SUPPORTING INFORMATION

Solvato- and vapochromic exchange-coupled Dy ${ }_{2}$ single-molecule magnets achieved by attaching iron-cyanido metalloligands

Michal Liberka, ${ }^{\text {a,b }}$ Mikolaj Zychowicz ${ }^{\text {a,b }}$ and Szymon Chorazy*a${ }^{a}$ Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland${ }^{\text {b }}$ Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland*Corresponding author: simon.chorazy@uj.edu.pl
Thermogravimetric (TG) curves for $\mathbf{1}, \mathbf{1} \cdot \mathbf{M e O H}, \mathbf{1} \cdot \mathrm{EtOH}, \mathbf{1} \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathrm{BuOH} .(\mathrm{Fig} . \mathrm{S} 1)$ S2
Crystal data and structure refinement parameters for $\mathbf{1}, \mathbf{1} \cdot \mathrm{MeOH}, \mathbf{1} \cdot \mathrm{EtOH}, \mathbf{1} \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathrm{BuOH}$. (Table S1) S3
Detailed structural views and crystal structure parameters of 1. (Fig. S2, Table S2) S4-S5
The visualization and metric parameters for supramolecular interactions in the crystal structure of 1. (Fig. S3, Table S3) S6-S7
Detailed structural views and crystal structure parameters of $\mathbf{1} \cdot \mathrm{MeOH}$. (Fig. S4, Table S4) S8-S9
The visualization and metric parameters for supramolecular interactions in the crystal structure of 1•MeOH. (Fig. S5, Table S5)Detailed structural views and crystal structure parameters of 1-EtOH. (Fig. S6, Table S6)S12-S13
The visualization and metric parameters for supramolecular interactions in the crystal structure of 1-EtOH. (Fig. S7, Table S7)Detailed structural views and crystal structure parameters of 1•PrOH. (Fig. S8, Table S8) S16-S17
The visualization and metric parameters for supramolecular interactions in the crystal structure of 1•PrOH. (Fig. S9, Table S9)Detailed structural views and crystal structure parameters of 1•BuOH. (Fig. S10, Table S10)S20-S21
The visualization and metric parameters for supramolecular interactions in the crystal structure of 1•BuOH. (Fig. S11, Table S11)Results of Continuous Shape Measure (CShM) analysis for iron(II) and dysprosium(III) complexes in 1,1-MeOH, 1•EtOH, 1•PrOH, and 1•BuOH. (Table S12)Comparison of selected structure parameters of $\mathbf{1 , 1} \mathbf{1} \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathrm{BuOH}$. (Fig. S12)S25
Powder X-ray diffraction patterns of $1,1 \cdot \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$. (Fig. S13) S26
The ESI mass spectra and spectral parameters of 1, with the related comment. (Fig. S14, Table S13) S27-S29
The UV-vis absorption spectra and spectral parameters of 1 in various solutions, and solid phases corresponding to $\mathbf{1}, \mathbf{1} \cdot \mathbf{M e O H}, \mathbf{1} \cdot \mathrm{EtOH}, \mathbf{1} \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathrm{BuOH}$. (Fig. S15 and S16, Table S14)Infrared absorption spectra of 1, 1•MeOH, 1•EtOH, 1•PrOH, and 1•BuOH. (Fig. S17)S34
Experimental $d c$ magnetic characteristics of $\mathbf{1}, \mathbf{1} \cdot \mathrm{MeOH}, \mathbf{1} \cdot \mathrm{EtOH}, \mathbf{1} \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathrm{BuOH}$. (Fig. S18) S35
Complete set of field- and temperature-variable ac magnetic susceptibility characteristics of $\mathbf{1}$, 1•MeOH, 1•EtOH, 1•PrOH, and 1•BuOH. (Fig. S19-S33)Summary of the slow magnetic relaxation parameters and percentage contributions of all processes tothe overall relaxation time in 1, 1•MeOH, 1-EtOH, 1•PrOH, and 1•BuOH, together with the relatedS51-S56
comment. (Fig. S34, Tables S15 and S16)
The results of the ab initio calculations performed for $\mathbf{1}, \mathbf{1} \cdot \mathrm{MeOH}, \mathbf{1} \cdot \mathrm{EtOH}, \mathbf{1} \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathrm{BuOH}$, together with the related. (Fig. S35, Table S17-S27) S57-S69Comparison of selected determined parameters of slow magnetic relaxation in $\mathbf{1}, \mathbf{1} \cdot \mathbf{M e O H}, \mathbf{1} \cdot \mathbf{E t O H}$,S70
1•PrOH, and 1•BuOH with previously reported dinuclear \{Dy $\left.{ }^{\text {III }}{ }_{2}\right\}$-based SMMs. (Table S28)
LiteratureS71-S72

Fig. S1 Thermogravimetric curves collected in the temperature range of $20-370^{\circ} \mathrm{C}$ for crystalline samples of $\mathbf{1}(a), \mathbf{1} \cdot \mathrm{MeOH}(b), \mathbf{1} \cdot \mathrm{EtOH}(c), \mathbf{1} \cdot \mathrm{PrOH}(d), \mathbf{1} \cdot \mathbf{B u O H}(e)$, and $\mathbf{1} \cdot \mathrm{MeOH}$ after several cycles of exposure to solvent vapors (f; for details see Fig. S16 with the related comment). The steps related to the loss of solvent molecules are depicted.

Comment to Fig. S1: Upon heating from room temperature, the sample weight of 1 is almost stable up to $140^{\circ} \mathrm{C}$, while the weight of $1 \cdot \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$ is stable to $\mathrm{ca} .70^{\circ} \mathrm{C}$, and further heating results in a gradual weight loss attributable to the release of alcohol of crystallization. Up to $140^{\circ} \mathrm{C}$, their thermogravimetric curves reach the plateau stage, which corresponds to the desolvated states. The related weight losses, depicted in Fig. S1, are in good agreement with the calculated ones. Further heating of all compounds to temperatures above $170^{\circ} \mathrm{C}$ leads to the dramatic decrease of the sample masses, which is presumably connected with the removal of the cyanido as well as organic ligands, and the resulting decomposition of compounds.

Table S1 Crystal data and structure refinement parameters for $\mathbf{1}, 1 \cdot \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$.

compound	1	1-MeOH	1.EtOH	1.PrOH	1.BuOH
formula	$\begin{gathered} \mathrm{C}_{108} \mathrm{H}_{82} \mathrm{Dy}_{2} \mathrm{~F}_{18} \\ \mathrm{Fe}_{2} \mathrm{~N}_{22} \mathrm{O}_{28} \mathrm{~S}_{6} \end{gathered}$	$\begin{gathered} \mathrm{C}_{110} \mathrm{H}_{90} \mathrm{Dy}_{2} \mathrm{~F}_{18} \\ \mathrm{Fe}_{2} \mathrm{~N}_{22} \mathrm{O}_{30} \mathrm{~S}_{6} \end{gathered}$	$\begin{gathered} \mathrm{C}_{110} \mathrm{H}_{88} \mathrm{Dy}_{2} \mathrm{~F}_{18} \\ \mathrm{Fe}_{2} \mathrm{~N}_{22} \mathrm{O}_{29} \mathrm{~S}_{6} \end{gathered}$	$\begin{gathered} \mathrm{C}_{111} \mathrm{H}_{82} \mathrm{Dy}_{2} \mathrm{~F}_{18} \\ \mathrm{Fe}_{2} \mathrm{~N}_{22} \mathrm{O}_{29} \mathrm{~S}_{6} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{112} \mathrm{H}_{82} \mathrm{Dy}_{2} \mathrm{~F}_{18} \\ \mathrm{Fe}_{2} \mathrm{~N}_{22} \mathrm{O}_{29} \mathrm{~S}_{6} \\ \hline \end{gathered}$
form. weight / g. mol^{-1}	3107.02	3171.11	3153.09	3159.05	3171.06
λ / \AA	0.71073 A ($\mathrm{Mo} \mathrm{K} \alpha$)				
T/K	100(2)				
crystal system	triclinic				
space group	P-1 (No. 2)				
a / \AA	12.6470(16)	12.730(2)	12.6551(6)	12.6685(6)	12.5602(14)
b / \AA	14.848(2)	14.823(3)	14.8665(7)	14.8474(8)	14.8503(16)
c / \AA	18.720(2)	18.736(3)	18.7758(10)	18.8366(12)	18.911(2)
α / deg	66.965(4)	66.810(5)	66.8570(10)	66.8230(10)	67.271(3)
B/deg	82.140(4)	83.324(5)	82.012(2)	84.052(2)	81.565(3)
γ / deg	71.166(4)	71.290(5)	71.4210(10)	71.4140(10)	71.608(3)
V / \AA^{3}	3061.5(7)	3077.9(9)	3078.5(3)	3086.3(3)	3085.9(6)
Z	1	1	1	1	1
calcd. density / g.cm ${ }^{-1}$	1.685	1.711	1.701	1.700	1.706
abs. coeff. / cm ${ }^{-1}$	1.651	1.645	1.643	1.640	1.640
$F(000)$	1550	1586	1576	1576	1582
Θ range / deg	2.301-25.027	2.851-25.027	2.294-25.027	2.353-25.027	2.289-25.027
collected refl.	37526	33571	37902	40057	34235
limiting indices	$\begin{aligned} & -15<h<14 \\ & -17<k<17 \\ & -22<l<22 \end{aligned}$	$\begin{aligned} & -15<h<15 \\ & -17<k<17 \\ & -22<l<22 \end{aligned}$	$\begin{aligned} & -15<h<15 \\ & -17<k<17 \\ & -22<l<22 \end{aligned}$	$\begin{aligned} & -15<h<15 \\ & -17<k<17 \\ & -22<l<22 \end{aligned}$	$\begin{aligned} & -14<h<14 \\ & -17<k<17 \\ & -22<l<22 \end{aligned}$
$R_{\text {int }}$	0.0303	0.024	0.063	0.0403	0.089
completeness / \%	99.8	99.7	99.9	99.9	99.8
data/restraints/param.	10802/39/910	10847/26/874	10875/21/865	10908/42/874	10878/84/883
GOF on F^{2}	1.054	1.050	1.075	1.099	1.063
final $R_{1}[I>2 \sigma(I)]$	0.0252	0.0211	0.0435	0.0401	0.0761
final w R_{2} [all data]	0.0615	0.0513	0.0835	0.0912	0.1948
diff. peak and hole / e. \AA^{-3}	$\begin{gathered} 0.786 \text { and } \\ -0.419 \end{gathered}$	$\begin{gathered} 0.617 \text { and } \\ -0.513 \end{gathered}$	$\begin{aligned} & 1.035 \text { and } \\ & -1.097 \end{aligned}$	$\begin{gathered} 2.119 \text { and } \\ -1.054 \end{gathered}$	$\begin{gathered} 2.498 \text { and } \\ -1.402 \end{gathered}$

(a)

(d)

(e)

Fig. S2 Detailed structural views of 1: the representative views of the supramolecular network along the crystallographic a axis (a), b axis (b), and c axis (c), the enlarged view of a tetrametallic $\left\{\mathrm{Dy}^{\prime \prime \prime}{ }_{2} \mathrm{Fe}^{11}{ }_{2}\right\}^{6+}$ molecule and the coordination polyhedron of incorporated seven-coordinated Dy ${ }^{\text {III }}$ complexes (d), and the asymmetric unit with the labeling scheme for selected symmetrically independent atoms (e). The hydrogen atoms are omitted for clarity. Thermal ellipsoids in (e) are presented at the 50\% probability level. Detailed structure parameters are gathered in Table S2 (see below).

Table S2 Detailed crystal structure parameters for 1. The labeling scheme is presented in Fig. S2 (see above).

distances in dysprosium(III) and iron(II) complexes / A					
Dy1-01	$\begin{gathered} \hline 2.3967(18) / \\ 2.4188(18) \end{gathered}$	Dy1-05	2.2354(19)	Fe1-N3	1.970(2)
Dy1-02	2.2893(18)	Dy1-N1	2.496(2)	Fe1-N4	2.002(2)
Dy1-03	2.229(2)	Fe1-C1	1.895(3)	Fe1-N5	2.005(2)
Dy1-04	2.2791(19)	Fe1-C2	1.893(3)	Fe1-N6	1.972(2)
angles in dysprosium(III) and iron(II) complexes / ${ }^{\circ}$					
O1-Dy1-01	63.50(7)	O3-Dy1-O5	172.80(7)	C2-Fe1-N4	92.84(11)
O1-Dy1-O2	$\begin{aligned} & \hline 80.94(6) / \\ & 141.77(7) \end{aligned}$	O3-Dy1-N1	87.95(8)	C2-Fe1-N5	174.62(11)
O1-Dy1-O3	$\begin{gathered} \hline 79.93(7) / \\ 98.19(7) \\ \hline \end{gathered}$	O4-Dy1-O5	98.78(7)	C2-Fe1-N6	92.31(11)
O1-Dy1-O4	$\begin{gathered} \hline 130.93(6) / \\ 72.18(7) \\ \hline \end{gathered}$	O4-Dy1-N1	72.06(7)	N3-Fe1-N4	81.85(10)
O1-Dy1-O5	$\begin{gathered} \hline 99.57(7) / \\ 87.91(7) \\ \hline \end{gathered}$	O5-Dy1-N1	89.42(7)	N3-Fe1-N5	93.93(10)
O1-Dy1-N1	$\begin{gathered} 152.58(7) / \\ 143.27(7) \end{gathered}$	C1-Fe1-C2	88.83(12)	N3-Fe1-N6	173.77(10)
O2-Dy1-O3	88.38(7)	C1-Fe1-N3	93.68(11)	N4-Fe1-N5	87.17(9)
O2-Dy1-O4	146.02(7)	C1-Fe1-N4	175.27(11)	N4-Fe1-N6	92.96(10)
O2-Dy1-O5	84.45(7)	C1-Fe1-N5	91.58(10)	N5-Fe1-N6	82.32(10)
O2-Dy1-N1	74.17(7)	C1-Fe1-N6	91.40(10)	-	-
O3-Dy1-O4	86.79(7)	C2-Fe1-N3	91.40(10)	-	-
distances and angles between dysprosium(III) and iron(II) centers / Å, ${ }^{\circ}$					
within $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules			between $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules (the shortest distance)		
Dy1 \cdots Dy1		.103(5)	Dy1 \cdots D		$9.933(5)$ (along [100] direction)
Dy1-01-Dy1		16.50(7)	Fe1 \cdots Fe1		$8.828(5)$ (along $[1 \overline{2} 1]$ direction)
Dy1 \cdots Fe1		5.268(5)	-		-
Dy1-N1-C1		43.19(7)	-		-

Fig. S3 The visualization of hydrogen bonds involving 4-pyridone ligands and trifluoromethanesulfonate anions or cyanido ligands (blue lines, a and b), as well as inter- and intramolecular $\pi-\pi$ interactions involving 4-pyridone and phenanthroline ligands (red dashed lines, $a-c$) in the crystal structure of 1. The metric parameters of both types of interactions are summarized in Table S3 (see below).

Table S3 Metric parameters for supramolecular interactions in the crystal structure of 1. The labeling scheme is presented in Fig. S3 (see above).

Fig. S4 Detailed structural views of $\mathbf{1} \cdot \mathbf{M e O H}$: the representative views of the supramolecular network along the crystallographic a axis (a), b axis (b), and c axis (c), the enlarged view of a tetrametallic $\left\{\mathrm{Dy}^{1 I I}{ }_{2} \mathrm{Fe}^{11}{ }_{2}\right\}^{6+}$ molecule and the coordination polyhedron of seven-coordinated Dy ${ }^{\text {III }}$ complexes (d), and the asymmetric unit with the labeling scheme for selected symmetrically independent atoms (e). The hydrogen atoms are omitted for clarity. Thermal ellipsoids in (e) are presented at the 50\% probability level. Detailed structure parameters are gathered in Table S4 (see below).

Table S4 Detailed crystal structure parameters for $\mathbf{1} \cdot \mathbf{M e O H}$. The labeling scheme is presented in Fig. S4 (see above).

distances in dysprosium(III) and iron(II) complexes / A					
Dy1-01	$\begin{gathered} \hline 2.4008(14) / \\ 2.4207(15) \\ \hline \end{gathered}$	Dy1-05	2.2312(15)	Fe1-N3	1.9694(19)
Dy1-02	2.2897(15)	Dy1-N1	2.4910(18)	Fe1-N4	2.0052(19)
Dy1-03	2.2286(15)	Fe1-C1	1.890(2)	Fe1-N5	2.0030(19)
Dy1-04	2.2767(15)	Fe1-C2	1.893(2)	Fe1-N6	1.9751(19)
angles in dysprosium(III) and iron(II) complexes / ${ }^{\circ}$					
O1-Dy1-01	63.37(6)	O3-Dy1-O5	172.80(5)	C2-Fe1-N4	93.00(8)
O1-Dy1-O2	$\begin{aligned} & \hline 81.06(5) / \\ & 141.46(5) \\ & \hline \end{aligned}$	O3-Dy1-N1	88.31(6)	C2-Fe1-N5	175.02(9)
O1-Dy1-O3	$\begin{gathered} 79.60(6) / \\ 98.40(6) \\ \hline \end{gathered}$	O4-Dy1-O5	98.89(6)	C2-Fe1-N6	92.70(9)
O1-Dy1-O4	$\begin{gathered} \hline 130.63(5) / \\ 72.29(5) \\ \hline \end{gathered}$	O4-Dy1-N1	72.44(6)	N3-Fe1-N4	81.88(8)
O1-Dy1-O5	$\begin{gathered} \hline 99.87(6) / \\ 87.67(5) \end{gathered}$	O5-Dy1-N1	89.07(6)	N3-Fe1-N5	93.64(8)
O1-Dy1-N1	$\begin{gathered} 152.47(5) / \\ 143.59(5) \end{gathered}$	C1-Fe1-C2	88.78(9)	N3-Fe1-N6	173.02(8)
O2-Dy1-O3	88.69(6)	C1-Fe1-N3	94.23(9)	N4-Fe1-N5	87.19(7)
O2-Dy1-O4	146.20(5)	C1-Fe1-N4	175.75(8)	N4-Fe1-N6	92.20(8)
O2-Dy1-O5	84.14(6)	C1-Fe1-N5	91.37(8)	N5-Fe1-N6	82.32(8)
O2-Dy1-N1	73.97(6)	C1-Fe1-N6	91.57(8)	-	-
O3-Dy1-O4	86.71(6)	C2-Fe1-N3	91.31(8)	-	-
distances and angles between dysprosium(III) and iron(II) centers / Å, ${ }^{\circ}$					
within $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules			between $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules (the shortest distance)		
Dy1..Dy1		4.103(4)	Dy1.. ${ }^{\text {d }}$		$9.983(5)$ (along [100] direction)
Dy1-01-Dy1		116.48(6)	Fe1 \cdots Fe1		$8.857(5)$ (along $[\overline{2} 11]$ direction)
Dy1 \cdots Fe1		5.263(4)	-		-
Dy1-N1-C1		142.87(6)	-		-

Fig. S5 The visualization of hydrogen bonds involving 4-pyridone ligands and trifluoromethanesulfonate anions or cyanido ligands (blue lines, a and b), inter- and intramolecular $\pi-\pi$ interactions involving 4-pyridone and phenanthroline ligands (red dashed lines, $a-c$), as well as hydrogen bonds engaging solvent MeOH molecules (green dashed lines, d) in the crystal structure of $\mathbf{1} \cdot \mathbf{M e O H}$. The metric parameters of both types of interactions are summarized in Table S5 (see below).

Table S5 Metric parameters for supramolecular interactions in the crystal structure of $\mathbf{1} \cdot \mathbf{M e O H}$. The labeling scheme is presented in Fig. S5 (see above).

Fig. S6 Detailed structural views of 1-EtOH: the representative views of the supramolecular network along the crystallographic a axis (a), b axis (b), and c axis (c), the enlarged view of a tetrametallic $\left\{\mathrm{Dy}^{1 I \prime}{ }_{2} \mathrm{Fe}^{1{ }_{2}}\right\}^{6+}$ molecule and the coordination polyhedron of seven-coordinated DyIII complexes (d), and the asymmetric unit with the labeling scheme for selected symmetrically independent atoms (e). The hydrogen atoms are omitted for clarity. Thermal ellipsoids in (e) are presented at the 50\% probability level. Detailed structure parameters are gathered in Table S6 (see below).

Table S6 Detailed crystal structure parameters for 1-EtOH. The labeling scheme is presented in Fig. S6 (see above).

Fig. S7 The visualization of hydrogen bonds involving 4-pyridone ligands and trifluoromethanesulfonate anions or cyanido ligands (blue lines, a and b), inter- and intramolecular $\pi-\pi$ interactions involving 4-pyridone and phenanthroline ligands (red dashed, $a-c$), as well as hydrogen bonds engaging solvent EtOH molecules (green dashed lines, d) in the crystal structure of $\mathbf{1 - E t O H}$. The metric parameters of both types of interactions are summarized in Table S7 (see below)

Table S7 Metric parameters for supramolecular interactions in the crystal structure of 1•EtOH. The labeling scheme is presented in Fig. S7 (see above).

hydrogen bonds between $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$ions and 4 -pyridone ligands / \AA, ${ }^{\circ}$		hydrogen bonds between cyanido and 4-pyridone ligands / \AA, ${ }^{\circ}$	
N71..04A ${ }_{\text {otf }}$	2.785	N9. ${ }^{\text {a }}$ N2 ${ }_{\text {cn }}$	2.717
H7L \cdots O4A ${ }_{\text {otf }}$	1.933	$\mathrm{H} \mathrm{l}^{\cdots} \cdots \mathrm{N} 2_{\text {cN }}$	1.889
N7L-H7L \cdots - $4 A_{\text {otf }}$	170.29	N9¢-H9 ${ }_{\text {c }}$ - $\mathrm{N} 2_{\text {cn }}$	161.28
N8L \cdots - ${ }^{\text {O }}$ A ${ }_{\text {otf }}$	2.796	$\mathrm{N} 11{ }^{\text {c }} \cdot \mathrm{N} 1_{\text {cN }}$	3.039
H8L \cdots O8A ${ }_{\text {otf }}$	1.950	$\mathrm{H} 11_{\mathrm{L}} \cdots \mathrm{N} 1_{\text {cN }}$	2.261
	167.33	$\mathrm{N} 11_{\mathrm{L}}-\mathrm{H} 11_{\mathrm{L}} \cdots \mathrm{N} 1_{\mathrm{CN}}$	150.60
N10. \cdots O2A atf	2.817		
H10. \cdots O2A ${ }_{\text {otf }}$	1.990	-	-
	161.07		
$\pi-\pi$ interactions within $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules / \AA, ${ }^{\circ}$		$\pi-\pi$ interactions between $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules / \AA	
$\pi_{\text {phen }}{ }^{\text {N6 }} \ldots \pi_{\mathrm{L}}{ }^{\text {110 }}$	3.681	$\pi_{\llcorner }{ }^{\mathrm{N} 11} \ldots \pi_{\mathrm{L}}{ }^{\mathrm{N} 11}$	3.535
$\pi_{\mathrm{L}}{ }^{\mathrm{N10}} \ldots \pi_{\mathrm{L}}{ }^{\mathrm{N} 7}$	3.716	$\begin{gathered} \hline \pi_{\text {phen } \cdots} \cdots \pi_{\text {phen }} \\ \text { (along }[001] \text { direction) } \\ \hline \end{gathered}$	3.829
$\pi_{\llcorner }{ }^{\text {N7 }} \ldots \mu_{L^{\text {N8 }}}$	3.544	$\begin{gathered} \pi_{\text {phen }} \cdots \pi_{\text {phen }} \\ \text { (along [100] direction) } \\ \hline \end{gathered}$	3.585
	$\begin{gathered} \hline 3.602 \\ 2.922 \\ 131.02 \\ \hline \end{gathered}$	hydrogen bonds involving crystallization EtOH molecules / Å, ${ }^{\circ}$	
$\pi_{\text {phen }}{ }^{\text {N5 }} \ldots \pi_{\mathrm{L}}{ }^{\text {N9 }}$	3.991	$01 \mathrm{~S}_{\text {меон }} \cdots \mathrm{C} 20^{\text {phen }}$	3.440
		$01 \mathrm{~S}_{\text {меон }} \cdots \mathrm{H} 2 \mathrm{O}_{\text {phen }}$	2.575
		$01 \mathrm{~S}_{\text {мео. }} \cdots \mathrm{H} 2 \mathrm{O}_{\text {phen }}-\mathrm{C} 2 \mathrm{O}_{\text {phen }}$	154.70
$\pi_{\mathrm{L}}{ }^{\mathrm{Ng}} \ldots \pi_{\mathrm{L}}{ }^{\mathrm{N11}}$	4.032	01S меон $^{\cdots}$.07A ${ }_{\text {otf }}$	3.165
		H1S меон $^{\cdots}$-07A ${ }_{\text {otf }}$	2.622
			125.09
-	-	C15 ${ }_{\text {меон }} \cdots$-09A ${ }_{\text {otf }}$	3.683
			3.116
			118.89
-	-		3.589
		H2S Sеон $^{\cdots}$.07A отf	3.167
			108.48

(a)

(d)

(e)

Fig. S8 Detailed structural views of 1•PrOH: the representative views of the supramolecular network along the crystallographic a axis (a), b axis (b), and c axis (c), the enlarged view of a tetrametallic $\left\{\mathrm{Dy}^{\text {III }}{ }_{2} \mathrm{Fe}^{11}\right\}^{6+1}$ molecule and the coordination polyhedron of seven-coordinated Dy ${ }^{\text {III }}$ complexes (d), and the asymmetric unit with the labeling scheme for selected symmetrically independent atoms (e). The hydrogen atoms are omitted for clarity. Thermal ellipsoids in (e) are presented at the 50\% probability level. Detailed structure parameters are gathered in Table S8 (see below).

Table S8 Detailed crystal structure parameters for 1•PrOH. The labeling scheme is presented in Fig. S8 (see above).

(a)

(b)

(c)

Fig. S9 The visualization of hydrogen bonds involving 4-pyridone ligands and trifluoromethanesulfonate anions or cyanide ligands (blue lines, a and b), inter- and intramolecular $\pi-\pi$ interactions involving 4-pyridone and phenanthroline ligands (red dashed lines, $a-c$), as well as hydrogen bonds engaging solvent 1-PrOH molecules (green dashed lines, d) in the crystal structure of $\mathbf{1} \cdot \mathrm{PrOH}$. The metric parameters of both types of interactions are summarized in Table S9 (see below).

Table S9 Metric parameters for supramolecular interactions in the crystal structure of 1•PrOH. The labeling scheme is presented in Fig. S9 (see above).

*Because of the disorder of solvent molecules of crystallization, the hydrogen atoms at related C and O atoms were omitted in the refinement procedure (see the experimental section). For this reason, the table contains only information about the distances between the hydrogen bond donor and acceptor (involving the alcohol solvent molecules).

(d)
(b)

(c)

Fig. S10 Detailed structural views of 1•BuOH: the representative views of the supramolecular network along the crystallographic a axis (a), b axis (b), and c axis (c), the enlarged view of a tetrametallic $\left\{\mathrm{Dy}^{\text {III }}{ }_{2} \mathrm{Fe}^{1 I}\right\}^{6+}$ molecule and the coordination polyhedron of seven-coordinated Dy ${ }^{\text {III }}$ complexes (d), and the asymmetric unit with the labeling scheme for selected symmetrically independent atoms (e). The hydrogen atoms are omitted for clarity. Thermal ellipsoids in (e) are presented at the 50\% probability level. Detailed structure parameters are gathered in Table S10 (see below).

Table S10 Detailed crystal structure parameters for 1•BuOH. The labeling scheme is presented in Fig. S10 (see above).

distances in dysprosium(III) and iron(II) complexes / A					
Dy1-01	$\begin{gathered} 2.399(6) / \\ 2.403(6) \end{gathered}$	Dy1-05	2.228(4)	Fe1-N3	1.977(9)
Dy1-02	2.278(7)	Dy1-N1	2.459(9)	Fe1-N4	2.007(10)
Dy1-03	2.238(4)	Fe1-C1	1.921(14)	Fe1-N5	2.008(10)
Dy1-04	2.272(9)	Fe1-C2	1.895(12)	Fe1-N6	1.977(10)
angles in dysprosium(III) and iron(II) complexes / ${ }^{\circ}$					
O1-Dy1-01	63.6(2)	O3-Dy1-O5	173.5(2)	C2-Fe1-N4	174.9(5)
O1-Dy1-O2	$\begin{gathered} \hline 139.8(3) / \\ 80.4(3) \\ \hline \end{gathered}$	O3-Dy1-N1	87.0(3)	C2-Fe1-N5	91.4(4)
O1-Dy1-O3	$\begin{gathered} \hline 99.7(3) / \\ 78.6(3) \\ \hline \end{gathered}$	O4-Dy1-O5	98.4(3)	C2-Fe1-N6	91.6(4)
O1-Dy1-O4	$\begin{aligned} & \hline 72.7(3) / \\ & 130.1(3) \\ & \hline \end{aligned}$	O4-Dy1-N1	74.1(3)	N3-Fe1-N4	82.8(4)
O1-Dy1-O5	$\begin{gathered} \hline 85.8(3) / \\ 90.3(3) \\ \hline \end{gathered}$	O5-Dy1-N1	101.1(3)	N3-Fe1-N5	92.8(4)
O1-Dy1-N1	$\begin{gathered} \hline 145.6(2) / \\ 150.1(2) \\ \hline \end{gathered}$	C1-Fe1-C2	89.2(5)	N3-Fe1-N6	173.5(4)
O2-Dy1-O3	89.5(3)	C1-Fe1-N3	91.2(4)	N4-Fe1-N5	88.3(4)
O2-Dy1-O4	147.4(3)	C1-Fe1-N4	91.5(4)	N4-Fe1-N6	93.4(4)
O2-Dy1-O5	84.1(3)	C1-Fe1-N5	176.0(4)	N5-Fe1-N6	81.8(4)
O2-Dy1-N1	73.3(3)	C1-Fe1-N6	94.2(5)	-	-
O3-Dy1-O4	86.5(3)	C2-Fe1-N3	92.2(4)	-	-
distances and angles between dysprosium(III) and iron(II) centerss / \AA, ${ }^{\circ}$					
within $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules			between $\left\{\mathrm{Dy}_{2} \mathrm{Fe}_{2}\right\}^{6+}$ molecules (the shortest distance)		
Dy1..Dy1		4.081(19)	Dy1 \cdots Dy1		$9.886(5)$ (along [100] direction)
Dy1-O1-Dy1		116.42(3)	Fe1..Fe1		$8.980(5)$ (along $[1 \overline{2} 1]$ direction)
Dy1 \cdots Fe1		5.273(19)	-		-
Dy1-N1-C1		142.17(3)	-		-

(a)

(b)

(c)

Fig. S11 The visualization of hydrogen bonds involving 4-pyridone ligands and trifluoromethanesulfonate anions or cyanido ligands (blue lines, a and b), inter- and intramolecular $\pi-\pi$ interactions involving 4-pyridone and phenanthroline ligands (red dashed lines, $a-c$), as well as hydrogen bonds engaging solvent 1-BuOH molecules (green dashed lines, d) in the crystal structure of $\mathbf{1} \cdot \mathbf{B u O H}$. The metric parameters of both types of interactions are summarized in Table S11 (see below).

Table S11 Metric parameters for supramolecular interactions in the crystal structure of 1•BuOH. The labeling scheme is presented in Fig. S11 (see above).

*Because of the disorder of solvent molecules of crystallization, the hydrogen atoms at related C and O atoms were omitted in the refinement procedure (see the experimental section). For this reason, the table contains only information about the distances between the hydrogen bond donor and acceptor (involving the alcohol solvent molecules).

Table S12 Results of Continuous Shape Measure (CShM) analysis for six-coordinated iron(II) and seven-coordinated dysprosium(III) complexes in the crystal structures of $\mathbf{1}, \mathbf{1} \cdot \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH} .{ }^{\text {s1,S2 }}$

compound	CShM parameters (*) for six-coordinated Fe(II) complexes, cis-[Fel' $\left.(\mu-\mathrm{CN})_{2}(\text { phen })_{2}\right]$				
	HP-6	PPY-6		OC-6	TPR-6
1	30.075	27.527		0.317	14.956
1-MeOH	30.086	27.747		0.308	14.957
1.EtOH	30.150	27.730		0.299	15.124
1-PrOH	30.207	27.875		0.298	15.274
1.BuOH	30.434	28.087		0.286	15.364
compound	CShM parameters (*) for seven-coordinated Dy(III) complexes, [Dy $\left.{ }^{\text {III }}(\mu-\mathrm{NC})(4 \text {-pyone })_{6}\right]^{2+}$				
	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7
1	32.804	23.329	1.288	4.495	3.785
1-MeOH	32.717	23.395	1.344	4.403	3.692
1.EtOH	32.866	23.685	1.353	4.424	3.587
1.PrOH	32.831	23.680	1.361	4.401	3.569
1-BuOH	32.760	23.946	1.476	4.115	3.200
compound	CShM parameters (${ }^{*}$) for the five-coordinated equatorial plane of the coordination polyhedra of Dy(III) complexes, the $\left[\mathrm{Dy}{ }^{\text {II' }}(\mu-\mathrm{NC})(4-\text { pyone })_{4}\right]^{2+}$ part (see Fig. 1b and S12c)				
	PP-5	vOC-5		TBPY-5	SPY-5
1	1.384	24.179		28.955	24.799
$1 \cdot \mathrm{MeOH}$	1.461	23.906		28.659	24.510
1.EtOH	1.511	23.909		28.336	24.478
1.PrOH	1.535	23.967		28.398	24.547
1.BuOH	1.718	23.184		27.326	23.702

*CShM parameters for six- and seven-coordinated complexes: ${ }^{\text {s1,s2 }}$
for six-coordinated complexes:
CShM HP-6 - the parameter related to the hexagon geometry ($D_{6 \mathrm{~h}}$ symmetry)
CShM PPY-6 - the parameter related to the pentagonal pyramid geometry ($C_{5 v}$ symmetry)
CShM OC-6 - the parameter related to the octahedron geometry (O_{h} Symmetry)
CShM TPR-6 - the parameter related to the trigonal prism geometry ($D_{3 h}$ symmetry)

for seven-coordinated complexes:

CShM HP-7 - the parameter related to the heptagon geometry ($D_{\text {7h }}$ symmetry)
CShM HPY-7 - the parameter related to the hexagonal pyramid geometry ($C_{6 v}$ symmetry)
CShM PBPY-7 - the parameter related to the pentagonal bipyramid geometry ($D_{5 h}$ symmetry)
CShM COC-7 - the parameter related to the capped octahedron geometry ($C_{3 v}$ symmetry)
CShM CTPR-7 - the parameter related to the capped trigonal prism geometry ($C_{2 v}$ symmetry)
for five-coordinated complexes:
CShM HP-5 - the parameter related to the pentagon geometry ($D_{5 h}$ symmetry)
CShM HPY-5 - the parameter related to the vacant octahedron geometry ($C_{4 V}$ symmetry)
CShM PBPY-5 - the parameter related to the trigonal bipyramid geometry ($D_{3 h}$ symmetry)
CShM COC-5 - the parameter related to the square pyramid geometry (C4v symmetry)
The value of CShM $=0$ is ascribed to an ideal geometry. The increase of the CShM parameter above 0 represents the increasing distortion from an ideal polyhedron.

Fig. S12 Comparison of selected distances in a tetrametallic $\left\{\mathrm{Dy}^{I I I}{ }_{2} \mathrm{Fe}^{1 I}{ }_{2}\right\}^{6+}$ molecule and the coordination polyhedron of Dy(III) complexes (a, b; Tables S2, S4, S6, S8, and S10), CShM parameters for Fe(II) and Dy(III) complexes (c; Table S 12), and selected distances of supramolecular interactions (d; Tables $\mathrm{S} 3, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 9$, and S 11) in the structure of 1, $1 \cdot \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$. Structural visualization is presented using the example of $\mathbf{1}$ (central panel).
(a)

Fig. S13 The comparison of experimental ($T=300 \mathrm{~K}$) and calculated powder X-ray diffraction (P-XRD) patterns of 1, $1 \cdot \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$, presented both in the broad 2Θ range of $3-30^{\circ}$ as well as in the limited low angle region of $4-12^{\circ}(a)$ and the experimental room-temperature P-XRD patterns obtained for the polycrystalline sample of $\mathbf{1} \cdot \mathbf{M e O H}$ exposed to various solvent vapors and air (for details see Fig. S16). Experimental data in (a) were compared with the P-XRD patterns calculated from the respective structural models obtained from the singlecrystal X-ray diffraction (SC-XRD) structural analyses ($T=100 \mathrm{~K}$, Table S1).
(a)

(b)

(c)

(d)

Fig. S14 The electrospray ionization mass spectra (ESI-MS) of 1 in methanol (a), acetonitrile (b), acetone (c), and water (d) in positive (left panel) and negative (right panel) ion modes. Only signals above the 1% of relative intensity are marked. The m / z values of the most intense peaks and the theoretical values of selected molecules are marked. Selected spectral parameters of the most intense peaks are summarized in Table S13 (see below), while the interpretation for selected ones is described in the comment provided below Table S13.

Table S13 Selected spectral parameters of the most intense peaks of electrospray ionization mass spectra (ESI-MS) of $\mathbf{1}$ in methanol, acetonitrile, acetone, and water in positive and negative ion modes (see Fig. S14 above).

m / z	relative intensity / \%	full width at half maximum	m / z	relative intensity / \%	full width at half maximum
positive ion mode			negative ion mode		
1 in methanol					
96.0452	83.6	0.0042	79.9572	10.5	0.0038
181.0771	12.6	0.0060	94.0297	1.2	0.0044
208.0372	19.8	0.0062	98.9555	4.9	0.0043
368.0720	100.0	0.0074	148.9529	100	0.0110
368.5735	42.8	0.0075	149.0427	1.6	0.0149
369.0748	9.1	0.0082	149.1060	1.6	0.0180
442.0767	26.8	0.0096	149.2370	0.9	0.0192
448.0635	16.9	0.0100	149.3426	2.3	0.0051
491.1698	41.1	0.0100	149.9543	3.4	0.0075
492.0724	12.1	0.0114	150.9484	10.6	0.0053
1 in acetonitrile					
96.0457	49.3	0.0041	79.9566	16.2	0.0037
208.0376	58.6	0.0062	98.9548	7.3	0.0043
208.5391	16.7	0.0062	148.9522	100	0.0126
297.0747	12.9	0.0076	149.0080	1.3	0.0090
368.6730	100.0	0.0154	149.0417	2.3	0.0144
368.8740	85.3	0.0078	149.1050	2	0.0175
369.0752	19.0	0.0077	149.3421	3.3	0.0052
442.0770	22.8	0.0095	149.9533	4.8	0.0068
443.0796	6.4	0.0107	150.9472	15.3	0.0053
448.0637	20.7	0.0096	320.8917	2.4	0.0094
1 in acetone					
96.0457	23	0.0042	79.9564	17.5	0.0037
118.0278	6.2	0.0047	98.9547	7.8	0.0043
208.0379	9	0.0062	148.9520	100.0	0.0126
298.0726	47	0.0074	149.0078	1.4	0.0089
298.2741	20.5	0.0076	149.0415	2.4	0.0144
304.2630	9	0.0081	149.1048	2.0	0.0174
368.4865	100	0.0136	149.1567	1.3	0.0207
369.5895	36.6	0.0068	149.3419	3.4	0.0052
448.0638	9.9	0.0102	149.9531	4.9	0.0068
467.3728	5.3	0.0113	150.9471	15.5	0.0053

1 in water						
96.0459	96.6	0.0041	79.9565	16.9	0.0037	
97.0491	5.6	0.0045	98.9548	7.6	0.0043	
115.0198	6.7	0.0046	148.9521	100.0	0.0126	
119.0312	5.8	0.0051	149.0079	1.4	0.0090	
124.0251	6.8	0.0048	149.0416	2.4	0.0144	
162.5387	6.3	0.0057	149.1049	2.0	0.0175	
234.2086	11.6	0.0077	149.2890	2.3	0.0132	
368.5280	100.0	0.0046	149.6476	4.1	0.0060	
448.0648	14.4	0.0025	150.4502	10.1	0.0061	
491.1711	13.0	0.0140	235.9194	9.0	0.0074	

Comment to Fig. S14 and Table S13: The ESI(-)-MS spectra of 1 in all tested solvents are quite similar. The most intense peak at m / z of ca. 148.95 corresponds well to the detection of trifluoromethanesulfonate, $\left\{\mathrm{CF}_{3} \mathrm{SO}_{3}\right\}^{-}$, anions (149.07). Additionally, in each of the spectra, there are small peaks at m / z of 79.96 and 98.95 , which presumably corresponds to $\left\{\mathrm{SO}_{3}\right\}^{-}$(80.06) and $\left\{\mathrm{SO}_{3} \mathrm{~F}\right\}^{-}$(99.07), resulting from the fragmentation of $\left\{\mathrm{CF}_{3} \mathrm{SO}_{3}\right\}^{-}$anions. The spectra collected in positive ionization mode are much more complicated. The peak at m / z of 96.05 , which are present in all solvents, is associated with the presence of a protonated form of 4-pyridone ligand, $\left\{(4 \text {-pyridone) } \mathrm{H}\}^{+}(96.10)\right.$. In all experiments, the most intense peak at ca. 368.7 is associated with the charged tetrametallic $\left\{\mathrm{Dy}^{\mathrm{III}}{ }_{2} \mathrm{Fe}^{\prime \mathrm{II}}\right\}^{6+}$ molecular unit or its fragmentation ion. The theoretical value of the whole molecule, $\left\{\left[D y(4-p y o n e)_{5}\right]_{2}\right.$ $\left.\left[\mathrm{Fe}(\mathrm{CN})_{2}(\text { phen })_{2}\right]_{2}\right]^{6+}$, is 368.76 , which matches perfectly with the experimental values. After the theoretical fragmentation of this molecule, the generated vacant coordination sites would be filled by solvent molecules. The theoretical m / z values of the considered (largest possible) fragments, e.g. \{[Dy(4-pyone) $\left.{ }_{4}(\mathrm{MeOH})\right]\left[\mathrm{Fe}(\mathrm{CN})_{2}\right.$ (phen) $\left.\left.)_{2}\right]\right\}^{3+},\left\{\left[\mathrm{Dy}(4-\mathrm{pyone})_{4}(\mathrm{MeOH})_{2}\right]\left[\mathrm{Fe}(\mathrm{CN})_{2}(\text { phen })_{2}\right]\right\}^{3+},\left\{\left[\mathrm{Dy}(4-\mathrm{pyone})_{5}(\mathrm{MeOH})\right]\left[\mathrm{Fe}(\mathrm{CN})_{2}(\text { phen })_{2}\right]\right\}^{3+},\left\{\left[\mathrm{Dy}(4-\text { pyone })_{5}\right.\right.$ $\left.\left.(\mathrm{MeOH})_{2}\right]\left[\mathrm{Fe}(\mathrm{CN})_{2}(\text { phen })_{2}\right]\right\}^{3+}$ and $\left\{\left[\mathrm{Dy}(4-\text { pyone })_{6}\right]\left[\mathrm{Fe}(\mathrm{CN})_{2}(\text { phen })_{2}\right]\right\}^{3+}$ in MeOH , are 347.74, 358.42, 379.44, 390.12 and 400.46, respectively, which are significantly different from the observed value. A more rich fragmentation of the molecule would lead to the formation of fragments with significantly different m / z values. On the other hand, this peak appears in every investigated solvent, therefore it cannot be related to the base peak. Moreover, the presented compounds can be repeatedly recrystallized from several solvents (see the experimental section in the main manuscript) which proves, that the whole tetrametallic $\left\{\mathrm{Dy}^{\mathrm{II}}{ }_{2} \mathrm{Fe}^{1 \mathrm{I}}{ }_{2}\right\}^{6+}$ molecule is stable after being transferred into the liquid solution, and the most intense peak in the MS spectrum comes from the presence of this molecule. In addition, depending on the solvent, the spectra differ in the presence of additional peaks with lower intensities. In MeOH and MeCN , the peak at m / z of 208.04 corresponds likely to the presence of $\left\{\mathrm{Fe}(\mathrm{phen})_{2}\right\}^{2+}(208.09)$ ion, while peak at m / z of 442.08 corresponds to $\left\{\mathrm{Fe}(\mathrm{CN})(\text { phen })_{2}\right\}^{+}(442.17)$ or $\left\{\left[\mathrm{Dy}(4-\mathrm{pyone})_{6}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right\}^{+}(441.97)\right.$ ions. In acetone, the peak at 298.27 corresponds to the presence of $\left\{\mathrm{Fe}(\mathrm{phen})_{3}\right\}^{2+}(298.23)$ ion. Additionally, in MeOH and water, the peak at m / z of 491.17 may be assigned to $\left\{\mathrm{Fe}(\mathrm{CN})_{2}(\mathrm{phen})_{2}+\mathrm{Na}\right\}^{+}(491.28)$ adduct. All these signals indicate that the $\left\{\mathrm{Dy}^{\mathrm{II}}{ }_{2} \mathrm{Fe}_{2}{ }^{\mathrm{II}}\right\}^{6+}$ molecule is fragmented in these experimental conditions, but detection of the peak at m / z of 368 indicates its presence in the solution. All these signals are consistent with literature values. ${ }^{53-55}$

Fig. S15 Solvatochromic properties of 1 in solution: the UV-vis absorption spectrum of 1 (solid lines) dissolved in $\mathrm{MeOH}(a)$, shown with the comparison with the spectrum of $\left[\mathrm{Fe}(\mathrm{CN})_{2}(\mathrm{phen})_{2}\right]$ precursor (dashed line, the inset), the UV-vis absorption spectra and the corresponding solution colors (shown on the CIE 1931 chromaticity diagram) for the crystals of 1 dissolved in various indicated solvents (the $1 \cdot 10^{-4} \mathrm{M}$ solutions; b, c), and the normalized electronic spectra of the crystals of 1 dissolved in different solvents, followed by the dependences of the absorption maximum position and molar absorption coefficient on the acceptor number of the solvent (d, e). ${ }^{56}$ Selected spectral parameters related to the presented solvatochromism of 1 are summarized in Table S14.

Fig. S16 The solid-state UV-vis absorption spectra of 1, 1.MeOH, 1•EtOH, 1.PrOH, and $1 \cdot \mathrm{BuOH}$, including the comparison of their solid-state absorption spectra with the spectra of the respective solutions obtained by dissolving the crystals of the indicated compounds in the appropriate alcohols which are present in the crystal structure (a), and the changes in solid-state UV-vis absorption spectra for the crystalline samples of all presented compounds exposed to selected solvent vapors (b). Part b shows photos of the solid-state solvatochromic effect for the crystals of 1, exposed to DMF and water vapors and air. Selected spectral parameters are summarized in Table S14 (see below).

Comment on the timescale of solvatochromic and vapochromic effects for 1:

Compounds 1, as well as $\mathbf{1} \cdot$ alcohol, are perfectly soluble in water and most typical organic solvents such as acetone, MeCN, simple alcohols, DMSO, or DMF, so the effect of changing the color of the solution after dissolution (solvatochromic effect), is, of course, immediate and permanent.

After evaporation of the solvent, the presented coordination compound can be either recovered in the microcrystalline form of 1 or, in the case of alcoholic solutions, with co-crystallizing solvent molecules as 1-alcohol. During the exposition of crystal of 1 or $\mathbf{1} \cdot$ alcohol to solvent vapors (a vapochromic effect), the color change effect is observed within a few minutes (the greater the color change, the faster the effect can be observed with the naked eye, e.g., for DMF in less than 1 minute), and its full saturation usually occurs after several minutes (the spectra that were measured after less than 10 min were a mixture of absorption observed as one very broad band).

The color saturation time after exposure to solvent vapors depends on its volatility (the more volatile the solvent, the faster its interaction with the crystals of the compound). For the least volatile ones, this process may take up to (for the full saturation) 30 minutes, however, the saturation also depends on the fineness of the crystals. All measurements we performed were made on a sample exposed to solvents for at least 60 minutes to ensure the complete process. Regarding the persistence of color after removing the crystals from the atmosphere of solvent vapors, it is analogous, that for volatile solvents the effect of returning to the original phase occurs faster than for less volatile ones (up to 30 minutes). In any case, the color persists long enough to allow the experiment to be carried out after removing the solvent from the atmosphere.

Table S14 Selected spectral parameters of the lowest-energy absorption band in the UV-vis absorption spectra of 1 dissolved in different solvents (Fig. S15) and the solid-state UV-vis absorption spectra of 1, 1•MeOH, 1•EtOH, 1•PrOH, and 1•BuOH exposed to selected solvent vapors (Fig. S16).

parameters of UV-vis absorption spectra of $\mathbf{1}$ dissolved in various indicated solvents (Fig. S15), compared with the acceptor number of investigated solvents			
solvent	λ / nm	$\varepsilon / 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$	acceptor no.
water	512.0	5.1	54.8
nitromethane	510.3	7.9	20.5
acetonitrile	522.0	9.2	18.9
acetone	524.0	5.7	12.5
ethanol	544.9	10.1	37.9
1-propanol	548.2	9.3	37.3
methanol	541.5	8.1	41.5
1-butanol	557.5	8.4	36.8
2-propanol	572.2	8.4	33.5
trichloromethane (CHCl_{3})	577.0	7.7	22.1
dimethyl sulfoxide (DMSO)	605.5	15.5	19.3
N,N-dimethylformamide (DMF)	613.0	11.0	16.0
pyridine	619.0	13.1	14.2
N,N-dimethylacetamide (DMA)	630.7	13.4	13.6

wavelength positions of the lowest-energy absorption band on the solid-state UV-vis absorption spectra of indicated compounds exposed to selected solvent vapors (Fig. S16) / nm

compound	on the air (as-synthesized)	water	acetone	N, N-dimethyl- formamide (DMF)	N, N-dimethyl- acetamide (DMA)
1	530.1	511.1	518.1	570.5	590.1
1•MeOH	532.2	511.2	519.3	571.8	589.6
1•EtOH	534.4	511.0	517.9	572.1	592.4
1•PrOH	528.9	511.2	518.5	569.3	589.4
1•BuOH	533.2	511.5	518.0	571.7	591.4

Fig. S17 Infrared (IR) absorption spectra of 1, 1•MeOH, 1•EtOH, 1•PrOH, and $\mathbf{1} \cdot \mathbf{B u O H}$ in the full $3800-700 \mathrm{~cm}^{-1}$ range (top) and the 2200-1980 cm^{-1} range of the stretching vibrations of cyanido ligands (bottom) compared with the spectrum of $\left[\mathrm{Fe}^{\prime \prime}(\mathrm{CN})_{2}(\text { phen })_{2}\right]$ precursor (a), and the infrared absorption spectra of $\mathbf{1} \cdot \mathbf{M e O H}$ obtained after the exposition of the air-dried sample to various solvent vapors and back to air (for details see Fig. S16) (b). In the (b) part, the spectra are shown both in the full $3800-700 \mathrm{~cm}^{-1}$ range (top) as well as in the limited $2200-1980 \mathrm{~cm}^{-1}$ region (bottom).

Fig. S18 Direct-current $(d c)$ magnetic characteristics, including the temperature dependences of the $\chi_{\mathrm{M}} T$ product under the external magnetic field of $H_{d c}=1000 \mathrm{Oe}$, and the field dependences of molar magnetization (M) collected at $T=1.8 \mathrm{~K}$ (the insets), for $\mathbf{1}(a), \mathbf{1} \cdot \mathbf{M e O H}(b), \mathbf{1} \cdot \mathbf{E t O H}(c), \mathbf{1} \cdot \mathbf{P r O H}(d)$, and $\mathbf{1} \cdot \mathbf{B u O H}(e)$, together with the comparison of the experimental $\chi_{M} T$ and $M(H)$ curves (blue circle points) and the theoretical ones (red solid lines), obtained using the $a b$ initio calculations, and, for $\mathbf{1}$, the fitting curves of the $\chi_{\mathrm{M}} T$ versus T plots for $\left\{\mathrm{Dy}^{\mathrm{III}}{ }_{2} \mathrm{Fe}^{\mathrm{II}}{ }_{2}\right\}^{6+}$ molecular cations, taking into account the Dy-Dy magnetic interactions with various indicated J values from the range between $+0.1 \mathrm{~cm}^{-1}$ and $-1.4 \mathrm{~cm}^{-1}(f)$. The details of the related calculations are provided below.

Fig. S19 Magnetic-field-variable alternate-current (ac) magnetic characteristics of 1 at $T=8 \mathrm{~K}$, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, χ_{M} ", under variable indicated $d c$ fields from the range of $0-10 \mathrm{kOe},(c)$ the related Argand plots, and (d) the field dependence of resulting relaxation times, τ. Colored solid curves in $(a-c)$ represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) shows the best fit taking into account indicated relaxation processes (the simultaneous fits for the temperature-dependent relaxation times are shown in Fig. S20-S21), while the dashed colored lines represent the respective course of individual magnetic relaxation processes. For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) part are gathered in Table S15.

Fig. S20 Temperature-variable alternate-current (ac) magnetic characteristics of $\mathbf{1}$ under the zero dc field, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-ofphase susceptibility, χ_{m} ", under variable indicated temperatures from the range of 2-12 K , (c) the related Argand plots, and $(d-e)$ the temperature dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the field-dependent relaxation times is shown in Fig. S19 and the temperature-dependent relaxation times under applied dc field are shown in Fig. S21), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the optimal $d c$ field of 600 Oe were visualized (see Fig. S21 for comparison). For details see the comment to Fig. S18S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S21 Temperature-variable alternate-current ($a c$) magnetic characteristics of 1 under the optimal $d c$ field, $H_{d c}$ of 600 Oe , shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}^{\prime}}$, and (b) the out-of-phase susceptibility, $\chi_{\mathrm{m}}{ }^{\prime \prime}$, under variable indicated temperatures from the range of $2-14 \mathrm{~K}$, (c) the related Argand plots, and ($d-e$) the temperature dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the fielddependent relaxation times is shown in Fig. S19 and the temperature-dependent relaxation times under the zero $d c$ field are shown in Fig. S20), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the zero $d c$ field were visualized (see Fig. S20 for comparison). For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S22 Magnetic-field-variable alternate-current (ac) magnetic characteristics of $\mathbf{1} \cdot \mathbf{M e O H}$ at $T=8 \mathrm{~K}$, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, χ_{M} ", under variable indicated dc fields from the range of $0-10 \mathrm{kOe},(c)$ the related Argand plots, and (d) the field dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) shows the best fit taking into account indicated relaxation processes (the simultaneous fits with the temperature-dependent relaxation times are shown in Fig. S23-S24), while the dashed colored lines represent the respective course of individual relaxation processes. For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) part are gathered in Table S15.
(a)

(c)

(e)

(b)

(d)

2.0 K
3.0 K
3.5
4.0 K
4.5 K
5.0 K
5.5 K
6.0
6.5
- 7.0 K
- 7.5 K
-8.0 K
-8.5 K
-9.0 K
-9.5 K
10.0
10.5
11.0
1.5
12.0

Fig. S23 Temperature-variable alternate-current ($a c$) magnetic characteristics of $\mathbf{1} \cdot \mathbf{M e O H}$ under the zero $d c$ field, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, χ_{m} ", under variable indicated temperatures from the range of 2-12 K, (c) the related Argand plots, and $(d-e)$ the temperature dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the field-dependent relaxation times is shown in Fig. S22 and the temperature-dependent relaxation times under the applied dc field are shown in Fig. S24), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the optimal $d c$ field of 600 Oe were visualized (see Fig. S24 for comparison). For details see the comment to Fig. S18S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S24 Temperature-variable alternate-current (ac) magnetic characteristics of $\mathbf{1} \cdot \mathbf{M e O H}$ under the optimal $d c$ field, $H_{d c}$ of 600 Oe shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime \prime}$, under variable indicated temperatures from the range of 2-14 K, (c) the related Argand plots, and ($d-e$) the temperature-dependence of resulting relaxation times, τ. Colored solid curves in $(a-c)$ represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the field-dependent relaxation times is shown in Fig. S22 and the temperature-dependent relaxation times under the zero dc field are shown in Fig. S23), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the zero $d c$ field were visualized (see Fig. S23 for comparison). For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S25 Magnetic-field-variable alternate-current (ac) magnetic characteristics of 1•EtOH at $T=8 \mathrm{~K}$, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, χ_{M} ", under variable indicated dc fields from the range of $0-10 \mathrm{kOe},(c)$ the related Argand plots, and (d) the field-dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) shows the best fit taking into account indicated relaxation processes (the simultaneous fits with the temperature-dependent relaxation times are shown in Fig. S26-S27), while the dashed colored lines represent the respective course of individual relaxation processes. For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) part are gathered in Table S15.
(a)

(c)

(e)

(b)

(d)

2.0 K 2.5 K
-3.0K
-3.5K
-4.0 K
-4.5 K
-5.0 K
-5.5 K
-6.0 K
-6.5 K
- 7.0 K
-7.5 K
-8.0 K
-8.5 K
-9.0 K
-9.5 K
-10.0 K
- 10.5 K
-11.0 K
-11.5 K
-12.0 K

Fig. S26 Temperature-variable alternate-current (ac) magnetic characteristics of 1-EtOH under the zero $d c$ field, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{m}^{\prime}}$, and (b) the out-of-phase susceptibility, $\chi_{\mathrm{m}}{ }^{\prime \prime}$, under variable indicated temperatures from the range of $2-12 \mathrm{~K},(c)$ the related Argand plots, and ($d-e$) the temperature-dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the fielddependent relaxation times is shown in Fig. S25 and the temperature-dependent relaxation times under the applied $d c$ field are shown in Fig. S27), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the optimal $d c$ field of 600 Oe were visualized (see Fig. S27 for comparison). For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S27 Temperature-variable alternate-current ($a c$) magnetic characteristics of 1-EtOH under the optimal dc field, $H_{d c}$ of 600 Oe , shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{m}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, χ_{m} ", under variable indicated temperatures from the range of 2-14 K, (c) the related Argand plots, and ($d-e$) the temperature dependence of resulting relaxation times, τ. Colored solid curves in $(a-c)$ represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the field-dependent relaxation times is shown in Fig. S25 and the temperature-dependent relaxation times under the zero dc field are shown in Fig. S26), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the zero $d c$ field were visualized (see Fig. S26 for comparison). For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S28 Magnetic-field-variable alternate-current (ac) magnetic characteristics of $\mathbf{1} \cdot \mathrm{PrOH}$ at $T=8 \mathrm{~K}$, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime \prime}$, under variable indicated $d c$ fields from the range of $0-10 \mathrm{kOe},(c)$ the related Argand plots, and (d) the field-dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) shows the best fit taking into account indicated relaxation processes (the simultaneous fits with the temperature-dependent relaxation times are shown in Fig. S29-S30), while the dashed colored lines represent the respective course of individual relaxation processes. For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) part are gathered in Table S15.
(a)

(c)

(b)

(d)

2.0 K 2.5 K
-3.0K
-3.5K
-4.0 K
-4.5 K
-5.0 K
-5.5 K
-6.0 K
-6.5 K
- 7.0 K
-7.5 K
-8.0 K
-8.5 K
-9.0 K
-9.5 K
-10.0 K
- 10.5 K
-11.0 K
-11.5 K
-12.0 K

(e)

Fig. S29 Temperature-variable alternate-current (ac) magnetic characteristics of 1•PrOH under the zero dc field, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, χ_{m} ", under variable indicated temperatures from the range of 2-12 K, (c) the related Argand plots, and $(d-e)$ the temperature-dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the fielddependent relaxation times is shown in Fig. S28 and the temperature-dependent relaxation times under the applied $d c$ field are shown in Fig. S30), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the optimal $d c$ field of 600 Oe were visualized (see Fig. S30 for comparison). For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S30 Temperature-variable alternate-current (ac) magnetic characteristics of 1•PrOH under the optimal dc field, $H_{d c}$ of 600 Oe , shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{m}^{\prime}}$, and (b) the out-of-phase susceptibility, $\chi_{\mathrm{m}}{ }^{\prime \prime}$, under variable indicated temperatures from the range of 2-14 K , (c) the related Argand plots, and $(d-e)$ the temperature-dependence of resulting relaxation times, τ. Colored solid curves in $(a-c)$ represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the field-dependent relaxation times is shown in Fig. S 28 and the temperature-dependent relaxation times under the zero dc field are shown in Fig. S29), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the zero dc field were visualized (see Fig. S29 for comparison). For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S31 Magnetic-field-variable alternate-current (ac) magnetic characteristics of $1 \cdot \mathrm{BuOH}$ at $T=8 \mathrm{~K}$, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{M}}{ }^{\prime}$, and (b) the out-of-phase susceptibility, χ_{m} ", under variable indicated $d c$ fields from the range of $0-10 \mathrm{kOe},(c)$ the related Argand plots, and (d) the field dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) shows the best fit taking into account indicated relaxation processes (the simultaneous fits with the temperature-dependent relaxation times are shown in Fig. S32-S33), while the dashed colored lines represent the respective course of individual relaxation processes. For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) part are gathered in Table S15.
(a)

(c)

(b)

(d)

2.0 K 2.5 K
3.0 K
3.5 K
4.0 K
4.5 K
5.0 K
5.5 K
6.0 K
6.5 K
7.0 K
7.5
8.
8.5 K
9.0 K
9.5 K
10.0
. 5
11.0 K
11.5
12.0

(e)

Fig. S32 Temperature-variable alternate-current (ac) magnetic characteristics of 1-BuOH under the zero $d c$ field, shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{m}^{\prime}}$, and (b) the out-of-phase susceptibility, $\chi_{\mathrm{m}}{ }^{\prime \prime}$, under variable indicated temperatures from the range of $2-12 \mathrm{~K}$, (c) the related Argand plots, and $(d-e)$ the temperature dependence of resulting relaxation times, τ. Colored solid curves in ($a-c$) represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the field-dependent relaxation times is shown in Fig. S 31 and the temperature-dependent relaxation times under the applied dc field are shown in Fig. S33), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the optimal dc field of 600 Oe were visualized (see Fig. S33 for comparison). For details see the comment to Fig. S18S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Fig. S33 Temperature-variable alternate-current (ac) magnetic characteristics of 1•BuOH under the optimal dc field, $H_{d c}$ of 600 Oe , shown with the related analyses: the frequency dependences of (a) the in-phase susceptibility, $\chi_{\mathrm{m}^{\prime}}$, and (b) the out-of-phase susceptibility, χ_{m} ", under variable indicated temperatures from the range of 2-14 K, (c) the related Argand plots, and ($d-e$) the temperature dependence of resulting relaxation times, τ. Colored solid curves in $(a-c)$ represent the best fits using the generalized Debye model for a single relaxation process. The red solid line in (d) and (e) shows the best fit taking into account indicated relaxation processes (the simultaneous fit with the field-dependent relaxation times is shown in Fig. S31 and the temperature-dependent relaxation times under the zero dc field are shown in Fig. S32), while dashed colored lines represent the respective course of individual relaxation processes. In the background of the (d) and (e) parts, the results of the temperature dependence of relaxation time for the zero $d c$ field were visualized (see Fig. S32 for comparison). For details see the comment to Fig. S18-S34 below. Best-fit parameters for the (d) and (e) parts are gathered in Table S15.

Table S15 Summary of the critical slow magnetic relaxation parameters for reported compounds of $\mathbf{1}, \mathbf{1} \cdot \mathbf{M e O H}$, 1-EtOH, 1-PrOH, and 1-BuOH, determined within the three-dimensional simultaneous fitting of the field- and temperature-dependences of relaxation times (see Fig. S19-S21, Fig. S22-S24, Fig. S25-S27, Fig. S28-S30, and Fig. S31-S33 for $\mathbf{1}, \mathbf{1} \cdot \mathrm{MeOH}, \mathbf{1} \cdot \mathbf{E t O H}, \mathbf{1} \cdot \mathbf{P r O H}$, and $\mathbf{1} \cdot \mathbf{B u O H}$, respectively). The details of applied fitting procedures are discussed in the comment below. The resulting percentage contributions of direct, QTM, Raman, and Orbach processes to the overall magnetic relaxation time are presented in Table S16 and Fig. 34.

compound	$\mathbf{1}$	$\mathbf{1} \cdot \mathrm{MeOH}$	$\mathbf{1} \cdot \mathrm{EtOH}$	$\mathbf{1} \cdot \mathrm{PrOH}$	$\mathbf{1} \cdot \mathrm{BuOH}$
$A_{\text {direct }} / \mathrm{s}^{-1} \mathrm{~K}^{-1} \mathrm{Oe}^{-m}$	$2.38(1) \cdot 10^{-7}$	$1.00(3) \cdot 10^{-10}$	$2.26(5) \cdot 10^{-10}$	$1.49(4) \cdot 10^{-9}$	$9.12(8) \cdot 10^{-11}$
m	$2.08(4)$	$2.86(4)$	$2.71(7)$	$2.55(3)$	$2.89(8)$
$B_{\text {Raman }} / \mathrm{s}^{-1} \mathrm{~K}^{-n}$	$4.11(6) \cdot 10^{-4}$	$7.22(7) \cdot 10^{-4}$	$2.66(3) \cdot 10^{-4}$	$3.49(8) \cdot 10^{-4}$	$2.72(6) \cdot 10^{-4}$
n	$6.72(2)$	$6.36(1)$	$6.33(4)$	$6.24(3)$	$6.22(5)$
$\tau_{Q T M}$ for $H_{\mathrm{dc}}=0$ Oe $/ \mathrm{s}$	$0.32(2)$	$0.29(5)$	$0.61(4)$	$1.29(5)$	$1.23(7)$
$\tau_{Q T M}$ for $H_{\mathrm{dc}}=600$ Oe $/ \mathrm{s}$	$1.61(6)$	$1.06(7)$	$1.23(9)$	$4.63(6)$	$5.44(9)$

Table S16 Percentage contributions of direct, OTM, Raman and Orbach processes to the overall relaxation time of 1, 1•MeOH, 1•EtOH, 1•PrOH, and 1•BuOH for indicated external dc fields, $H_{d c}$ (see Fig. S20-S21, Fig. S23-S24, Fig. S26-S27, Fig. S29-S30, and Fig. S32-S33 for $\mathbf{1 , 1} \mathbf{1} \cdot \mathrm{MeOH}, 1 \cdot \mathrm{EtOH}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$, respectively). The percentage contributions are given for the inversion of the relaxation time (τ^{-1}) and calculated using the best-fit parameters gathered in Table S15.

T/K	\% direct	\% QTM	\% Raman	\% Orbach	\% direct	\% QTM	\% Raman	\% Orbach
	compound 1							
	0 Oe				600 Oe			
2.0	-	98.62	1.38	0.00	29.96	65.49	4.55	0.00
2.5	-	94.12	5.88	0.00	30.37	53.11	16.52	0.00
3.0	-	82.47	17.53	0.00	24.00	36.43	38.57	0.00
3.5	-	62.56	37.44	0.00	16.74	20.91	62.35	0.00
4.0	-	40.53	59.47	0.00	9.92	10.84	79.24	0.00
4.5	-	23.61	76.39	0.00	5.67	5.51	88.82	0.00
5.0	-	13.22	86.78	0.00	3.28	2.87	93.85	0.00
5.5	-	7.43	92.57	0.00	1.96	1.56	96.48	0.00
6.0	-	4.29	95.71	0.00	1.21	0.88	97.91	0.00
6.5	-	2.55	97.44	0.01	0.77	0.52	98.70	0.01
7.0	-	1.56	98.30	0.14	0.51	0.32	99.04	0.13
7.5	-	0.98	97.83	1.19	0.34	0.20	98.27	1.19
8.0	-	0.60	92.35	7.05	0.22	0.12	92.59	7.07
8.5	-	0.31	72.38	27.31	0.12	0.06	72.48	27.34
9.0	-	0.12	39.53	60.35	0.05	0.02	39.55	60.38
T / K	compound 1-MeOH							
	0 Oe				600 Oe			
2.0	-	98.31	1.69	0.00	1.73	92.43	5.84	0.00
2.5	-	93.37	6.63	0.00	1.82	77.85	20.33	0.00
3.0	-	81.54	18.46	0.00	1.51	53.73	44.76	0.00
3.5	-	62.36	37.64	0.00	1.01	30.73	68.26	0.00
4.0	-	41.47	58.53	0.00	0.60	16.05	83.35	0.00
4.5	-	25.09	74.91	0.00	0.35	8.32	91.33	0.00
5.0	-	14.63	85.37	0.00	0.21	4.44	95.35	0.00
5.5	-	8.55	91.45	0.00	0.13	2.47	97.40	0.00

6.0	-	5.10	94.90	0.00	0.08	1.44	98.48	0.00
6.5	-	3.13	96.86	0.01	0.05	0.87	99.07	0.01
7.0	-	1.97	97.95	0.08	0.04	0.54	99.35	0.07
7.5	-	1.27	98.02	0.71	0.02	0.35	98.92	0.71
8.0	-	0.81	94.38	4.81	0.02	0.22	94.92	4.84
8.5	-	0.46	77.74	21.80	0.01	0.12	78.00	21.87
9.0	-	0.18	44.35	55.47	0.00	0.05	44.41	55.54
T / K	compound 1-EtOH							
	0 Oe				600 Oe			
3.5	-	68.78	31.22	0.00	1.72	51.44	46.84	0.00
4.0	-	48.61	51.39	0.00	1.21	31.65	67.14	0.00
4.5	-	30.98	69.02	0.00	0.78	18.13	81.08	0.00
5.0	-	18.72	81.28	0.00	0.49	10.25	89.26	0.00
5.5	-	11.19	88.81	0.00	0.31	5.89	93.80	0.00
6.0	-	6.77	93.23	0.00	0.20	3.48	96.32	0.00
6.5	-	4.19	95.81	0.00	0.13	2.13	97.74	0.00
7.0	-	2.66	97.33	0.01	0.09	1.34	98.56	0.01
7.5	-	1.73	98.15	0.12	0.06	0.87	98.95	0.12
8.0	-	1.15	97.93	0.92	0.04	0.58	98.45	0.93
8.5	-	0.75	94.00	5.25	0.03	0.38	94.32	5.27
9.0	-	0.44	78.61	20.95	0.02	0.22	78.77	20.99
9.5	-	0.19	48.49	51.32	0.01	0.10	48.53	51.36
10.0	-	0.06	21.72	78.22	0.00	0.03	21.72	78.25
	compound 1-PrOH							
	0 Oe				600 Oe			
3.5	-	47.36	52.64	0.00	5.51	18.90	75.59	0.00
4.0	-	28.12	71.88	0.00	3.16	9.50	87.34	0.00
4.5	-	15.80	84.20	0.00	1.82	4.87	93.31	0.00
5.0	-	8.86	91.14	0.00	1.08	2.60	96.32	0.00
5.5	-	5.09	94.91	0.00	0.67	1.46	97.87	0.00
6.0	-	3.02	96.98	0.00	0.43	0.86	98.71	0.00
6.5	-	1.86	98.12	0.02	0.28	0.52	99.18	0.02

7.0	-	1.18	98.68	0.14	0.19	0.33	99.33	0.15
7.5	-	0.76	98.46	0.78	0.13	0.21	98.88	0.78
8.0	-	0.50	96.30	3.20	0.09	0.14	96.55	3.22
8.5	-	0.32	89.30	10.38	0.06	0.09	89.45	10.40
9.0	-	0.18	74.14	25.68	0.04	0.05	74.21	25.70
9.5	-	0.09	52.50	47.41	0.02	0.03	52.52	47.43
10.0	-	0.04	32.19	67.77	0.01	0.01	32.20	67.78
T / K	compound 1-BuOH							
	0 Oe				600 Oe			
3.5	-	54.31	45.69	0.00	3.88	20.42	75.70	0.00
4.0	-	34.04	65.96	0.00	2.23	10.25	87.52	0.00
4.5	-	19.83	80.17	0.00	1.28	5.24	93.48	0.00
5.0	-	11.35	88.65	0.00	0.76	2.80	96.44	0.00
5.5	-	6.59	93.41	0.00	0.47	1.57	97.96	0.00
6.0	-	3.94	96.06	0.00	0.30	0.92	98.78	0.00
6.5	-	2.43	97.56	0.01	0.20	0.56	99.23	0.01
7.0	-	1.54	98.38	0.08	0.13	0.35	99.43	0.09
7.5	-	1.00	98.55	0.45	0.09	0.23	99.23	0.45
8.0	-	0.66	97.36	1.98	0.07	0.15	97.79	1.99
8.5	-	0.43	92.65	6.92	0.05	0.10	92.92	6.93
9.0	-	0.26	80.92	18.82	0.03	0.06	81.07	18.84
9.5	-	0.14	61.25	38.61	0.02	0.03	61.30	38.65
10.0	-	0.07	39.62	60.31	0.01	0.02	39.64	60.33

Fig. S34 Temperature dependence of percentage contributions of direct, OTM, Raman, and Orbach processes to the overall relaxation time of $\mathbf{1 , 1} \cdot \mathbf{M e O H}, \mathbf{1} \cdot \mathbf{E t O H}, 1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$ under the zero dc field (empty colored circles) and under the optimal $d c$ field, $H_{d c}$ of 600 Oe (full colored circles). The contributions, calculated for the inversion of the relaxation time $\left(\tau^{-1}\right)$ using the best-fit parameters gathered in Table S15, are presented in Table S16.

Comment to Fig. S18-S34 and Tables S15-S16 - fitting of ac magnetic data using the relACs programme

All field- and temperature-variable alternate-current (ac) magnetic characteristics were fitted using a relACs program (for details regarding this software, see the ref. [S7]). Briefly, all ac magnetic characteristics (frequency dependences of out-of-phase and in-phase magnetic susceptibilities together with the related Argand plots) were simultaneously fitted using a generalized Debye model:

$$
\chi(\omega)=\chi_{S}+\frac{\chi_{T}-\chi_{S}}{(1+i \omega \tau)^{1-\alpha}}
$$

where χ_{S} is the adiabatic susceptibility, χ_{T} is the isothermal susceptibility and α represents the distribution of relaxation times (τ). The best-fit curves obtained within the relACs program presented in Fig. S19-S21, Fig. S22S24, Fig. S25-S27, Fig. S28-S30, and Fig. S31-S33 for 1, 1•MeOH, 1•EtOH, 1•PrOH, and 1•BuOH, respectively. The resulting relaxation times were plotted against the magnetic field (Fig. 19, Fig 22, Fig. 25, Fig 28, and Fig. 31) or temperature (Fig. S20-S21, Fig. S23-S24, Fig. S26-S27, Fig. S29-S30, and Fig. S32-S33). The whole set of dependencies for each compound (three curves) was simultaneously fitted taking into account four different magnetic relaxation processes:

$$
\tau^{-1}(H, T)=A_{\text {direct }} H^{m} T+B_{\text {Raman }} T^{n}+\tau_{Q T M}{ }^{-1}+\tau_{0}{ }^{-1} \exp \left(-\frac{\Delta E}{k_{B} T}\right)
$$

where the first component describes a field-induced direct process, the second one reflects Raman spin-lattice relaxation, the third represents temperature-independent quantum tunneling of magnetization effect (QTM), and the last is the Orbach thermal relaxation through the real excited m_{\jmath} levels. The energy barrier values of the Orbach process (ΔE) were taken from the ab initio calculations as the energy of the first excited m_{J} level (Tables S23-S27). They were fixed during the fitting procedure as leaving the related energy barrier as a free fitting parameter leads to unreliable results and the instability of the fitting procedure due to the over-parameterization. Despite a large number of remaining parameters, the procedure realized within the relACs program, using the simultaneous fitting of three curves allows us to obtain reasonable physical parameters. The best-fit curves, together with the course of individual relaxation processes, are shown in Fig. S19-S21, Fig. S22-S24, Fig. S25-S27, Fig. S28-S30, and Fig. S31S 33 for $\mathbf{1}, \mathbf{1} \cdot \mathrm{MeOH}, \mathbf{1} \cdot \mathrm{EtOH}, \mathbf{1} \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathrm{BuOH}$, respectively. To show the significant influence of the Orbach thermal relaxation on the slow magnetic relaxation time, an alternative fitting excluding this process was also made (Fig. S20e-S21e, Fig. S23e-S24e, Fig. S26e-S27e, Fig. S29e-S30e, and Fig. S32e-S33e for 1, 1•MeOH, 1•EtOH, $1 \cdot \mathrm{PrOH}$, and $1 \cdot \mathrm{BuOH}$, respectively). The whole sets of best-fit parameters are gathered in Table S15, while the T dependence of percentage contributions of individual relaxation processes was gathered in Table S16 and presented in Fig. S34.

Comment to Fig. S35 and Tables S17-S27 - details of the ab initio calculations

The ab initio calculations for all compounds, $\mathbf{1}, \mathbf{1} \cdot \mathrm{MeOH}, \mathbf{1} \cdot \mathbf{E t O H}, \mathbf{1} \cdot \mathrm{PrOH}$, and $\mathbf{1} \cdot \mathbf{B u O H}$, were performed using the crystal structure taken from the single-crystal X-ray diffraction (SC-XRD) experiment without geometry optimization (Table S1). The molecular fragment that was used in the computational procedure was a part of the cyanidobridged coordination tetrametallic $\left\{\mathrm{Dy}^{\mathrm{II} \mathrm{\prime}}{ }_{2} \mathrm{Fe}^{\mathrm{II}}{ }_{2}\right\}^{6+}$ molecule, consisting of the central Dy^{3+} ion with the ligands in its first coordination sphere together with the closest Dy ${ }^{3+}$ ion which was substituted by the closed-shell, diamagnetic Y^{3+} ion to enable multiconfigurational treatment of the fragment (see Fig. S35). We found, by comparison to the experimental characteristics, that the above-described cluster was sufficient to properly represent the crystal field around the metallic center. To examine local magnetic properties of Dy(III) centers, State Average Complete Active Space Self-Consistent Field (SA-CASSCF) calculations were performed using the OpenMolcas software. ${ }^{58}$ Scalar relativistic effects were taken into account by employing two-component second-order Douglas-Kroll-Hess (DKH2) Hamiltonian together with relativistic Atomic Natural Orbital basis sets of the ANO-RCC type. ${ }^{59-511}$ To save disk space for computations, the Cholesky decomposition of ERI-s (electron repulsion integrals) was used with the $1.0 \cdot 10^{-8}$ threshold. The used model employed the VTZP basis function quality for Dy(III) centers, the VDZP for atoms occupying the first coordination sphere, and the VDZ for the others. A description of the employed basis set and its contractions are presented in Table S17. In the CASSCF step, the active space was composed of seven 4f-orbitals of Dy(III) centers with 9 active electrons - CAS(9in7), and 21 sextets, 224 quartets, and 490 doublets states arising from different possible electron distributions within $4 f^{9}$ configuration were evaluated. In the next step, all sextets, 128 quartets, and 130 doublets optimized as spin-free states in the CASSCF step were mixed within the Restricted Active Space State Interaction (RASSI) submodule by Spin-Orbit-Coupling (SOC) within the atomic mean-field (AMFI) approximation. ${ }^{\text {S12,S13 }}$ In the final step, the resulting 898 spin-orbit states were analyzed using the SINGLE_ANISO module to obtain main magnetic axes and the pseudo- g-tensors of each Kramers doublet, simulate $\chi_{M}(T)$ and $M(H)$ magnetic dependences (Fig. S18 and Fig. S35), and decompose the ground SO states into ones with a definite projection of the total momentum on the located quantization z-axis of the ground Kramers doublet. ${ }^{\text {s14,S15 }}$ The energy splitting of the ground ${ }^{6} \mathrm{H}_{15 / 2}$ multiplet of $\mathrm{Dy}(\mathrm{III})$ centers in $\mathbf{1}, \mathbf{1} \cdot \mathbf{M e O H}, \mathbf{1} \cdot \mathbf{E t O H}, \mathbf{1} \cdot \mathbf{P r O H}$, and $\mathbf{1} \cdot \mathbf{B u O H}$ together with pseudo- g-tensor components and the composition of the ground doublet in the $\mid J=15 / 2, m_{J}>$ basis are presented in Tables S18-S22.

After obtaining the local ab initio magnetic properties of each Dy ${ }^{3+}$ ion, we employed the POLY_ANISO module to simulate the magnetic interaction of two adjacent centers in each tetrametallic $\left\{\mathrm{Dy}^{\mathrm{III}}{ }_{2} \mathrm{Fe}^{\mathrm{II}}{ }_{2}\right\}^{6+}$ molecule. We took into account both dipole-dipole and exchange interactions. The former are treated exactly using the positions and magnetic momenta of Dy (III) centers found during the ab initio procedure:

$$
H_{d i p}=\frac{\mu_{0}}{4 \pi r^{3}}\left[\boldsymbol{\mu}_{\mathbf{1}} \cdot \boldsymbol{\mu}_{\mathbf{2}}-\frac{3}{r^{2}}\left(\boldsymbol{\mu}_{\mathbf{1}} \cdot \boldsymbol{r}\right)\left(\boldsymbol{\mu}_{\mathbf{2}} \cdot \boldsymbol{r}\right)\right]
$$

where $\boldsymbol{\mu}_{\boldsymbol{1}}$ and $\boldsymbol{\mu}_{\mathbf{2}}$ are magnetic dipole moment operators for two Dy (III) centers and \boldsymbol{r} is the distance between them. The exchange interaction is accounted for within the Lines model ${ }^{\text {S16 }}$ utilizing a single, effective isotropic exchange parameter $\boldsymbol{J}_{\text {Lines }}$ with the Hamiltonian equation:

$$
H_{\text {exch }}=\boldsymbol{J}_{\text {Lines }} \cdot \tilde{\boldsymbol{S}}_{\mathbf{1}} \cdot \tilde{\boldsymbol{S}}_{\mathbf{2}}
$$

where \tilde{S}_{1} and \tilde{S}_{2} are previously found ab initio pseudo-spin operators ($\boldsymbol{S}=15 / 2$) corresponding to the states with definite projections on the z-quantization axis of the ground Kramers doublet (the same used for the decomposition in Tables S18-S22). Therefore the exchange manifold has a dimension of 16×16 exchange states, and the rest of the excited states are treated as local states on each magnetic site, not participating in the exchange but with their contributions accounted for the simulation of magnetic properties. In this regard, the magnitude of the obtained exchange parameter cannot be compared to the usual, phenomenological pure spin Hamiltonians widely present in the literature. The $\boldsymbol{J}_{\text {Lines }}$ effective exchange parameter is the only unknown in the model, and it is found by fitting the simulated $\chi_{\mathrm{M}}(T)$ dependencies to the experimental data (Fig. S18 and Fig. S35). After construction and diagonalization of the exchange Hamiltonian, we ended up with new exchange energy states, which were also analyzed for g-tensors and tunneling splitting between the Ising doublets. Note that, after the coupling, investigated systems are no longer Kramers ones; therefore, the degeneracy of doublets is lifted, and g_{x},
g_{y} components of the pseudo- g-tensors are zero from the definition. The only relevant factor, then, is the tunneling splitting between them. The energies, tunnelling splitting, and g_{z} components of pseudo- g-tensors for $\mathbf{1}, \mathbf{1} \cdot \mathbf{M e O H}$, 1-EtOH, 1•PrOH, and 1•BuOH are reported in Tables S23-S27.

Table S17 Description and contractions of the basis set employed in the ab initio calculations of the Dy ${ }^{\text {III }}$ crystal field in 1, 1•MeOH, 1•EtOH, 1•PrOH, and 1•BuOH.

Basis set
Dy.ANO-RCC-VTZP 8S7P5D3F2G1H
Y.ANO-RCC-VDZ 6S5P3D
O.ANO-RCC-VDZP 3S2P1D
N.ANO-RCC-VDZP 3S2P1D (for CN ${ }^{-}$in the first coordination sphere)
N.ANO-RCC-VDZ 3S2P
C.ANO-RCC-VDZ 3S2P
H.ANO-RCC-VDZ 2S

Table S18 Summary of the energy splitting of the ${ }^{6} \mathrm{H}_{15 / 2}$ multiplet of Dy ${ }^{\text {III }}$ centers in 1 with the pseudo-g-tensors of each Kramers doublet and the composition in the $\left|m_{J}\right\rangle$ basis of the ground state.

energy and pseudo-g-tensor components (g_{x}, g_{y}, g_{z}) of 8 ground Kramers doublets					
energy / cm ${ }^{-1}$		pseudo-g-tensor components			
		$g_{\text {x }}$	$g_{\text {y }}$		g_{2}
0.000		0.0065	0.0107		19.8149
178.874		0.4943	1.6644		17.9007
219.130		2.5226	4.4138		12.9256
266.210		6.9799	5.0892		3.1252
330.269		3.1828	4.2885		7.5776
400.929		1.7421	2.1752		11.3806
442.548		3.3877	5.3014		10.1581
511.701		0.4346	0.6394		17.0625
composition of the ground Kramers doublets in the $\left\|m_{\jmath}\right\rangle$ the basis on the quantization axes within $J=15 / 2$ manifold					
$1^{\text {st }}$ doublet	$2^{\text {nd }}$ doublet	$3^{\text {rd }}$ doublet	$4^{\text {th }}$ doublet	$5^{\text {th }}$ doublet	$6^{\text {th }}$ doublet
86.8\% \|-15/2>	86.8\% \| 15/2>	36.4\% \| 1/2>	36.4\% \| -1/2>	36.4\% \| 13/2>	36.4\% \|-13/2>
12.5\% \| 15/2>	12.5\% \|-15/2>	17.7\% \| -1/2>	17.7\% \| 1/2>	26.0\% \|-13/2>	26.0\% \| 13/2>
0.4\% \| -9/2>	0.4\% \| 9/2>	13.8\% \| 3/2>	13.8\% \| -3/2>	10.6\% \| 1/2>	10.6\% \| -1/2>
0.1\% \| -7/2>	0.1\% \| -9/2>	12.7\% \| -3/2>	12.7\% \| 3/2>	7.6\% \| -1/2>	7.6\% \| 1/2>
0.1\% \| 9/2>	0.1\% \| 7/2>	6.4\% \| 5/2>	6.4\% \| -5/2>	4.8\% \| 5/2>	4.8\% \| -5/2>
0.0\% \|-13/2>	0.0\% \|-13/2>	3.3\% \| -5/2>	3.3\% \| 5/2>	3.4\% \| 3/2>	3.4\% \| -3/2>
0.0\% \|-11/2>	0.0\% \|-11/2>	2.8\% \| 13/2>	2.8\% \|-13/2>	3.2\% \| 7/2>	3.2\% \| -7/2>
0.0\% \| -5/2>	0.0\% \| -7/2>	1.7\% \| 7/2>	1.7\% \| -7/2>	2.1\% \| -7/2>	2.1\% \| 7/2>
0.0\% \| -3/2>	0.0\% \| -5/2>	1.6\% \| -7/2>	1.6\% \| 7/2>	2.0\% \| 11/2>	2.0\% \|-11/2>
0.0\% \| -1/2>	0.0\% \| -3/2>	1.2\% \| 9/2>	1.2\% \| -9/2>	1.1\% \| -5/2>	1.1\% \| 5/2>
0.0\% \| 1/2>	0.0\% \| -1/2>	0.9\% \|-11/2>	0.9\% \| 11/2>	1.0\% \|-11/2>	1.0\% \| -9/2>
0.0\% \| 3/2>	0.0\% \| 1/2>	0.6\% \| 11/2>	0.6\% \|-11/2>	1.0\% \| 9/2>	1.0\% \| 11/2>
0.0\% \| 5/2>	0.0\% \| 3/2>	0.5\% \| -9/2>	0.5\% \| 9/2>	0.6\% \| -3/2>	0.6\% \| 3/2>
0.0\% \| 7/2>	0.0\% \| 5/2>	0.4\% \|-13/2>	0.4\% \| 13/2>	0.1\% \| -9/2>	0.1\% \| 9/2>
0.0\% \| 11/2>	0.0\% \| 11/2>	0.0\% \|-15/2>	0.0\% \|-15/2>	0.0\% \|-15/2>	0.0\% \|-15/2>
0.0\% \| 13/2>	0.0\% \| 13/2>	0.0\% \| 15/2>	0.0\% \| 15/2>	0.0\% \| 15/2>	0.0\% \| 15/2>

Table S19 Summary of the energy splitting of the ${ }^{6} \mathrm{H}_{15 / 2}$ multiplet of Dy ${ }^{111}$ centers in $\mathbf{1} \cdot \mathbf{M e O H}$ with the pseudo- g tensors of each Kramers doublet and the composition in the $\left|m_{\mathrm{J}}\right\rangle$ basis of the ground state.

Table S20 Summary of the energy splitting of the ${ }^{6} \mathrm{H}_{15 / 2}$ multiplet of Dy ${ }^{\text {III }}$ centers in $\mathbf{1} \cdot \mathrm{EtOH}$ with the pseudo- g-tensors of each Kramers doublet and the composition in the $\left|m_{J}\right\rangle$ basis of the ground state.

energy and pseudo- g-tensor components (g_{x}, g_{y}, g_{z}) of 8 ground Kramers doublets					
energy / cm ${ }^{-1}$		pseudo-g-tensor components			
		$g_{\text {x }}$	$g_{\text {y }}$		$g_{\text {z }}$
0.000		0.0046	0.0070		19.8212
205.591		0.2619	0.8797		18.1626
240.958		0.9103	2.6215		13.8505
316.482		3.7946	4.3557		8.5253
380.628		8.5556	5.9286		0.6547
437.225		1.0327	2.9341		10.1961
494.414		2.7291	4.1680		11.7066
553.684		0.8223	1.5821		16.7011
composition of the ground Kramers doublets in the $\left\|m_{\jmath}\right\rangle$ the basis on the quantization axes within J=15/2 manifold					
$1^{\text {st }}$ doublet	$2^{\text {nd }}$ doublet	$3^{\text {rd }}$ doublet	$4^{\text {th }}$ doublet	$5^{\text {th }}$ doublet	$6^{\text {th }}$ doublet
98.8\% \|-15/2>	98.8\% \| 15/2>	27.2\% \| -3/2>	27.2\% \| 3/2>	49.5\% \| 13/2>	49.5\% \|-13/2>
0.6\% \| 15/2>	0.6\% \|-15/2>	21.5\% \| 1/2>	21.5\% \| -1/2>	22.9\% \|-13/2>	22.9\% \| 13/2>
0.4\% \| -9/2>	0.4\% \| 9/2>	17.5\% \| -1/2>	17.5\% \| 1/2>	18.2\% \| 1/2>	18.2\% \| -1/2>
0.1\% \|-11/2>	0.1\% \| 7/2>	11.4\% \| -5/2>	11.4\% \| 5/2>	1.6\% \| -5/2>	1.6\% \| 5/2>
0.1\% \| -7/2>	0.1\% \| 11/2>	9.1\% \|-13/2>	9.1\% \| 13/2>	1.5\% \|-11/2>	1.5\% \| -7/2>
0.0\% \|-13/2>	0.0\% \|-13/2>	5.9\% \| -7/2>	5.9\% \| 7/2>	1.5\% \| 7/2>	1.5\% \| 11/2>
0.0\% \| -5/2>	0.0\% \|-11/2>	2.6\% \| -9/2>	2.6\% \| 9/2>	1.0\% \| -1/2>	1.0\% \| 1/2>
0.0\% \| -3/2>	0.0\% \| -9/2>	1.9\% \| 5/2>	1.9\% \| -5/2>	0.8\% \| -7/2>	0.8\% \| -3/2>
0.0\% \| -1/2>	0.0\% \| -7/2>	1.8\% \|-11/2>	1.8\% \| 11/2>	0.8\% \| 3/2>	0.8\% \| 7/2>
0.0\% \| 1/2>	0.0\% \| -5/2>	0.5\% \| 13/2>	0.5\% \|-13/2>	0.6\% \| 11/2>	0.6\% \|-11/2>
0.0\% \| 3/2>	0.0\% \| -3/2>	0.4\% \| 11/2>	0.4\% \|-11/2>	0.5\% \| -9/2>	0.5\% \| 9/2>
0.0\% \| 5/2>	0.0\% \| -1/2>	0.2\% \| 7/2>	0.2\% \| -7/2>	0.4\% \| 9/2>	0.4\% \| -9/2>
0.0\% \| 7/2>	0.0\% \| 1/2>	0.1\% \|-15/2>	0.1\% \| 15/2>	0.3\% \| -3/2>	0.3\% \| 3/2>
0.0\% \| 9/2>	0.0\% \| 3/2>	0.0\% \| 3/2>	0.0\% \|-15/2>	0.1\% \| 5/2>	0.1\% \| -5/2>
0.0\% \| 11/2>	0.0\% \| 5/2>	0.0\% \| 9/2>	0.0\% \| -9/2>	0.0\% \|-15/2>	0.0\% \|-15/2>
0.0\% \| 13/2>	0.0\% \| 13/2>	0.0\% \| 15/2>	0.0\% \| -3/2>	0.0\% \| 15/2>	0.0\% \| 15/2>

Table S21 Summary of the energy splitting of the ${ }^{6} \mathrm{H}_{15 / 2}$ multiplet of Dy ${ }^{\text {III }}$ centers in $\mathbf{1} \cdot \mathrm{PrOH}$ with the pseudo- g tensors of each Kramers doublet and the composition in the $\left|m_{\mathrm{J}}\right\rangle$ basis of the ground state.

energy and pseudo- g-tensor components (g_{x}, g_{y}, g_{z}) of 8 ground Kramers doublets					
energy / cm^{-1}		pseudo-g-tensor components			
		$g_{\text {x }}$	$g_{\text {y }}$		g_{z}
0.000		0.0057	0.0117		19.7935
154.513		0.1527	0.7173		18.6107
213.777		3.1993	4.6395		12.4627
265.110		3.7941	4.8075		7.2775
327.313		3.2458	5.0414		7.0901
396.316		0.6436	2.2191		11.7253
440.780		3.5637	4.1555		10.1845
503.456		0.6744	0.7541		16.5762
composition of the ground Kramers doublets in the $\left\|m_{j}\right\rangle$ the basis on the quantization axes within $J=15 / 2$ manifold					
$1^{\text {st }}$ doublet	$2^{\text {nd }}$ doublet	$3{ }^{\text {rd }}$ doublet	$4^{\text {th }}$ doublet	$5^{\text {th }}$ doublet	$6^{\text {th }}$ doublet
72.6\% \| 15/2>	72.6\% \|-15/2>	26.5\% \| -3/2>	26.5\% \| 3/2>	40.9\% \|-13/2>	40.9\% \| 13/2>
26.5\% \|-15/2>	26.5\% \| 15/2>	25.1\% \| 1/2>	25.1\% \| -1/2>	15.1\% \| 13/2>	15.1\% \|-13/2>
0.5\% \| 9/2>	0.5\% \| -9/2>	22.5\% \| -1/2>	22.5\% \| 1/2>	14.2\% \| 1/2>	14.2\% \| -1/2>
0.2\% \| -9/2>	0.2\% \| 9/2>	10.0\% \| -5/2>	10.0\% \| 5/2>	9.6\% \| -1/2>	9.6\% \| 1/2>
0.1\% \| 7/2>	0.1\% \| -7/2>	4.2\% \| -7/2>	4.2\% \| 7/2>	5.8\% \| -5/2>	5.8\% \| 5/2>
0.0\% \|-13/2>	0.0\% \|-13/2>	2.7\% \|-13/2>	2.7\% \| 13/2>	4.2\% \| -7/2>	4.2\% \| 7/2>
0.0\% \|-11/2>	0.0\% \|-11/2>	2.4\% \| 5/2>	2.4\% \| -5/2>	3.4\% \|-11/2>	3.4\% \| 11/2>
0.0\% \| -7/2>	0.0\% \| -5/2>	2.2\% \| 3/2>	2.2\% \| -3/2>	2.5\% \| -3/2>	2.5\% \| 3/2>
0.0\% \| -5/2>	0.0\% \| -3/2>	2.1\% \| -9/2>	2.1\% \| 9/2>	1.9\% \| 7/2>	1.9\% \| -7/2>
0.0\% \| -3/2>	0.0\% \| -1/2>	1.1\% \|-11/2>	1.1\% \| 11/2>	1.4\% \| -9/2>	1.4\% \| 9/2>
0.0\% \| -1/2>	0.0\% \| 1/2>	0.6\% \| 11/2>	0.6\% \|-11/2>	0.4\% \| 3/2>	0.4\% \| -3/2>
0.0\% \| 1/2>	0.0\% \| 3/2>	0.5\% \| 7/2>	0.5\% \| -7/2>	0.2\% \| 5/2>	0.2\% \|-11/2>
0.0\% \| 3/2>	0.0\% \| 5/2>	0.1\% \|-15/2>	0.1\% \| -9/2>	0.2\% \| 11/2>	0.2\% \| -5/2>
0.0\% \| 5/2>	0.0\% \| 7/2>	0.1\% \| 9/2>	0.1\% \| 15/2>	0.1\% \| 9/2>	0.1\% \| -9/2>
0.0\% \| 11/2>	0.0\% \| 11/2>	0.0\% \| 13/2>	0.0\% \|-15/2>	0.0\% \|-15/2>	0.0\% \|-15/2>
0.0\% \| 13/2>	0.0\% \| 13/2>	0.0\% \| 15/2>	0.0\% \|-13/2>	0.0\% \| 15/2>	0.0\% \| 15/2>

Table S22 Summary of the energy splitting of the ${ }^{6} \mathrm{H}_{15 / 2}$ multiplet of Dy ${ }^{1 I \prime}$ centers in $\mathbf{1} \cdot \mathbf{B u O H}$ with the pseudo- g tensors of each Kramers doublet and the composition in the $\left|m_{\mathrm{J}}\right\rangle$ basis of the ground state.

Table S23 Summary of the energy splitting of exchange states in 1 with the pseudo- g-tensor g_{z} components and tunneling splitting between the Ising doublets.

energy, $g_{\text {z components of pseudo- } g \text {-tensors, and tunneling splitting between the Ising doublets }}$		
energy $/ \mathrm{cm}^{-1}$	g_{z}	tunneling splitting $/ \mathrm{cm}^{-1}$
0.000	1.3221	0.0000
0.000	1.3221	0.0000
1.195	1.3221	1.3221
1.195	0.0000	0.0016
190.798	39.6459	0.0016
190.800	0.0000	0.0000
190.801	29.3890	0.001
190.802	29.3307	0.0001
190.991	0.0000	0.0000
190.991	33.8479	0.0001
191.002	33.8464	0.0000
191.002	0.0000	0.0000
235.678	24.8914	24.9021

Table S24 Summary of the energy splitting of exchange states in $\mathbf{1} \cdot \mathbf{M e O H}$ with the pseudo- g-tensor g_{z} components and tunneling splitting between the Ising doublets.

energy, g_{z} components of pseudo-g-tensors, and tunneling splitting between the Ising doublets		
energy / cm^{-1}	$g_{\text {z }}$	tunneling splitting / cm^{-1}
$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 1.3220 \\ & 1.3220 \end{aligned}$	0.0000
$\begin{aligned} & 1.190 \\ & 1.190 \end{aligned}$	$\begin{aligned} & 1.3220 \\ & 1.3220 \end{aligned}$	0.0000
$\begin{aligned} & 199.040 \\ & 199.042 \end{aligned}$	$\begin{gathered} 0.0000 \\ 39.6423 \end{gathered}$	0.0014
$\begin{aligned} & 199.044 \\ & 199.046 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	0.0015
$\begin{aligned} & 199.264 \\ & 199.264 \end{aligned}$	$\begin{aligned} & 29.5436 \\ & 29.4624 \end{aligned}$	0.0001
$\begin{aligned} & 199.280 \\ & 199.280 \end{aligned}$	$\begin{aligned} & \hline 0.0000 \\ & 0.0000 \\ & \hline \end{aligned}$	0.0001
$\begin{aligned} & 238.290 \\ & 238.290 \end{aligned}$	$\begin{aligned} & 33.6311 \\ & 33.6353 \end{aligned}$	0.0000
$\begin{aligned} & 238.305 \\ & 238.305 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	0.0001
$\begin{aligned} & 239.022 \\ & 239.022 \end{aligned}$	$\begin{aligned} & 24.7344 \\ & 24.7422 \end{aligned}$	0.0000
$\begin{aligned} & 239.169 \\ & 239.169 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	0.0000

Table S25 Summary of the energy splitting of exchange states in $\mathbf{1} \cdot$ EtOH with the pseudo- g-tensor g_{z} components and tunneling splitting between the Ising doublets.

energy, g_{z} components of pseudo- g-tensors, and tunneling splitting between the Ising doublets		
energy $/ \mathrm{cm}^{-1}$	g_{z}	tunneling splitting $/ \mathrm{cm}^{-1}$
0.000	1.3219	0.0000
0.000	1.3219	0.3219
1.195	1.3219	0.0000
1.195	39.6422	0.0011
206.046	0.0000	0.0011
206.047	0.0000	0.0000
206.051	29.9172	0.0001
206.052	29.8408	0.0000
206.314	0.0000	0.0000
206.314	33.1693	0.0001
206.338	33.1790	0.0000
206.338	0.0000	0.0000
241.165	24.7544	24.7625

Table S26 Summary of the energy splitting of exchange states in 1•PrOH with the pseudo-g-tensor g_{z} components and tunneling splitting between the Ising doublets.

energy, $g_{\text {z components of pseudo- } g \text {-tensors, and tunneling splitting between the Ising doublets }}$		
energy $/ \mathrm{cm}^{-1}$	g_{z}	tunneling splitting $/ \mathrm{cm}^{-1}$
0.000	1.3221	0.0000
0.000	1.3221	0.0000
1.187	1.3221	1.3221
1.187	0.0000	0.0010
155.065	39.5974	0.0010
155.066	0.0000	0.0000
155.070	29.8033	0.002
155.071	29.7892	0.0001
155.269	0.0000	0.0002
155.269	32.9283	0.0001
155.280	32.9176	0.0000
155.280	0.0000	0.0001
227.196	25.8199	25.8411

Table S27 Summary of the energy splitting of exchange states in $\mathbf{1} \cdot \mathbf{B u O H}$ with the pseudo- g-tensor g_{z} components and tunneling splitting between the Ising doublets.

(a)

(b)

(d)

(e)

Fig. S35 Graphical presentation of the molecular fragments selected for the ab initio calculations for all compounds, $\mathbf{1}(a), \mathbf{1} \cdot \mathrm{MeOH}(b), \mathbf{1} \cdot \mathbf{E t O H}(c), \mathbf{1} \cdot \mathrm{PrOH}(d)$, and $\mathbf{1} \cdot \mathbf{B u O H}(e)$, shown in two different orientations, together with the magnetic easy axis marked as blue-colored line (the direction of the g_{z} component of the pseudo- g-tensor of the ground state; for details, see Tables S17-S27 and the comment regarding the ab initio calculations above).

Table S28 Comparison of observed energy barrier, $\Delta E / k_{B}$, pre-exponential τ_{0} factor, and quantum tunneling rate, $\tau_{Q T M}$, in 1, 1•MeOH, 1•EtOH, 1•PrOH, and 1•BuOH with selected previously reported dinuclear $\left\{\mathrm{Dy}^{\mathrm{III}}{ }_{2}\right\}$-based SMMs. For the comparison, we selected compounds whose magnetic properties were analyzed analogously (in terms of the description of magnetic dynamics) to the reported $\mathbf{1}$ to $\mathbf{1} \cdot \mathrm{BuOH}$ series.

dinuclear $\left\{\mathrm{Dy}^{\text {III }} 2\right.$ \} compound	$\begin{gathered} \text { Dy } \cdots \text { Dy } \\ \text { distance / } \\ \AA \AA \\ \hline \end{gathered}$	$\Delta E / k_{B} / \mathrm{K}$	τ_{0} / s	$\tau_{Q T M} / \mathrm{ms}$	Ref.
$\left[\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Dy}{ }^{\text {III }}(\mathrm{I})\right]_{2}$	4.07	106	-	0.46	S17
[\{Cp ${ }_{2}{ }^{\text {D }}$ "II $($ bta $\left.\left.)\right\}_{2}\right]$	4.90	57	$1 \cdot 10^{-7}$	0.7	S18
$\left[\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Dy}{ }^{\text {III }}(\mathrm{Br})\right]_{2}$	4.22	139	-	2.7	S17
$\left[\mathrm{Dy}^{\text {II }} 2(\mathrm{hmi})_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{MeOH})_{2}\right]$	3.75	56	$3 \cdot 10^{-7}$	3	S19
$\left[\mathrm{Dy}^{\prime \prime \prime} \mathrm{I}_{2}(\mathrm{HMBA})_{2}(\mathrm{MBA})_{2}(\mathrm{DMF})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$	3.69	90	$1 \cdot 10^{-9}$	3.2	S20
$\left[\mathrm{Dy}^{\text {III }}{ }_{2}(\mathrm{hfac})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{pz}\right] \cdot 2 \mathrm{pz}$	8.09	111	$8.4 \cdot 10^{-10}$	3.5	S21
$\left[\mathrm{Cp}^{\prime}{ }_{2} \mathrm{Dy}{ }^{\text {III }}(\mathrm{Cl})\right]_{2}$	4.47	341	-	4.1	S17
$\left[\mathrm{Dy}^{\prime \prime \prime}{ }_{2}\left(\mathrm{HBpz}_{3}\right)_{4}(\mathrm{ox})\right] \cdot 2 \mathrm{MeCN} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	6.14	42	-	8.2	S22
$\left.\left[\mathrm{Dy}^{\text {I' } 2} \text { (} \mathrm{hmi}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{MeOH})_{2}\right]_{\mathrm{n}} \cdot \mathrm{MeCN}$	3.80	71	$7 \cdot 10^{-8}$	12	S19
[Dy ${ }^{\prime \prime \prime} 2(\text { valdien })_{2}\left(\mathrm{NO}_{3}\right)_{2}$]	3.77	76	$6 \cdot 10^{-7}$	70	S23
$\left[\mathrm{Dy}^{\text {III }}\right.$ 2 $\left.(\mathrm{opch})_{2}(\mathrm{OAc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{MeOH}$	3.89	95	$4 \cdot 10^{-8}$	170	S24
$\left.\left[\mathrm{Dy}^{\text {III }} \text { (} \mathrm{ovph}\right)_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})_{3}\right] \cdot \mathrm{MeCN}$	3.86	174	$1 \cdot 10^{-8}$	35000	S25
1	4.10	274	$4.37 \cdot 10^{-17}$	320	
1-MeOH	4.10	284	$1.78 \cdot 10^{-17}$	290	
1-EtOH	4.09	206	$7.96 \cdot 10^{-17}$	610	this work
1-PrOH	4.10	155	$1.88 \cdot 10^{-13}$	1290	
1-BuOH	4.08	160	$1.65 \cdot 10^{-13}$	1230	

$C p^{\prime}=$ cyclopentadienyltrimethylsilane anion; $\mathrm{Cp}=$ cyclopentadienyl; btaH=1H-1,2,3-benzotriazole; $\mathrm{H}_{2} \mathrm{hmi}=$ (isonicotino)hydrazine; $\mathrm{H}_{2} \mathrm{MBA}=2$-hydroxy-3-methoxybenzoic acid; pz $=$ pyrazine; hfac = hexafluoroacetylacetonate anion; $\mathrm{HBpzz}_{3}^{-}=$hydrotris(pyrazolyl)borate anion; $\mathrm{ox}^{2-}=$ oxalate anion; valdien $=$ ($\mathrm{N} 1, \mathrm{N3}$-bis(3methoxysalicylidene)diethylenetriamine); $\mathrm{H}_{2} \mathrm{opch}=(E)$ - N^{\prime}-(2-hydroxy-3-me-thoxybenzylidene)-pyrazine-2-carbohydrazide; $\mathrm{H}_{2} \mathrm{Ovph}=$ pyridine-2-carboxylic acid.

Literature:

S10 B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov and P.-O. Widmark, New Relativistic ANO Basis Sets for Transition Metal Atoms, J. Phys. Chem. A, 2005, 109, 6575-6579.
S11 B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov and P.-O. Widmark and A. C. Borin, New Relativistic Atomic Natural Orbital Basis Sets for Lanthanide Atoms with Applications to the Ce Diatom and LuF3, J. Phys. Chem. A, 2008, 112, 11431-11435.

S12 P. A. Malmqvist, B. O. Roos and B. Schimmelpfennig, B., The restricted active space (RAS) state interaction approach with spin-orbit coupling, Chem. Phys. Lett., 2002, 357, 230-240.

S13 B. A. Heß, C. M. Marian, U. Wahlgren and O. A. Gropen, A mean-field spin-orbit method applicable to correlated wavefunctions, Chem. Phys. Lett., 1996, 251, 365-371.

S14 L. F. Chibotaru and L. Ungur, Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation, J. Chem. Phys., 2012, 137, 064112(22).

S16
M. Llunell, D. Casanova, J. Cirera, J. Bofill, P. Alemany, S. Alvarez, M. Pinsky and D. Avnir, Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, SHAPE v. 2.1.; University of Barcelona: Barcelona, Spain, 2013.
B. O. Roos, R. Lindh, P.-A. Malmqvist, V. Veryazov and P.-O. Widmark, Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set, J. Phys. Chem. A, 2004, 108, 2851-2858.

L. Ungur and L. F. Chibotaru, Ab Initio Crystal Field for Lanthanides, Chem. Eur. J., 2017, 23, 3708-3718.

M. E. Lines, Orbital Angular Momentum in the Theory of Paramagnetic Clusters, J. Chem. Phys., 1971, 55, 2977.

S17 Y.-S. Meng, J. Xiong, M.-W. Yang, Y.-S. Qiao, Z.-Q. Zhong, H.-L. Sung, J.-B. Han, T. Liu, B.-W. Wang and S. Gao, Experimental Determination of Magnetic Anisotropy in Exchange-Bias Dysprosium Metallocene Single-Molecule Magnets, Angew. Chem. Int.Ed., 2020, 59, 13037-13043.
S18 R. A. Layfield, J. J. W. McDouall, S. A. Sulway, F. Tuna, D. Collison and R. E. P. Winpenny, Influence of the N-Bridging Ligand on Magnetic Relaxation in an Organometallic Dysprosium Single-Molecule Magnet, Chem. Eur. J., 2010, 16, 4442-4446.
S19 P.-H. Lin, T. J. Burchell, R. Clerac and M. Murugesu, Dinuclear Dysprosium(III) Single-Molecule Magnets with a Large Anisotropic Barrier, Angew. Chem. Int. Ed., 2008, 47, 8848-8851.
S20 L. Zhong, W.-B. Chen, Z.-H. Li, Z.-J. OuYang, M. Yang, Y.-Q. Zhang and S. Gao, W. Dong, Four Dinuclear and One-Dimensional-Chain Dysprosium and Terbium Complexes Based on 2-Hydroxy-3-methoxybenzoic Acid: Structures, Fluorescence, Single-Molecule-Magnet, and Ab Initio Investigation, Inorg. Chem., 2020, 59, 4414-4423.
S21 Y. Ma, G.-F. Xu, X. Yang, L.-C. Li, J. Tang, S.-P. Yan, P. Cheng and D.-Z. Liao, Pyrazine-bridged Dy 2 singlemolecule magnet with a large anisotropic barrier, Chem. Commun., 2010, 46, 8264-8266.
S22 G.-F. Xu, Q.-L. Wang, P. Gamez, Y. Ma, R. Clerac, J. Tang, S.-P. Yan, P. Cheng and D.-Z. Liao, A promising new route towards single-molecule magnets based on the oxalate ligand, Chem. Commun., 2010, 46, 1506-1508.
S23 J. Long, F. Habib, P.-H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L. F. Chibotaru and M. Murugesu, Single-Molecule Magnet Behavior for an Antiferromagnetically Superexchange-Coupled Dinuclear Dysprosium(III) Complex, J. Am. Chem. Soc., 2011, 133, 5319-5328.
S24 H. Tian, L. Ungar, L. Zhao, S. Ding, J. Tang and L. F. Chibotaru, Exchange Interactions Switch Tunneling: A Comparative Experimental and Theoretical Study on Relaxation Dynamics by Targeted Metal Ion Replacement, Chem. Eur. J., 2018, 24, 9928-9939.
S25 Y.-N. Guo, G.-F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo, J. Tang, H.-J. Zhang, L. F. Chibotaru and A. K. Powell, Strong Axiality and Ising Exchange Interaction Suppress Zero-Field Tunneling of Magnetization of an Asymmetric Dy ${ }_{2}$ Single-Molecule Magnet, J. Am. Chem. Soc., 2011, 133, 11948-11951.

