Supporting Information

NH₃ Plasma Etching Derived Porous N-Doped Carbon Nanotubes with FeP Nanoparticles and Intrinsic Carbon Defects for Boosting Oxygen Reduction in Rechargeable Zn-air Batteries

Bing Chen,^{a,b} Minjie Zhou,^{*a,b} Na Zhang,^c Xianglin Deng,^{a,b} HaiHua Yang ^{*a,b}

^a Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, Hunan Institute of Science and Technology, Yueyang, Hunan Province, 414006, P.R. China

^b School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, 414006, P.R. China

^c School of Physics and Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan Province, 414006, P.R. China

*Corresponding Author E-mail: hhyang@126.com (Haihua Yang); zmj0104@126.com (Minjie Zhou)

Fig. S1 SEM image of NS-CNTs

Fig. S2 CV curves of NS-CNTs (a), CV-NSCNT-30 (b), FeP/NPCNT (c), CV-FeP/NPCNT-15 (d), CV-FeP/NPCNT-30 (e) and CV-FeP/NPCNT-45 (f) in the N_2 or O_2 saturated 0.1 mol L⁻¹ KOH electrolyte

Fig. S3 LSV curves of different CNTs based electrodes (a), LSV curve of CV-FeP/NPCNT-30 (b) at various rotation rates. i-t chronoamperometric responses of CV-FeP/NPCNT-30 and Pt/C in O₂ saturated 0.1 mol L⁻¹ KOH electrolyte (c), and with addition of methanol (d).

Fig. S4 LSV curve for OER driven by CV-FeP/NPCNT-30 and RuO₂.

Fig. S5 Galvanostatic discharge-charge cycling performance of Pt/C and CV-FeP/NPCNT-30 based liquid ZABs.

Tables

 Table S1 The elemental composition of NS-CNTs, FeP/NPCNT and CV-FeP/NPCNT-30

 determined by XPS survey results

	C (at%)	N (at%)	O (at%)	Fe (at%)	P (at%)
NS-CNTs	86.83	2.80	10.37	0	0
FeP/NPCNT	74.84	4.63	15.31	0.68	4.54
CV-FeP/NPCNT-	80.24	4.52	11.97	0.45	2.82
30					

Table S2 The contents of different N bonding structures of NS-CNTs, FeP/NPCNT and CV-FeP/NPCNT-30 derived from high-resolution N 1s XPS spectra

	pyridine-N	pyrrolic-N	graphitic-N	oxidized-N	Fe-N (%)
	(%)	(%)	(%)	(%)	
NS-CNTs	23.3	27.0	23.7	26.0	0
FeP/NPCNT	12.1	42.2	19.9	15.4	10.4
CV-FeP/NPCNT-	18.4	32.2	15.1	11.1	23.2
30					

Samples	E _{onset} /(V vs. RHE)	E _{1/2} /(V vs. RHE)	<i>j</i> _L /(mA cm ⁻²)	п	V _{oc} /(V vs. RHE)	Power density /(mW cm ⁻²)	Specific capacity /(mAh g ⁻¹)	Ref.
PFeC-900	1.01	0.88	8.38	3.97	/	/	/	(1)
FeCo/Co ₂ P@NPCF	0.85	0.79	4.89	3.85	1.44	154	/	(2)
2D-FeP@FeNC-900	/	0.84	5.5	3.60	/	260	803.7	(3)
FP _{0.6} @CNP1000	0.93	0.85	5.41	3.91	1.455	80	/	(4)
ZIF-8/Fe ₂ P@CNT	0.92	0.81	/	3.99	/	/	/	(5)
FeP-NWCC	/	0.86	5.8	3.77-	1.50	144	805.6	(6)
FePNS-G-2	/	/	/	~4	1.493	168	782.4	(7)
Fe-N-C NPC/CNT	/	0.88	6.5	4.0	1.47	201	/	(8)
Fe ₃ C/Fe ₂ P@NC-N ₄ Fe ₂	1.03	0.89	/	3.9	/	/	/	(9)
FeP/NPC	0.92	0.82	/	3.99	/	/	/	(10)
Fe-P /Cu ₃ P-NPC	/	0.84	/	3.88	1.39	158.5	815.3	(11)
NPC-10	1.11	0.89	5.4	3.9	1.47	136.5	659.5	(12)
FeP/NPCNT	1.15	0.868	6.59	3.92	1.48	187	819.2	This work
CV-FeP/NPCNT-30	1.14	0.920	5.89	3.99	1.528	221	851.5	This work

Table S3 Electrochemical performances of CV-FeP/NPCNT-30 and some relevant catalysts for ORR tests in O₂-saturated 0.1 mol L⁻¹ KOH electrolyte, and their based home-made liquid ZABs

References

- Norouzi, N.; Choudhury, F. A.; El-Kaderi, H. M. Iron Phosphide Doped, Porous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction. *ACS Appl. Energy Mater.* 2020, *3* (3), 2537–2546. https://doi.org/10.1021/acsaem.9b02250.
- (2) Shi, Q.; Liu, Q.; Ma, Y.; Fang, Z.; Liang, Z.; Shao, G.; Tang, B.; Yang, W.; Qin, L.; Fang, X. High-Performance Trifunctional Electrocatalysts Based on FeCo/Co₂ P Hybrid Nanoparticles for Zinc–Air Battery and Self-Powered Overall Water Splitting. *Adv. Energy Mater.* **2020**, *10* (10), 1903854. https://doi.org/10.1002/aenm.201903854.
- (3) Tang, X.; Wu, Y.; Zhai, W.; Chu, T.; Li, L.; Huang, B.; Hu, T.; Yuan, K.; Chen, Y. Iron-Based Nanocomposites Implanting in N, P Co-Doped Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn-Air Batteries. *Compos. Commun.* 2022, 29, 100994. https://doi.org/10.1016/j.coco.2021.100994.
- (4) Kang, Y.; Yan, P.; Yang, W.; Chen, B. Facile Synthesis of Nitrogen- and Phosphorus-Co-Doped Porous Carbon Nanosheets Embedded with FeP Clusters for the Oxygen Reduction Reaction Using Rechargeable Zinc-Air Batteries. J. Electroanal. Chem. 2022, 909, 116122. https://doi.org/10.1016/j.jelechem.2022.116122.
- (5) Liu, C.-C.; Chen, H.-Y.; Jhong, H.-P.; Chang, S.-T.; Wang, K.-C.; Chang, Y.-C.; Huang, H.-C.; Wang, C.-H. In-Situ Growth of Iron Phosphide Encapsulated by Carbon Nanotubes Decorated with Zeolitic Imidazolate Framework-8 for Enhancing Oxygen Reduction Reaction.

Int. J. Hydrog. Energy **2022**, *47* (39), 17367–17378. https://doi.org/10.1016/j.ijhydene.2022.03.228.

- (6) Zhang, P.; Liu, Y.; Wang, S.; Zhou, L.; Liu, T.; Sun, K.; Cao, H.; Jiang, J.; Wu, X.; Li, B. Wood-Derived Monolithic Catalysts with the Ability of Activating Water Molecules for Oxygen Electrocatalysis. *Small* 2022, *18* (34), 2202725. https://doi.org/10.1002/smll.202202725.
- (7) Nam, D.; Kim, J. Fe, P, N, S Multidoping Porous Graphene Material as a Bifunctional OER/ORR Electrocatalytic Activity for Enhancing Rechargeable Zn-Air Batteries. *Ionics* 2022, 28 (10), 4719–4728. https://doi.org/10.1007/s11581-022-04702-4.
- (8) Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. Doping Effect on Mesoporous Carbon-Supported Single-Site Bifunctional Catalyst for Zinc – Air Batteries. ACS Nano 2022, 16 (10), 15994– 16002. https://doi.org/10.1021/acsnano.2c03565.
- (9) Chu, C.; Liu, J.; Wei, L.; Feng, J.; Li, H.; Shen, J. Iron Carbide and Iron Phosphide Embedded N-Doped Porous Carbon Derived from Biomass as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cell. *Int. J. Hydrog. Energy* **2023**, *48* (11), 4492–4502. https://doi.org/10.1016/j.ijhydene.2022.10.262.
- (10) Xu, L.-H.; Che, P.-C.; Zhang, X.-J.; Cosnier, S.; Shan, D. FeP Nanoparticles Highly Dispersed on N,P-Doped Petaloid Carbon Nanosheet: Interface Engineering and Boosted Intrinsic ORR Activity. *Appl. Surf. Sci.* 2023, 620, 156770. https://doi.org/10.1016/j.apsusc.2023.156770.
- (11) Yang, X.; Wang, F.; Jing, Z.; Chen, M.; Wang, B.; Wang, L.; Qu, G.; Kong, Y.; Xu, L. A General "In Situ Etch-Adsorption-Phosphatization" Strategy for the Fabrication of Metal Phosphides/Hollow Carbon Composite for High Performance Liquid/Flexible Zn–Air Batteries. *Small* **2023**, *19* (38), 2301985. https://doi.org/10.1002/smll.202301985.
- (12) Zhang, J.; Gong, T.; Liu, R.; Xu, H.; Zhang, Y.; Hou, L.; Yuan, C. Metal-Organic Framework Derived Porous N, P Co-Doping Carbon Microcubes toward Aqueous and Flexible Quasi-Solid-State Rechargeable Zn-Air Batteries. *Mater. Today Chem.* 2023, 34, 101801. https://doi.org/10.1016/j.mtchem.2023.101801.