Supplementary Information

Development of redox-active polycaprolactone and its electrochemical redox

behavior in aqueous media

Taeho Lim,^{1,†} Seeun Hong,^{2,†} Soeun Kim,¹ Soobin Kim,¹ Kyeongsu Chung,¹ Hyemin Park,^{3,4} Youngdo Jeong,^{3,5} Ju-Won Jeon,⁶ Jinho Chang,^{2,7*} and Sangho Cho^{1,8*}

¹ Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

² Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea

³ Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

⁴ KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea

⁵ Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea

⁶ Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea

⁷ Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea

⁸ Nanoscience and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic Korea

*Correspondence to: jhcechem@hanyang.ac.kr (J. Chang), scho@kist.re.kr (S. Cho)

Fig. S1. FT-IR analysis of MTEMPO, Di-MTEMPO, and MTEMPO-SH.

Fig. S2. SEC profiles of PCL-Br, PCL-MTEMPO, and PCL-TEMPO.

Fig. S3. ¹H NMR (400 MHz, DMSO- d_6) spectrum of **PCL-TEMPO** before (a) and after (b) degradation with KOH in MeOH at 90 °C for 12 h.

Fig. S4. ¹H NMR (400 MHz, TFA-*d*) spectrum of PCL-TEMPO.

Fig. S5. (a) UV-Vis spectra of **PCL-TEMPO** (16.7 mM of repeating unit) and 4-OH-TEMPO (16.7 mM) in CHCl₃. (b) UV-Vis spectra of 4-OH-TEMPO in CHCl₃ with different molar concentration, and (c) calibration curve showing that amount of nitroxide radical is linearly proportional to its absorbance peak at 462 nm.

Fig. S6. XPS spectra of PCL-TEMPO(a) survey scan and (b) high-resolution spectrum of N1s.

Table S1. Composition of N1s based on high-resolution XPS spectrum of N1s (Fig. S5b).

	eV	Area	%
N1s Scan A	406	152.16689	1.5
N1s Scan B	400.6	7172.81354	69.5
N1s Scan C	399.7	2990.19031	29.0

Fig. S7. Thermal stability study of PLC-TEMPO; T_d of PCL-TEMPO was observed at 148 °C. The degradation temperature of PCL-TEMPO exceeded the slurry electrode's drying temperature (80 °C).

Fig. S8. Illustrations of (a) an open-and (b) a compact-cell for electrochemical analysis.

Fig. S9. (a-f) Optical cells images cultured with PCL-TEMPO. (a) without PCL-TEMPO, (b) 0.01 μ M PCL-TEMPO, (c) 0.1 μ M PCL-TEMPO, (d) 1 μ M PCL-TEMPO, (e) 10 μ M PCL-TEMPO, (f) 100 μ M PCL-TEMPO (magnification 20×). (g-l) Optical cells images cultured with degraded PCL-TEMPO g) without degraded PCL-TEMPO, (h) 0.01 μ M degraded PCL-TEMPO, (i) 0.1 μ M degraded PCL-TEMPO, (j) 1 μ M degraded PCL-TEMPO, (k) 10 μ M degraded PCL-TEMPO, (l) 100 μ M degraded PCL-TEMPO, (j) 1 μ M degraded PCL-TEMPO, (k) 10 μ M degraded PCL-TEMPO, (l) 100 μ M degraded PCL-TEMPO (magnification 20×). Statistical significance between two groups was assessed by an unpaired t-test and P < 0.05 was considered to be not statistically significant.

The theoretical gravimetric capacity of PCL-TEMPO was calculated using

Theoretical capacity =
$$\left(\frac{nF}{3600 M}\right) \times 1000 \left(\frac{mA \cdot h}{g}\right)$$
 Equation S1

Where n is the moles of electrons transferred per molecule of repeat unit, F is Faraday constant ($\approx 96,485 \text{ s}\cdot\text{A}\cdot\text{mol}^{-1}$), M is the molar mass (g·mol⁻¹) of the molecule of polymer repeat unit. Capacity was calculated using the discharged state for pendant group, TEMPO. The theoretical capacity was 66.26 mA·h·g⁻¹.

Spectral copies of ¹H and ¹³C NMR

¹³C NMR of CL-Br in CDCl₃ (101 MHz)

f1 (ppm) -10

¹³C NMR of **PCL-Br** in CDCl₃ (101 MHz)

g h ijklmnj

n=55

0

¹³C NMR of PCL-MTEMPO in CDCl₃ (101 MHz)

m

 \cap

, n/2

d

 $^{13}\mathrm{C}$ NMR of **MTEMPO-SH** in DMSO- d_6 (101 MHz)