Supplementary Information

Electrochemical conversion of 5-hydroxymethylfurfural over CuNi bimetallic catalyst: the synergistic of interfacial active sites

Yiwei Zhao^a, Chao Zhang^{*a}, Shuangxi Xing^{*b}, Zuhang Jin^a, and Tingting Xiao^c

^a School of Environment, Northeast Normal University, Changchun 130117, PR China.

^b Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.

^c State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun 130022, PR China

* Corresponding authors at: School of Environment, Northeast Normal University, Changchun

130117, PR China.

Email addresses: E-mail: zhangc614@nenu.edu.cn, and xingsx737@nenu.edu.cn

Fig. S1. Elemental maps of Cu, Ni, O of Ni(OH)₂-NCF.

Fig. S2. Energy-dispersive spectroscopy spectrum of Ni(OH)₂-NCF.

Fig. S3. SEM images of $Ni(OH)_2$ -NCF: (a) high magnification; (b) low magnification.

	Before deposition	After deposition
Ni content in solution	9.68 ug/mL	4.88 ug/mL

Table S1. ICP test of Ni content before and after deposition of Ni(OH)₂-NCF-900.

Fig. S4. XPS survey spectra of the catalysts: (a) pure NCF; (b) Ni(OH)₂-NCF; (c) used Ni(OH)₂-NCF; (d) Ni(OH)₂-NF; (e) used Ni(OH)₂-NF; (f) Ni(OH)₂-CF; (g) used Ni(OH)₂-CF.

Electrocatalysts	O I (%)	O II (%)	O III (%)
Ni(OH) ₂ -NCF	25	51	24
Ni(OH) ₂ -NF	11	58	31
Ni(OH) ₂ -CF	23	57	20

 Table S2. XPS O 1s components of the different electrocatalysts.

Fig. S5. The XPS Cu 2p spectra of the catalysts: (a) Ni(OH)₂-NCF; (b) Ni(OH)₂-CF; (c) pure-NCF; (d) used Ni(OH)₂-NCF; (e) used Ni(OH)₂-CF.

Fig. S6. EPR spectra of Ni(OH)₂-NCF, Ni(OH)₂-NF and Ni(OH)₂-CF.

Fig. S7. LSV curves of the catalysts with 10 mM HMF in 1 M KOH.

Fig. S8. Chronoamperometric curves of Ni(OH)₂-NCF under different potentials.

Fig. S9. (a) LSV curves (no compensation) of $Ni(OH)_2$ -NCF, $Ni(OH)_2$ -NF, and $Ni(OH)_2$ -CF with 10 mM HMF in 0.1 M KOH; (b) Comparison of LSV curves of catalysts with HMF in 1 M and 0.1 M KOH.

Entry	Catalysts	Current	Potential	KOH	FDCA	FE	Ref.
		density	(vs.		yield	(%)	
		(mA/cm ²)	RHE)		(%)		
1	CF-Cu(OH) ₂	55	1.82 V	1 M	98.7	100	1
2	Cu _x S@NiCo- LDHs	87	1.3	1 M	100	99	2
3	NiCu NTs	136	1.424	1 M	99	99	3
4	CF-CuO/Ni-BTC MOF	47.6	1.475	1 M	99.9	91.0	4
5	Ni _x Se _y –NiFe LDH@NF	135	1.423	1 M	99.3	98.9	5
6	Ni ₃ S ₂ -MoS ₂ /NF	68	-	1 M	93-96	100	6
7	Cr-Ni(OH) ₂ /NF	230	-	1 M	98	96	7
8	NF@Ni _{0.85} Se	50	1.5	1 M	-	95	8
9	Ni ₃ N@C	50	1.38	1 M	98	-	9
10	Ni(OH) ₂ -NCF	93.2	1.425	1 M	99	98.5	This work

Table S3. Current density and electrocatalytic performance of different electrocatalysts for HMFOR.

Fig. S10. (a) LSV curves of the catalysts with 10 mM HMF in 1 M KOH, (b) Tafel slope of the catalysts.

Fig. S11. C_{dl} of Ni(OH)₂-NCF, Ni(OH)₂-NF, and Ni(OH)₂-CF measured by CVs in 1 M KOH with 10 mM HMF with a scan rate of 1 to 5 mV/s.

Fig. S12. (a) HMFOR process on Ni(OH)₂-NCF with different scan rates; (b) OER process on Ni(OH)₂-NCF with different scan rates.

Fig. S13. XPS results of the fresh and used Ni(OH)₂-NCF, Ni(OH)₂-NF, and Ni(OH)₂-CF catalysts for HMFOR: (a) Ni 2p and (b) O 1s.

Electrocatalysts	Ni ³⁺ (%)	Ni ²⁺ (%)	Ni ⁰ (%)
Used-Ni(OH) ₂ -NCF	60.2	39.7	0
Used-Ni(OH) ₂ -NF	32.5	67.5	0
Used-Ni(OH) ₂ -CF	22.5	77.5	0

 Table S4. XPS Ni 2p components of the different electrocatalysts.

Fig. S14. (a) Consecutive 8 runs of HMFOR at a constant voltage of 1.425 V with the intermittent addition of 10 mM HMF; (b) TEM of the Ni(OH)₂-NCF after recycling; (c) LSV curve of Ni(OH)₂-NCF after 100 cycles (All test in 1 M KOH containing 10 mM HMF); (d) The XRD of Ni(OH)₂-NCF before and after HMFOR.

Fig. S15. HPLC analysis results and the standard curves: (a) and (b) FDCA; (c) and (d) HMF.

Fig. S16. HPLC analysis results and the standard curves: (a), (b) BHMF; (c), (d) HMF.

Fig. S17. (a) HPLC results of HMFRR on Cu-NCF at -0.275 V; (b) The concentration changes of HMF and BHMF during the HMFRR.

REFERENCES

- 1. X. Pang, H. Bai, H. Zhao, W. Fan and W. Shi, Efficient electrocatalytic oxidation of 5hydroxymethylfurfural coupled with 4-nitrophenol hydrogenation in a water system, ACS *Catal.*, 2022, **12**, 1545-1557.
- X. Deng, X. Kang, M. Li, K. Xiang, C. Wang, Z. Guo, J. Zhang, X.-Z. Fu and J.-L. Luo, Coupling efficient biomass upgrading with H₂ production via bifunctional Cu_xS@NiCo-LDH core–shell nanoarray electrocatalysts, *J. Mater. Chem. A*, 2020, **8**, 1138-1146.
- L. Zheng, Y. Zhao, P. Xu, Z. Lv, X. Shi and H. Zheng, Biomass upgrading coupled with H₂ production via a nonprecious and versatile Cu-doped nickel nanotube electrocatalyst, *J. Mater. Chem. A*, 2022, **10**, 10181-10191.
- 4. X. Pang, H. Bai, Y. Huang, H. Zhao, G. Zheng and W. Fan, Mechanistic insights for dual-species evolution toward 5-hydroxymethylfurfural oxidation, *J. Catal.*, 2023, **417**, 22-34.
- Y. Zhong, R.-Q. Ren, J.-B. Wang, Y.-Y. Peng, Q. Li and Y.-M. Fan, Grass-like NixSey nanowire arrays shelled with NiFe LDH nanosheets as a 3D hierarchical core-shell electrocatalyst for efficient upgrading of biomass-derived 5-hydroxymethylfurfural and furfural, *Catal. Sci. Technol.*, 2022, **12**, 201-211.
- S. Yang, Y. Guo, Y. Zhao, L. Zhang, H. Shen, J. Wang, J. Li, C. Wu, W. Wang, Y. Cao, S. Zhuo, Q. Zhang and H. Zhang, Construction of Synergistic Ni₃S₂-MoS₂ Nanoheterojunctions on Ni Foam as Bifunctional Electrocatalyst for Hydrogen Evolution Integrated with Biomass Valorization, *Small*, 2022, **18**, 2201306.
- Z. Yang, B. Zhang, C. Yan, Z. Xue and T. Mu, The pivot to achieve high current density for biomass electrooxidation: Accelerating the reduction of Ni³⁺ to Ni²⁺, *Appl. Catal., B*, 2023, **330**, 122590.
- C. Yang, C. Wang, L. Zhou, W. Duan, Y. Song, F. Zhang, Y. Zhen, J. Zhang, W. Bao, Y. Lu, D. Wang and F. Fu, Refining d-band center in Ni_{0.85}Se by Mo doping: a strategy for boosting hydrogen generation via coupling electrocatalytic oxidation 5-hydroxymethylfurfural, *Chem. Eng. J.*, 2021, **422**, 130125.
- N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou, Z. Liu, B. Zhou, G. Huang, H. Lin and S. Wang, Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy, *Angew. Chem. Int. Ed.*, 2019, **58**, 15895-15903.