Supporting information for:

Self-assembled manganese acetate@tin dioxide colloidal quantum dots as electron transport layer for effcient and stable perovskite solar cells

Yutao Li¹, Chenyu Zhao¹, Lexin Wang¹, Lin Fan^{1, 2}, Maobin Wei^{1, 2}, Huilian Liu^{1, 2},

Xiaoyan Liu^{1, 2}, Jinghai Yang^{1, 2}*, Fengyou Wang^{1, 2}*, Lili Yang^{1, 2}*

- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China

Experimental section & Materials

Supplementary note 1

Materials: $Mn(Ac)_2$ was purchased from Aladdin. Lead iodide $(PbI_2),$ formamidineiodide (FAI), bromide lead $(PbBr_2),$ Cesium iodide (CsI), Methylammonium chloride (MACl), methylammonium bromide (MABr), 4-tertbutypyridine and lithium bis (trifluoromethanesulfonyl) imide (Li-TFSI), tris(2-(1Hpyrazol-1-yl)-4-tertbutylpyridine)-cobalt(III)tris(bis(trifluoromethylsulfonyl)imide) (FK209), tert-butylpyridine (TBP), SnO₂ aqueous colloidal dispersion (15wt%), 2,2',7,7'-tetrakis (N,N-dip-methoxyphenylamine) and 9,9'-Spirobifluorene (Spiro-OMeTAD) were purchased from Xi'an Yuri Solar Co., Ltd. Indium Tin Oxides (ITO) glass substrates, Dimethyl sulfoxide (DMSO) and N,N-Dimethylformamide (DMF) were purchased from YOUXUAN Technology Co. Ltd. (China). Chlorobenzene (CB) were purchased from Beijing InnoChem Science & Technology Co., Ltd. All chemicals and reagents were used as received from chemical companies without any further purification.

Supplementary note 2

Characterization: The scanning electron microscope (SEM) images was taken using a Hitachi S-4800. AFM was measured by Park NX20, Korea. The transmission electron microscopy (TEM) images was taken using JEOL 2100F. The optical properties of the films were analyzed using a UV-Vis spectrophotometer (Shimadzu, UV-3600Plus, Japan). Fourier transform infrared spectroscopy (FTIR) was measured by Nicolet iS10, America. The scanning electron microscope (SEM) images was taken using a Hitachi S-4800. AFM was measured by Park NX20, Korea. The crystal structure of the SnO₂ and the perovskite samples were carried out by X-ray diffraction (XRD) (PANalytical X-ray Spectrometer Empyrean DY01660 ID206161). PL spectra were obtained using a PL microscopic spectrometer (FLS1000, China) with a 405 nm CW laser excitation source. The TRPL (FLS1000, China) was measured by using an excitation wavelength of 405nm. The main corresponding setup consisted of perovskite, and mica-flakes. The transient photovoltage spectrum (TPV) was measured by CEL-TPV2000 (CEAULIGHT, China). X-ray photoelectron spectroscopy (XPS) was used to obtain the chemical states information (measured by Escalab250Xi, Germany). J-Vcharacterizations was carried out under AM 1.5 G simulated sunlight illuminations (100 mW cm⁻², Model 94043A, Oriel, American). Electrical impedance spectroscopy (EIS) was performed by using the electrochemical workstation (CHI660C, Chen Hua, China) with a frequency range from 1 Hz to 0.1MHz in the dark. The spectral responses were obtained from an EQE measurement system (Newport PV measurement, American).

Fig. S1. XRD patterns of SnO_2 and $Mac-SnO_2$ films on glass substrates.

Fig. S2. Surface zeta potential of fresh (a) SnO₂ and (b) Mac-SnO₂ solutions. Surface zeta potential of 72 hours aged (c) SnO₂ and (d) Mac-SnO₂ solutions.

Fig. S3. The SEM images of (a) SnO_2 and (b) Mac-SnO₂ films.

Fig. S4. Photograph of the SnO_2 and $Mac-SnO_2$ solutions.

Fig. S5. XPS results of the SnO₂ and Mac-SnO₂. (a) full spectra; (b) the amplified spectra of Mn 2p signals.

Fig. S6. Side view of the optimized SnO_2-O_v/Ac^- .

Fig. S7. The (a) conductivity and (b) electronic mobility of SnO_2 and $Mac-SnO_2$ films.

Fig. S8. AFM images of SnO_2 /perovskite and Mac- SnO_2 /perovskite films.

Fig. S9. The SEM element mapping analysis of (a) Pb, (b) I, and (c) Mn of the Mac-SnO₂/perovskite films.

Fig. S10. XPS full spectra of the perovskite and $Mn(Ac)_2$ +perovskite.

Fig. S11. KPFM images of (a) SnO₂ and (b) Mac-SnO₂ films. (c) Surface potential data of SnO₂ and Mac-SnO₂ films extracted from KPFM.

Fig. S12. *J*–*V* curves of the SnO₂ and Mac-SnO₂ based PSCs at forward and reverse scans.

Fig. S13. *J-V* curves in reverse scan of the PSCs based on different $Mac-SnO_2$ concentrations.

Fig. S14. EQE spectra of the PSCs based on different Mac-SnO₂ concentrations.

Fig. S15. (a) The dependence of V_{oc} on light intensity for SnO₂ and Mac-SnO₂ based devices. (b) The dependence of J_{sc} on light intensity for SnO₂ and Mac-SnO₂ based devices.

Fig. S16. TPV curves of SnO_2 and $Mac-SnO_2$ based devices.

Fig. S17. Dark I-V curves of the PSCs based on SnO₂ and Mac-SnO₂ ETL.

Fig. S18. Nyquist plots of the SnO₂ and Mac-SnO₂ based devices.

Fig. S19. Mott-Schottky plots of SnO_2 and $Mac-SnO_2$ based devices.

Fig. S20. Photograph of SnO₂/perovskite and Mac-SnO₂/perovskite exposed to air environment with 30%–40% humidity for 20 days.

Fig. S21. Normalized *PCEs* of SnO₂ and Mac-SnO₂ based devices stored (a) at 85 °C in N₂ atmosphere and (b) under 1 sun illumination.

	$V_{oc}(\mathbf{V})$	J_{sc} (mA cm ⁻²)	FF (%)	PCE (%)
Mac-SnO ₂ -Reverse	1.16	24.96	80.69	23.36
Mac-SnO ₂ -Forward	1.15	24.49	80.47	22.56
SnO ₂ -Reverse	1.12	24.25	77.66	21.11
SnO ₂ -Forward	1.10	24.12	74.29	19.75

Table S1. Detail values of V_{oc} , J_{sc} , FF and PCE for Mac-SnO₂ based and SnO₂ based devices.

	$V_{oc}\left(\mathrm{V}\right)$	J_{sc} (mA cm ⁻²)	FF(%)	PCE (%)
2.5 mg/mL	1.14	24.73	79.86	22.58
5.0 mg/mL	1.14	25.32	80.00	23.08
7.5 mg/mL	1.16	24.96	80.69	23.36
10.0 mg/mL	1.14	24.72	79.38	22.44
12.5 mg/mL	1.13	24.72	78.05	21.81

Table S2. Photovoltaic parameters derived from the champion devices with different $Mac-SnO_2$ concentrations.

	$V_{oc}\left(\mathrm{V}\right)$	J_{sc} (mA cm ⁻²)	FF (%)	PCE (%)
1	1.09	23.93	79.04	20.64
2	1.08	24.21	77.66	20.29
3	1.09	22.71	79.74	19.82
4	1.09	22.60	78.27	19.32
5	1.08	22.65	77.44	18.91
6	1.12	22.77	79.09	20.08
7	1.11	23.20	78.47	20.21
8	1.13	23.29	77.84	20.53
9	1.12	23.68	78.14	20.79
10	1.12	23.55	77.17	20.33
11	1.13	23.01	73.98	19.22
12	1.14	22.95	79.51	20.95
13	1.12	24.25	77.66	21.11
14	1.15	21.73	79.44	19.85
15	1.15	23.00	79.49	20.98
16	1.14	22.07	76.30	19.16
17	1.16	23.37	77.58	21.07
18	1.15	22.38	80.05	20.51
19	1.13	24.56	75.72	21.01
20	1.10	23.55	78.32	20.35

Table S3. The output parameters of the SnO_2 based devices.

	$V_{oc}\left(\mathrm{V}\right)$	J_{sc} (mA cm ⁻²)	FF (%)	PCE (%)
1	1.13	24.10	78.20	21.33
2	1.16	22.44	80.73	21.06
3	1.09	23.91	82.08	21.34
4	1.16	24.96	80.69	23.36
5	1.12	24.80	81.32	22.66
6	1.17	24.05	76.30	21.53
7	1.14	24.81	75.05	21.25
8	1.16	24.10	77.30	21.65
9	1.14	25.31	79.73	23.01
10	1.15	24.50	79.78	22.55
11	1.15	24.64	79.01	22.34
12	1.15	22.24	80.77	21.56
13	1.12	24.06	80.12	21.65
14	1.15	23.37	80.33	21.52
15	1.14	25.33	79.98	23.05
16	1.13	24.40	78.86	21.83
17	1.17	23.24	80.08	21.68
18	1.12	24.66	80.63	22.25
19	1.16	23.37	79.37	21.56
20	1.13	24.24	77.99	21.43

Table S4. The output parameters of the $Mac-SnO_2$ based devices.