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1. Experimental

Materials

The reagents were supplied by the supplier without purification. Naphthalene-2,6-

dicarboxylic acid (NDA, C12H8O4, 98%), nickel (II) chloride hexahydrate (NiCl2·6H2O, 98%), 

ferric chloride hexahydrate (FeCl3·6H2O, 99%), urea (H2NCONH2, 99%), ammonium fluoride 

(NH4F, 98%), and potassium hydroxide (KOH, 90%) were purchased from Aladdin Chemical 

Reagent Co. Ltd. Absolute ethanol (EtOH, 99.7%) and N, N-dimethylformamide (DMF, 98%) 

were purchased from Xilong Chemical Reagent Co. Ltd. The carbon fiber paper (CP) purchased 

from Toray Co. Ltd. and was utilized with a dimension of 2 cm 1 cm in the experiments. 

Commercial Pt/C (20 wt.% Pt) and Nafion solution (5 wt.%) were purchased from Alfa Aesar. 

The RuO2 was prepared by directly pyrolysis of RuCl3 in air at 400 oC and RuCl33H2O (37%) 

were purchased from Inno-chem.

Treatment of CP

The surface of the CP was hydrothermally treated by 68% HNO3 at 120 oC for 180 min, 

and then cleaned with deionized water and absolute ethanol.

Synthesis of NiFe LDH

Firstly, NiCl2·6H2O (0.9 mmol), FeCl3·6H2O (0.3 mmol), urea (8.3 mmol) and NH4F (8.3 

mmol) were dispersed in deionized water (20 mL) to form a clear solution. The resulting 

solution was then transferred to a 25 mL Taflon-lined stainless-steel autoclave with two pieces 

of modified CP. The autoclave was sealed at 120 oC and maintained for 16 h. After cooling to 

room temperature, the targeted NiFe LDH catalyst was taken out and washed three times with 

anhydrous ethanol, then dried at 60 ℃ for 8 h.

Synthesis of NiFe LDH/MOF and NiFe MOF

The obtained NiFe LDH was dipped in a 4.5 mL mixed solution consisting of 50 mg NDA, 

4 mL DMF, and 0.5 mL deionized water. Then, a hydrothermal reaction was carried out at 120 
oC in a PTFE reactor for 24 h. Finally, the resulting NiFe LDH/MOF was taken out, washed 

three times with absolute ethanol, and dried at 60 ℃ for 8 h. Besides, NiFe MOF was 

synthesized using a similar method to NiFe LDH/MOF, except for a reaction time of 48 h.

Synthesis of RuO2/CP and Pt/C/CP

For comparison, RuO2 and Pt/C on CP were also prepared. A homogeneous catalyst ink is 

formed by dispersing 2 mg RuO2 or Pt/C in 250 μL deionized water/isopropyl alcohol (V/V = 



1:1) and 25 μL 5% Nafion as a binder. The mixture is then dropped on the surface of the CP (1 

cm × 0.5 cm) and dried in indoor environment.

2. Characterization

The structure of samples was detected by a powder X-ray diffractometer (PXRD, Rigaku 

D/Max-3c, Cu-Kα radiation, λ = 1.54056 Å). The morphologies and compositions of samples 

were investigated by scanning electron microscopy (SEM, Gemini Sigma 300) and 

transmission electron microscopy (TEM, Talos F200S, TFS, USA) equipped with Rontec 

energy-dispersive X-ray system (EDS) and selected area electron diffraction (SAED). The 

nanosheets thicknesses of the samples were evaluated by atomic force microscope (AFM; 

Dimension ICON, Bruker, America). The atomic composition and valence states of the samples 

were measured by employing the X-ray photoelectron spectroscopy (XPS, ESCA-LAB250, Al 

Kα excitation source at 1486.6 eV). The functional groups of samples were analyzed by 

Fourier-transform infrared spectroscopy (FT-IR; Spectrum Two, PerkinElmer). Raman spectra 

of samples were obtained by in Via Quotation Evolution (Renishaw, 514 nm laser sourc). 

3. Electrochemical measurements

Electrochemical measurements were conducted using the CHI760E electrochemical 

workstation (Chenhua Instrument, Shanghai, China) with a standard three-electrode system 

(The as-synthesized catalyst was acted as integrated working electrode, carbon rod and Hg/HgO 

were used as the counter electrode and the reference electrode, respectively) in 1.0 M KOH 

aqueous solution. All electrode potentials were converted to reversible hydrogen electrode 

(RHE) electrode potentials by the Nernst equation: E vs. RHE = E vs. Hg/HgO + 0.059pH + 0.098 V. 

The oxygen evolution overpotential (η) was calculated according to the following formula: η 

(V) = E vs. RHE - 1.23 V. Linear sweep voltammetry (LSV) was performed at a scan rate of 1 mV 

s1 from 1.2V to 0.3 V. All LSV polarization curves were corrected using 95% iR compensation. 

The Tafel slope was plotted by converting the LSV curve according to the following formula: 

η = a + b log j, where η was the overpotential (mV), j was the corresponding current density 

(mA cm2), b was the Tafel slope (mV dec1). CV tests were performed at different sweep rates 

in the non-Faraday region (0.9 – 1.0 V) to estimate the electrochemical double layer capacitance 

(Cdl). The Cdl was calculated by the equation: Cdl = (ja – jc)/ (2×ν), where ja, jc and ν corresponds 

to the current density of anode and cathode, and scan rate, respectively. Electrochemical ac 

impedance (EIS) was performed in the frequency range 10,000 Hz - 0.01 kHz with an amplitude 

of 5 mV. The stabilities were assessed by cyclic voltammetry (CV, 0.3–0.9 V, 0.1 V s1), 

chronopotentiometry (CP, no iR compensation, constant current density of 10 mA cm2) and 



multi-step chronopotentiometry (ISTEP, no iR compensation) to the stability of the active 

electrode. 

The value of TOF is calculated according to the following formula:

TOF =
jA

4nF

Here, A (cm2) represents the geometric area of the CFP. The number 4 means the four 

electrons transfer in OER and F is equal to the constant of 96485.3 C mol−1. n represents the 

number of mole metal ions in the samples.

4. Electrochemical in-situ Raman spectra measurements

The in-situ Raman spectroscopy experiments were performed using a Raman spectrometer 

(InVia Qontor, Renishaw) equipped with an in-situ test electrolytic cell (Gaoss Union C031-1). 

The laser excitation wavelength used was 532 nm and the exposure time was set to 10 min for 

each spectrum. The as-prepared catalyst, carbon rod and Ag/AgCl electrode were served as the 

working electrode, counter electrode and reference electrode, respectively. The evolution of 

catalyst was monitored by gathering Raman spectra at constant potential ranging from 1.1 to 

1.5 V (vs. RHE).

5. Supplementary Figures

Fig. S1. FT-IR spectra of NiFe LDH, NiFe LDH/MOF, NiFe MOF and NDA organic ligands.

Fig. S2. Cyclic voltammograms (CVs) curves in the non-Faradaic potential range at different 

scan rates (5 - 30 mV s−1) of (a) NiFe LDH, (b) NiFe LDH/MOF, (c) NiFe MOF, (d) 

Corresponding Cdl values of NiFe LDH, NiFe LDH/MOF and NiFe MOF.

Fig. S3. Raman spectra of NiFe LDH/MOF after stability test.

6. Supplementary Tables

Table S1. The true content of metal elements in different catalysts obtained by ICP-MS 

measurements.

Table S2. Summary of previously reported excellent OER catalysts in alkaline solution.

Table S3. Comparison of the overall-water-splitting activities among various recently reported 

electrocatalysts tested in 1.0 M KOH.



  

Fig. S1. FT-IR spectra of NiFe LDH, NiFe LDH/MOF, NiFe MOF and NDA organic ligands.

The formation of NiFe LDH, NiFe LDH/MOF, and NiFe MOF was further substantiated 

by the fourier transform infrared spectroscopy (FT-IR). For comparison, the IR spectrum of 

pure NDA also be investigated, which is consistent with the previously reported.1 The 

absorption spectrum peaks at approximately 3450 cm1 and 1630 cm1 can be attributed to O-

H stretching vibration and H-O-H bending vibration of the absorbent water in NiFe LDH, 

respectively.2 And the peak at about 1358 cm1 can be ascribed to the CO3
2 vibrations, while 

the peaks below 1000 cm1 correspond to M-O vibrations.3 Meanwhile, the characteristic peaks 

at 1585 cm1 and 471 cm1 in NiFe LDH/MOF and NiFe MOF can be assigned to the Vas(-

COO-) and M-O vibrations of MOF, confirming that MOF is successfully anchored on LDH 

surfaces.4 Interestingly, the weakened peak of NiFe LDH in NiFe LDH/MOF may be attributed 

to the lower content of NiFe LDH, which is consistent with the previously proposed dissolution-

crystallization mechanism. These results clearly demonstrated the formation of NiFe LDH, 

NiFe LDH/MOF and NiFe MOF.



Fig. S2. Cyclic voltammograms (CVs) curves in the non-Faradaic potential range at different 

scan rates (5 - 30 mV s−1) of (a) NiFe LDH, (b) NiFe LDH/MOF, (c) NiFe MOF, and (d) 

corresponding Cdl values of NiFe LDH, NiFe LDH/MOF and NiFe MOF.

 

Fig. S3. Raman spectra of NiFe LDH/MOF after stability test.



Table S1. The true content of metal elements in different catalysts obtained by ICP-MS 

measurements.

Catalyst Ni (wt%) Fe (wt%)

NiFe LDH 30.8 47.2

NiFe LDH/MOF 30.6 45.3

NiFe MOF 25.3 42.6

Table S2. Summary of previously reported excellent OER catalysts in alkaline solution.

Catalyst ŋ10 

(mV)
Tafel 
slope
(mV 

dec1)

Reference

NiFe LDH/MOF 196 32.5 This work

NiCo LDH@NiFe-MIL 270 75.1 5

NiCoCu LDH 224 78 6

NiCo2O4@NiFe-LDH 231 59 7

CoMn0.01 255 66 8

FeNi MOF-CNTs 220 70.95 9

NiCo-NR 244 85 10

M-NiA-CoN 180 41 11

Ru@CoFe-LDH 249 50 12

CoNi-MOF 215 51.6 13

Ni3Se2@NiFe-LDH 220 61.3 14

Er0.4Fe-MOF 210 73 15

Ni-MOF-74/N3Ni 222 57 16



Table S3. Comparison of the overall-water-splitting activities among various recently reported 

electrocatalysts tested in 1.0 M KOH.

Catalyst
(Cathode)

Catalyst
(Anode)

Potential (V)
at 10 mA 

cm2
Reference

NiFe LDH/MOF Pt/C 1.47 This work

NFN-MOF/NF NFN-MOF/NF 1.56 17

CoNiRu-NT CoNiRu-NT 1.47 18

Co-NC@Ni2Fe-LDH Co-NC@Ni2Fe-LDH 1.55 19

CoMoP, CoMoP, 1.56 20

Ni-250-2@NF Ni-250-2@NF 1.58 21

IrO2@Ir-MOF IrO2@Ir-MOF 1.53 22

Co/CoP/NC Co/CoP/NC 1.56 21

Ir@Ni-NDC Ir@Ni-NDC 1.59 23

Ce@NiFe-MOF Pt/C 1.56 24

Pt@LDH Pt@LDH 1.49 25
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