.

The crystallinity of the resulting P3HB was calculated using the equation X_c (%) = ($\Delta H_f / \Delta H_f^0$) · 100, where ΔH_f and ΔH_f^0 is the heat of fusion (J g⁻¹) of the synthesized P3HB and the 100% crystalline P3HB (146 J g⁻¹)¹ respectively.

Bibliography:

1. Barham, P. J., Keller, A., Otun, E. L., and Holmes, P. A, Journal of Materials Science, **1984**, *19*, 2781–2794.