Supporting Information

Structural and Adsorption Features of Polyoxovanadate-Based Metal-

Organic Clusters Controlled by Adjustable Template Effect

Yan-Hu Wang,^{‡a} Ke-Wei Tong,^{‡a} Chao-Qin Chen,^a Jing Du,^b Guo-Ping Yang^c and Peng Yang^{*a}

[[‡]] These authors contributed equally to this work.

^a College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P.R. China

^b College of Chemistry and Materials Science, Testing and Analysis Center, Hebei Normal University, 050024 Shijiazhuang, P.R. China

^c Jiangxi Province Key Laboratory of Synthetic Chemistry, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 330013 Nanchang, P.R. China

*Corresponding Author: Prof. Peng Yang

*E-mail: pengyang216@hnu.edu.cn (P.Y.)

Table of Contents (25 pages)

1.	Experimental Details	S2
2.	Synthesis of Organic Ligand	S4
3.	Synthesis of Compounds	S5
4.	Characterization on Compounds and Ligands	S7
5.	References	S25

1. Experimental Details

1.1 Materials:

Unless otherwise indicated, all chemicals and reagents were purchased from commercial suppliers and used without further purification. The organic ligand used in this work was synthesized according to the published method with some modifications.

1.2 Physical measurements:

FT-IR. The Fourier transform infrared (FT-IR) spectra were recorded on KBr disk using a Shimadzu IRSpirit-T spectrometer between 400 and 4000 cm⁻¹.

Elemental Analyses. CHNS microanalyses were performed on a Perkin-Elmer 240C elemental analyzer, and ICP-OES analyses were performed on a Perkin-Elmer Optima 8300 optical emission spectrometer.

NMR. The ¹H and ³¹P nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 MHz instrument at room temperature, using 5-mm tubes for ¹H and ³¹P with respective resonance frequencies of 399.78 MHz (¹H) and 162 MHz (³¹P).

TGA. Thermogravimetric analyses (TGA) were carried out on a TA Instruments SDT Q600 thermobalance with a 100 mL min⁻¹ flow of nitrogen; the temperature was ramped from 25 to 800 °C at a rate of 5 °C min⁻¹.

Powder XRD. Powder X-ray diffraction (Powder XRD) patterns were obtained using a Bruker D8 ADVANCE diffractometer with Cu *Ka* radiation ($\lambda = 1.54056$ Å).

XPS. For X-ray photoelectron spectroscopy (XPS), a 100-nm-thick Ag film was deposited by sputter-coating on a silicon substrate. The samples were then dispersed in acetone and drop-casted on the Ag coated silicon substrate. After sample preparation, they were introduced into the XPS vacuum chamber equipped with a photoelectron spectrometer consisting of a hemispherical analyzer (Spec Phoebos 100) and a Mg/Al X-ray source (Spec XR-50). For excitation, the Mg K α (E = 1253.6 eV) anode was used. The shift in the binding energy due to surface charging was corrected with respect to the C 1s peak. The data evaluation was done by CASAXPS software.

UV-vis Absorption. The ultraviolet-visible (UV-vis) absorption spectra were measured at room temperature using a Shimadzu UV-1900i spectrophotometer.

Raman Spectroscopy. Raman spectra were recorded using a Raman microscope (Renishaw plc (invia-reflex)) with a 532 nm diode laser.

EDX Spectroscopy. The energy dispersive X-ray (EDX) spectra were acquired on a Hitachi Regulus 8100 instrument.

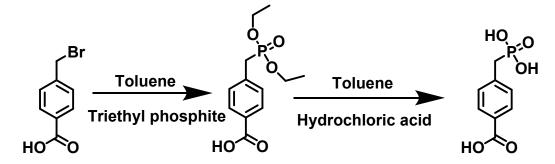
X-ray Crystallography. Single crystals of the seven compounds were mounted in a Hampton cryoloop with light oil to prevent efflorescence. The data collections for these compounds were performed at 150 K on a Bruker D8 Quest single-crystal diffractometer equipped with Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). All structures were solved with the ShelXT structure solution program using Intrinsic Phasing^{S1} and refined with the ShelXL refinement package using Least Squares minimization^{S2} operated in the OLEX2 interface.^{S3} All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of the organic groups were introduced in geometrically calculated positions. It was not possible to locate all counter cations by X-ray diffraction,

probably due to crystallographic disorder, which is a common problem in polyoxometalate crystallography. Thus, the SQUEEZE program^{S4} or the Olex2 solvent mask function were further used to remove the contributions of weak reflections from the whole data. The newly generated hkl data were further used to refine the final crystal data. Therefore, the exact number of cations and solvent molecules was determined by elemental analysis and thermogravimetric diagrams. The resulting formula units were further used throughout the paper. In the Supporting Information, the crystal data and structure refinement for the seven compounds is summarized in Table S2. CCDC-2310865 (DMA-V₁₂P₆), CCDC-2310866 (Na-V₁₂P₆), CCDC-2310867 (Mg-V₁₂P₆), CCDC-2310868 (Al-V₁₂P₆), CCDC-2310869 (Na-V₁₀As₈), CCDC-2310870 (TMA- α -VNC-1) and CCDC-2310871 (TMA- β -VNC-1) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Selective Uptake of Cations. The equimolar (0.035 mmol) amount of $Na^+\&K^+$ as well as $Mg^{2+}\&K^+$ were respectively added into the reaction system of **DMA-V**₁₂**P**₆ followed by hydrothermal treatment. Crystals were collected and analyzed by single-crystal X-ray diffraction, FT-IR, Powder XRD, and elemental analysis.

Dye Adsorption. The equimolar (0.030 mmol) freshly prepared crystals of **DMA-V₁₂P₆**, **Na-V₁₂P₆**, **TMA-α-VNC-1**, and **TMA-β-VNC-1** were immersed in 3 mL of ethanol solution containing MB⁺ (1.25×10^{-5} M), SD⁰ (5×10^{-5} M), and AO⁻ (5×10^{-5} M), respectively. The mixture was stirred under dark condition to avoid photodegradation, then the supernatant was centrifuged and monitored periodically using UV–vis spectrophotometer.

Iodine Adsorption. The equimolar (0.030 mmol) freshly prepared crystals of $DMA-V_{12}P_6$, $Na-V_{12}P_6$, $TMA-\alpha-VNC-1$, and $TMA-\beta-VNC-1$ were immersed in 3 mL of I₂/n-hexane solution with a concentration of 2 mmol/L, respectively. The supernatant was then monitored periodically at room temperature using UV-vis spectrophotometer. Regarding the evalution of reusability, $TMA-\alpha-VNC-1$ after iodine adsorption was reactivated in EtOH and air dried for the next run.


Iodine Removal Efficiency. The removal efficiency was calculated by using the following equation

Removal (%) = $(C_i - C_{e(or t)}) / C_i *100$

where C_i is the initial concentration of I₂ in n-hexane (mg/L) and C_e is the concentration at equilibrium (mg/L).

2. Synthesis of Organic Ligand

4-(phosphonomethyl) benzoic acid (p-PMBA):

p-PMBA was synthesized following a published procedure with minor modifications.⁵⁵ 2.00 g (9.30 mmol) of 4-(bromomethyl) benzoic acid and 8 mL (46.37 mmol) of triethyl phosphite were dispersed in 40 mL of toluene in a round bottom flask. The solution was heated under reflux for 12 h. Afterwards, the solvent and an excess of triethyl phosphite were removed under vacuum and white solids dispersed in a colorless oil were obtained. The mixture was treated with 20 mL of toluene and 80 mL of concentrated hydrochloric acid, and then heated under reflux for another 24 h. After cooling the reaction solution, white crystals were filtered and washed with toluene. Yield: 1.83 g (91.04 %). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.85 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 3.07 (s, 1H), 3.02 (s, 1H). ³¹P NMR (162 MHz, DMSO-*d*₆) δ 20.07. FT-IR (2% KBr pellet, ν/cm⁻¹): 1703, 1606, 1577, 1425, 1313, 1068, 992, 866, 758, 692, 641, 534 cm⁻¹.

3. Synthesis of Compounds

Synthesis of (DMA)₆[SO₄(V^VV^{IV}₄O₉)₂{V^{IV}₂(OH)₂O₂}(PhPO₃)₆]·2CH₃OH·3DMF (DMA-V₁₂P₆)

0.030 g (0.180 mmol) of VOSO₄ and 0.010 g (0.060 mmol) of phenylphosphonic acid were suspended in a mixed solvent of DMF : MeOH (1 : 2 mL) and sonicated for 30 min. The mixture was sealed in a 25 mL Teflon-lined reactor, which was heated at 130 °C for 60 h. Upon cooling to room temperature at a rate of 10 °C h⁻¹, light green block-shaped crystals were obtained. Yield: 0.011 g (43.02 % based on phenylphosphonic acid). Elemental analysis (%): Calcd: V 23.90, P 7.26, C 27.70, H 4.29, N 4.93, S 1.25; Found: V 23.77, P 7.21, C 28.01, H 4.54, N 4.72, S 1.17. FT-IR (2% KBr pellet, v/cm⁻¹): 3416 (br), 3036 (w), 1633 (m), 1485 (s), 1439 (m), 1142 (w), 1097 (s), 1020 (w), 994 (s), 761 (w), 725 (w), 697 (w), 649 (s), and 552 (s).

Na-V₁₂P₆ was synthesized by the same procedure as DMA-V₁₂P₆ except that 0.005 g (0.035 mmol) of Na₂SO₄ was added to the reaction system. Dark green block-shaped crystals were obtained. Yield: 0.008 g (28.61 % based on phenylphosphonic acid). Elemental analysis (%): Calcd: V 21.86, P 6.65, Na 2.47, C 24.49, H 3.97, N 4.51, S 3.44; Found: V 22.02, P 6.51, Na 2.43, C 25.16, H 4.54, N 4.77, S 3.32. FT-IR (2% KBr pellet, v/cm⁻¹): 3436 (br), 3036 (w), 1631 (m), 1485 (s), 1437 (m), 1163 (w), 1138 (s), 1016 (w), 994 (s), 967 (w), 763 (m), 721 (m), 699 (m), 649 (s), and 554 (s).

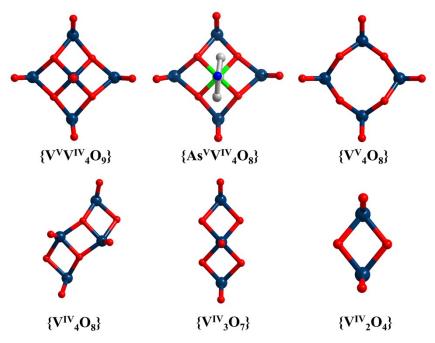
$\label{eq:2.1} Synthesis of $(DMA)_6Mg_2[SO_4(V^VV^{IV}_4O_9)_2\{V^{IV}_2(OH)_2O_2\}(PhPO_3)_6] \cdot 2SO_4 \cdot 2H_2O \cdot CH_3OH \cdot 4DMF$ (Mg-V_{12}P_6)$$

Mg-V₁₂P₆ was synthesized by the same procedure as **DMA-V₁₂P₆** except that 0.004 g (0.035 mmol) of MgSO₄ was added to the reaction system. Dark green block-shaped crystals were obtained. Yield: 0.007 g (24.35 % based on phenylphosphonic acid). Elemental analysis (%): Calcd: V 21.26, P 6.46, Mg 1.69, C 25.48, H 4.07, N 4.87, S 3.34; Found: V 21.37, P 6.29, Mg 1.57, C 26.11, H 4.13, N 5.22, S 3.12. FT-IR (2% KBr pellet, v/cm^{-1}): 3506 (br), 3028 (w), 1648 (w), 1485 (s), 1437 (w), 1140 (s), 1107 (s), 985 (s), 725 (m), 701 (m), 651 (w), and 556 (w).

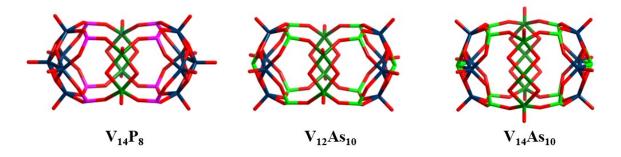
Al-V₁₂P₆ was synthesized by the same procedure as DMA-V₁₂P₆ except that 0.023 g (0.035 mmol) of Al₂(SO₄)₃·18H₂O was added to the reaction system. Dark green block-shaped crystals were obtained. Yield: 0.008 g (26.96 % based on phenylphosphonic acid). Elemental analysis (%): Calcd: V 20.60, P 6.26, Al 1.82, C 25.91, H 4.00, N 4.72, S 3.24; Found: V 20.36, P 6.25, Al 1.74, C 25.97, H 3.14, N 4.84, S 2.89. FT-IR (2% KBr pellet, v/cm⁻¹): 3407 (br), 3032 (w), 1631 (w), 1487 (s), 1437 (m), 1142 (s), 1016 (m), 998 (s), 761 (m), 721 (m), 701 (m), 649 (s), and 562 (s).

$\label{eq:synthesis} Synthesis of (DMA)Na_3[SO_4(NH_2PhAs^VV^{IV}_4O_8)_2\{V^{IV}_2(OH)_2O_2\}(NH_2PhAsO_3)_6]\cdot 2H_2O\cdot 4CH_3OH\cdot 4DMF (Na-V_{10}As_8)$

Na-V₁₀As₈ was synthesized by the same procedure as **Na-V₁₂P**₆, except using 0.040 g (0.184 mmol) of *p*-Arsanilic acid instead of phenylphosphonic acid. Green block-shaped crystals were obtained. Yield: 0.023 g (40.91 % based on V). Elemental analysis (%): Calcd: V 16.31, As 19.19, Na 2.21, C 25.38, H 3.42, N 5.83, S 1.03; Found: V 16.03, As 19.04, Na 2.34, C 24.86, H 3.47, N 6.22, S 1.08. FT-IR (2% KBr pellet, v/cm⁻¹): 3354 (br), 3224 (w), 1629 (w), 1592 (s), 1507 (s), 1481 (w), 1303 (m), 1190 (m), 1095 (s), 996 (s), 868 (s), 651 (m), and 525 (m).


Synthesis of TMA₁₀[{ $V^{IV}_{6}O_{6}(OMe)_{9}(p-PMBA)$ }₂{[$V^{IV}_{4}O_{6}(OMe)_{2}$]₂[$V^{IV}_{4}O_{6}$](p-PMBA)₆}]·16CH₃OH·5DMF (TMA- α -VNC-1)

0.040 g (0.246 mmol) of VOSO₄ and 0.015 g (0.069 mmol) of *p*-PMBA were suspended in a mixed solvent of DMF : MeOH (1.5 : 4 mL) and sonicated for 30 min. The mixture was sealed in a 25 mL Teflon-lined reactor, which was heated at 130 °C for 60 h. Upon cooling to room temperature at a rate of 10 °C h⁻¹, green block-shaped crystals were obtained. Yield: 0.024 g (48.88 % based on *p*-PMBA). Elemental analysis (%): Calcd: V 21.41, P 4.34, C 33.03, H 5.88, N 3.68; Found: V 21.09, P 4.29, C 33.19, H 6.03, N 3.53. FT-IR (2% KBr pellet, v/cm⁻¹): 3438 (br), 2923 (w), 2809 (w), 1590 (s), 1549 (s), 1487 (m), 1425 (s), 1247 (w), 1070 (s), 996 (w), 944 (s), 800 (w), 707 (w), 649 (w), and 546 (m).


$\label{eq:synthesis} of TMA_{10}[\{V^{IV}{}_6O_6(OMe)_9(p-PMBA)\}_2\{[V^{IV}{}_4O_6(OMe)_2]_2[V^{IV}{}_4O_6](p-PMBA)_6\}]\cdot 24CH_3OH\cdot 6DMAc \ (TMA-\beta-VNC-1)$

TMA-β-VNC-1 was synthesized by the same procedure as TMA-α-VNC-1 except using 1.5 mL DMAc instead of DMF. Green rod-shaped crystals were obtained. Yield: 0.031 g (58.70 % based on *p*-PMBA). Elemental analysis (%): Calcd: V 19.97, P 4.05, C 34.13, H 6.32, N 3.66; Found: V 20.05, P 4.14, C 33.68, H 6.19, N 3.50. FT-IR (2% KBr pellet, v/cm⁻¹): 3453 (br), 2925 (w), 2815 (w), 1596 (s), 1557 (s), 1419 (s), 1243 (w), 1153 (w), 1082 (s), 994 (s), 954 (s), 791 (w), 703 (w), 653 (w), and 556 (s).

4. Characterization on Compounds and Ligands

Figure S1. Ball-and-stick representation of the basic building blocks for POV-P/As-MOCs. Color code: V, dark blue; As, light green; O, red balls.

Figure S2. Typical examples of annular POV-P/As-MOCs. Color code: V, dark blue or green; As, light green; P, pink; O, red.

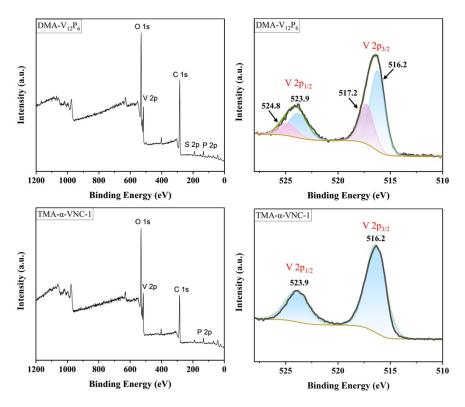


Figure S3. XPS spectra and fits for V 2p of DMA-V₁₂ P_6 (top) and TMA- α -VNC-1 (bottom).

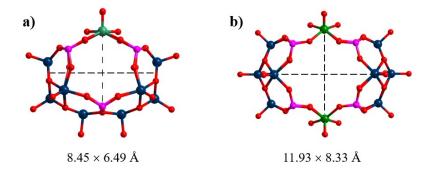


Figure S4. The size of the elliptical cavity in a) $V_{12}P_6$ and b) $V_{14}P_8$.

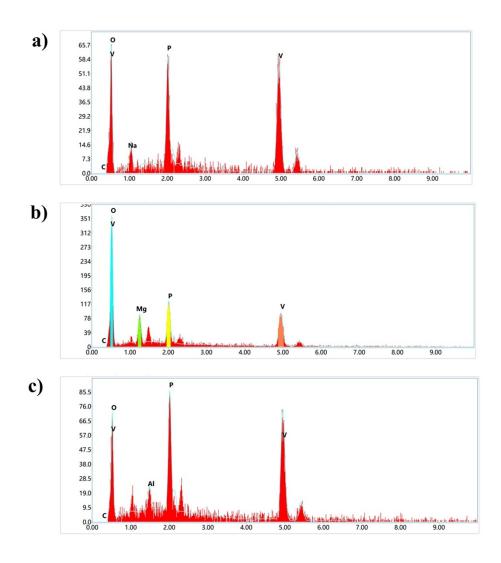


Figure S5. EDX spectra of $Na\text{-}V_{12}P_{6}\left(a\right),$ $Mg\text{-}V_{12}P_{6}\left(b\right),$ and $Al\text{-}V_{12}P_{6}\left(c\right).$

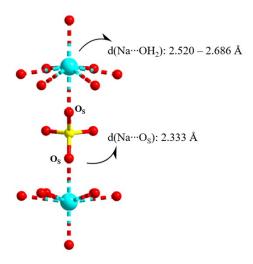
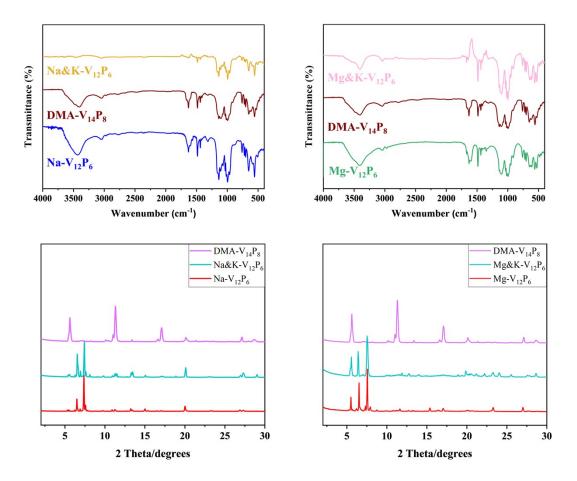
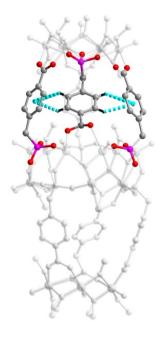
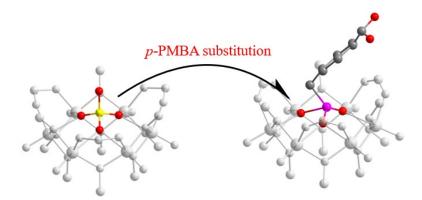
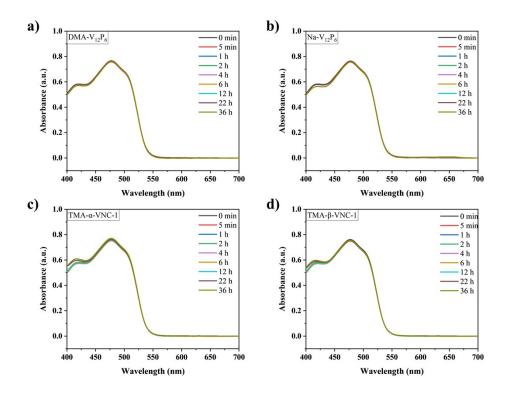


Figure S6. The distance of Na…Os and Na…OH2 bonds in Na-V12P6.


Figure S7. FT-IR spectra (top) and Powder XRD patterns (bottom) of the compounds from the system of Na & K-V₁₂P₆ and Mg & K-V₁₂P₆.

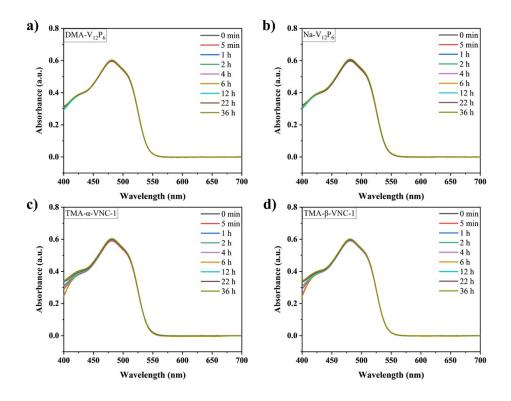

Figure S8. C-H··· π interactions among *p*-PMBA ligands inside the cavity of **VNC-1**.

Figure S9. Ligand substitution of SO₄²⁻ (V₆-SO₄) by *p*-PMBA (V₆-PMBA).

Figure S10. The UV-vis spectra of SD⁰ in ethanol in the presence of a) DMA- $V_{12}P_6$, b) Na- $V_{12}P_6$, c) TMA- α -VNC-1 and d) TMA- β -VNC-1 at various time intervals.

Figure S11. The UV-vis spectra of AO⁻ in ethanol in the presence of a) DMA- $V_{12}P_6$, b) Na- $V_{12}P_6$, c) TMA- α -VNC-1 and d) TMA- β -VNC-1 at various time intervals.

Μ	ethylene Blue (MB ⁺)	Sudan I (SD ⁰)	Acid Orange (AO ⁻)
	$-\mathbf{N}$ \mathbf{S} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N}	HO	HO N_{N} $O=S=O$ $O\Theta$
X(Å)	4.59	4.13	5.19
Y(Å)	8.01	9.57	9.66
Z(Å)	16.75	14.09	15.49

Figure S12. Molecular structures and dimensions of dye molecules used in this study.

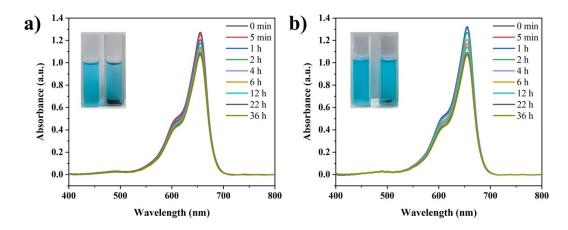


Figure S13. The UV-vis spectra of MB⁺/ethanol in the presence of $Mg-V_{12}P_6$ (a) and $Al-V_{12}P_6$ (b) at various time intervals (inset, photographs of the color of dye solutions before and after adsorption).

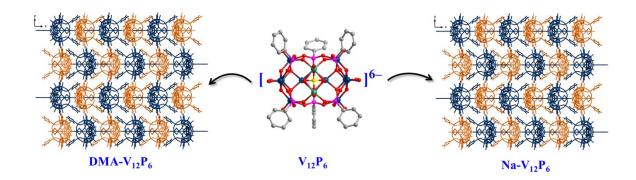


Figure S14. The crystal packing diagrams of $DMA-V_{12}P_6$ and $Na-V_{12}P_6$.

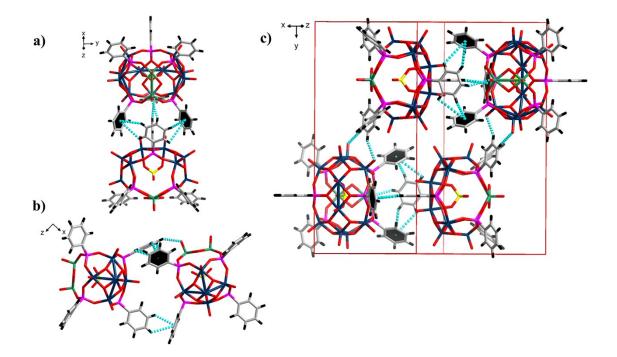
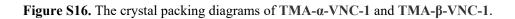



Figure S15. Diagrams of the intermolecular C-H··· π interactions among cages in DMA-V₁₂P₆.

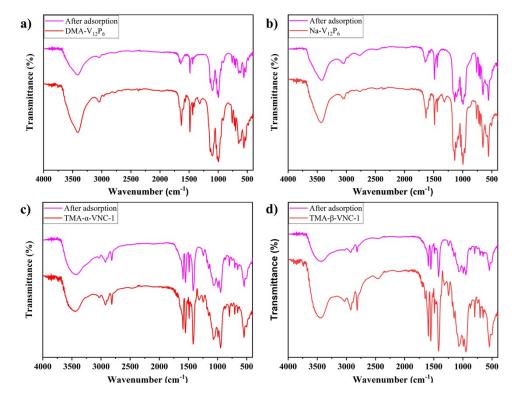


Figure S17. FT-IR spectra of a) DMA- $V_{12}P_6$, b) Na- $V_{12}P_6$, c) TMA- α -VNC-1 and d) TMA- β -VNC-1 before and after dye adsorption.

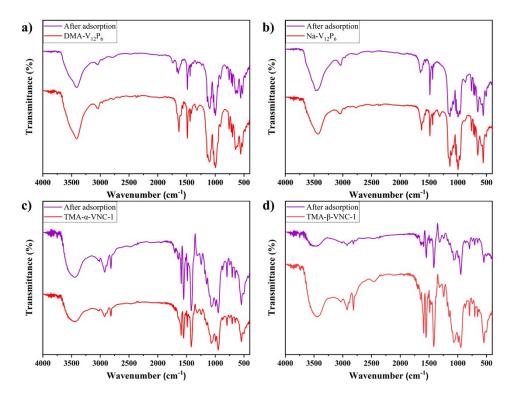


Figure S18. FT-IR spectra of a) DMA- $V_{12}P_6$, b) Na- $V_{12}P_6$, c) TMA- α -VNC-1 and d) TMA- β -VNC-1 before and after I₂ adsorption.

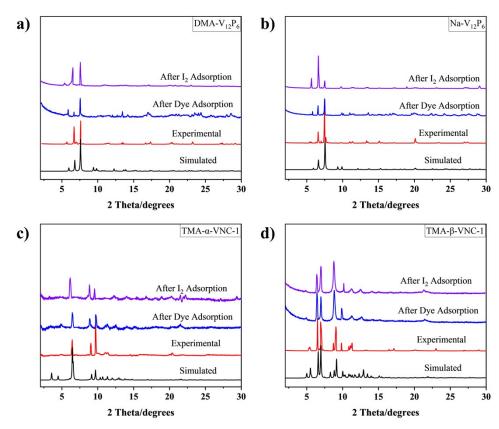


Figure S19. Powder XRD patterns of a) DMA- $V_{12}P_6$, b) Na- $V_{12}P_6$, c) TMA- α -VNC-1 and d) TMA- β -VNC-1 before and after dye and I₂ adsorption.

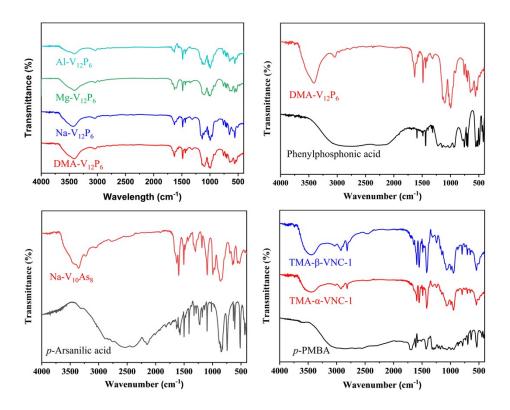


Figure S20. FT-IR spectra of the as-synthesized compounds.

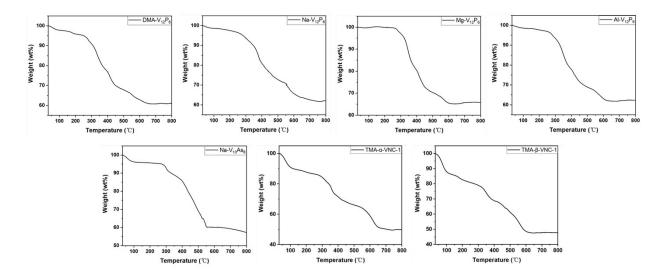


Figure S21. Thermogram of the as-synthesized compounds from 25 to 800 °C under N₂ atmosphere.

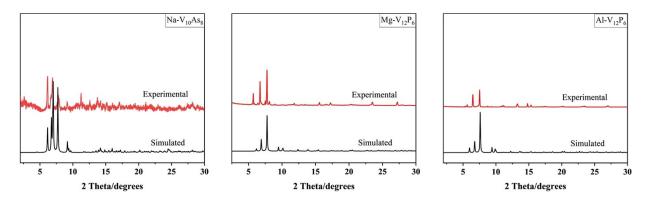


Figure S22. Powder XRD patterns of Na-V₁₀As₈, Mg-V₁₂P₆, and Al-V₁₂P₆.

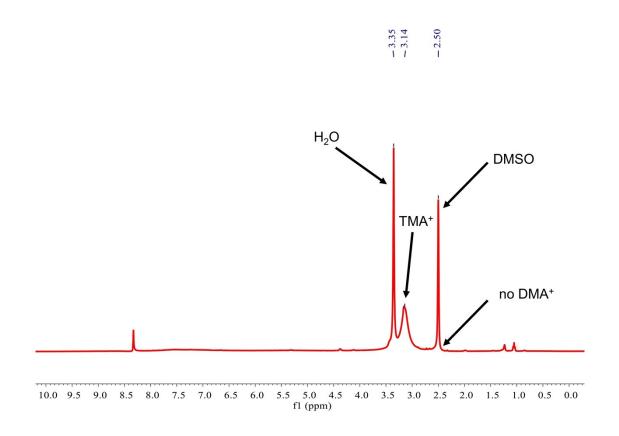
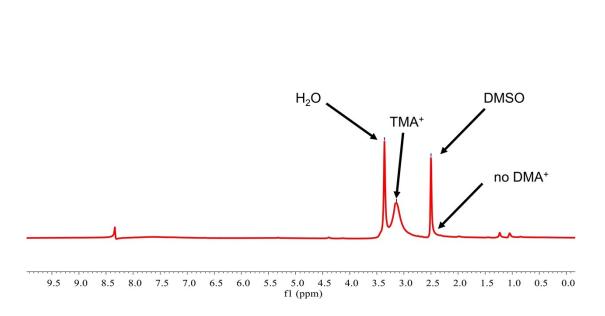
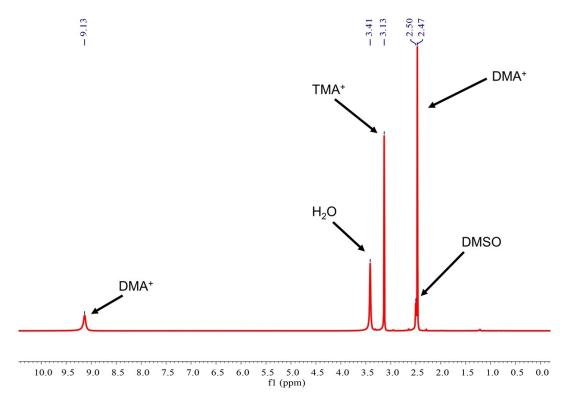
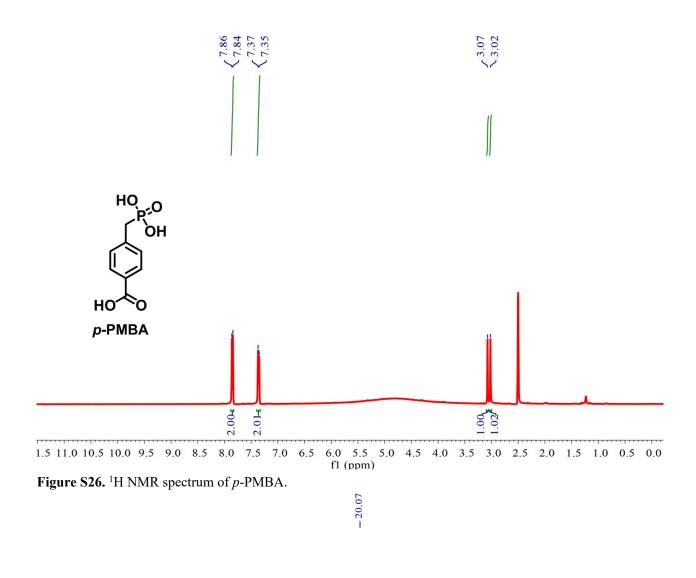




Figure S23. ¹H NMR spectrum of TMA- α -VNC-1 dissolved in d_6 -DMSO to confirm the presence of TMA cations.



-3.36 -3.14 - 2.50

Figure S24. ¹H NMR spectrum of TMA- β -VNC-1 dissolved in d_6 -DMSO to confirm the presence of TMA cations.

Figure S25. ¹H NMR spectrum of TMA⁺Cl⁻ and DMA⁺Cl⁻ dissolved in d_6 -DMSO as reference for identifying counter cations.

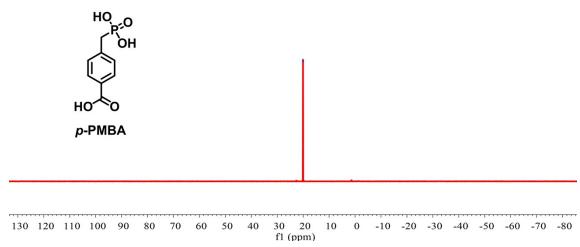


Figure S27. ³¹P NMR spectrum of *p*-PMBA.

DMA-V ₁₂ P ₆			
V	BVS value	μ ₂ -Ο (V-Ο-Ρ)	BVS value
V1	4.128	08	1.911
V2	5.092	O10	1.911
V3	4.142	O13	1.929
V4	4.194	O14	1.893
V5	4.176	O15	1.982
V6	4.161	O16	1.946
V7	4.031	O18	1.877
μ ₃ -Ο	BVS value	O20	1.911
01	2.214	Terminal O (V)	BVS value
O6	2.196	05	1.669
O4	2.080	09	1.573
07	2.070	011	1.688
O12	2.092	O19	1.599
O22	2.070	O21	1.815
μ ₂ -Ο (V-Ο-V)	BVS value	O24	1.638
O2	1.168	O25	1.660
μ ₂ -Ο (V-Ο-S)	BVS value		
O17	1.795		
O23	1.754		
	Na-	V ₁₀ As ₈	
V	BVS value	μ ₂ -Ο (V-Ο-S)	BVS value
V1	4.122	08	1.810
V3	4.126	O10	1.732
V4	3.862	Terminal O (V)	BVS value
V6	4.167	O13	1.644
V9	3.977	O23	1.689
V10	4.137	O28	1.644
μ ₂ -Ο (V-Ο-V)	BVS value	O33	1.689
O25	1.116	O37	1.689
O30	1.212	O41	1.644
μ ₂ -O (V-O-As)	BVS value	μ3-Ο	BVS value
07	1.940	01	2.045
O12	1.992	O4	2.251
O15	2.070	O6	2.037
O18	1.938	O14	2.303
O24	2.010	O16	2.028
O26	1.910	O42	2.022
O35	2.021		
O36	1.957		

Table S1. BVS values for DMA-V_{12}P_6, Na-V_{10}As_8 and TMA-\beta-VNC-1.

ΤΜΑ-β-VNC-1			
V	BVS value	Terminal O (V)	BVS value
V1	4.194	05	1.644
V2	4.192	O13	1.644
V3	4.566	O17	1.558
V4	3.995	O19	1.498
V5	4.070	O21	1.689
V6	4.354	O37	1.882
V7	3.914	O39	1.516
V8	4.007	O41	1.558
V9	4.181	O42	1.558
V10	4.455	O44	1.736
V11	4.349	O45	1.736
V12	4.336	O46	1.516
μ3-Ο	BVS value	μ ₂ -Ο (V-Ο-Ρ)	BVS value
07	1.918	01	2.017
09	1.815	O2	2.084
O10	1.871	O16	1.998
012	1.988	O33	1.845
015	1.960	O35	1.818
023	1.803	O38	1.772

Compound	DMA-V ₁₂ P ₆	Na-V ₁₂ P ₆	Mg-V ₁₂ P ₆
Empirical formula	V ₁₂ P ₆ SC ₅₉ N ₉ O ₄₉ H ₁₀₉	V ₁₂ P ₆ S ₃ Na ₃ C ₅₇ N ₉ O ₅₇ H ₁₁₀	$V_{12}P_6S_3Mg_2C_{61}N_{10}O_{59}H_{116}$
Formula weight, g/mol	2557.73	2795.82	2875.55
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pnma	Pnma	Pnma
<i>a</i> , Å	18.799(4)	18.7492(6)	18.9438(12)
b, Å	25.986(6)	26.2464(8)	26.1533(14)
<i>c</i> , Å	18.008(5)	17.6616(6)	17.6647(11)
<i>α</i> , °	90	90	90
<i>β</i> , °	90	90	90
γ, °	90	90	90
Volume, Å ³	8797(4)	8691.3(5)	8751.8(9)
Ζ	4	4	4
$D_{\rm calc},{ m g/cm^3}$	1.542	1.712	1.612
Absorption coefficient, mm ⁻¹	1.423	1.503	1.461
F(000)	4028	4416	4182
Theta range for data collection, °	4.432 to 50.336	4.92 to 56.654	5.122 to 55.844
Completeness to Θ_{max}	99.5 %	99.5 %	99.4 %
	$-22 \le h \le 22$	$-24 \le h \le 25$	$-22 \le h \le 24$
Index ranges	$-30 \le k \le 31$	$-35 \le k \le 35$	$-30 \le k \le 34$
	-21 ≤1 ≤ 21	$-21 \le 1 \le 23$	$-21 \le l \le 23$
Reflections collected	77577	96833	87724
Independent reflections	8039	10998	10637
R(int)	0.1144	0.0340	0.0335
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Data / restraints / parameters	8039 / 498 / 496	10998 / 528 / 664	10637 / 494 / 569
Goodness-of-fit on F ²	1.039	1.025	1.025
\mathbf{n} [a] \mathbf{n} [b] $(\mathbf{x}, \mathbf{a}, (\mathbf{n}))$	$R_I = 0.0657$	$R_1 = 0.0417$	$R_1 = 0.0509$
$R_1,^{[a]} w R_2^{[b]} (I > 2\sigma(I))$	$wR_2 = 0.1843$	$wR_2 = 0.1231$	$wR_2 = 0.1526$
R_{1} , ^[a] w R_{2} ^[b] (all data)	$R_1 = 0.0956$	$R_1 = 0.0481$	$R_I = 0.0578$
$\Lambda_1, \Gamma^{\mu} W \Lambda_2 \Gamma^{\mu}$ (all data)	$wR_2 = 0.2119$	$wR_2 = 0.1292$	$wR_2 = 0.1607$
Largest diff. peak and hole, e/Å ³	1.04 and -1.16	1.48 and -0.85	2.17 and -1.42

Table S2. Crystal data and structure refinement for the as-synthesized compounds.

Compound	Al-V ₁₂ P ₆	Na-V ₁₀ As ₈	ΤΜΑ-α-VNC-1
Empirical formula	$V_{12}P_6S_3Al_2C_{64}N_{10}O_{62}H_{118}$	$V_{10}As_8SNa_3C_{66}N_{13}O_{52}H_{106}$	$V_{24}P_8C_{157}N_{15}O_{113}H_{333}$
Formula weight, g/mol	2966.95	3123.43	5709.74
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pnma	$Pna2_1$	Fddd
<i>a</i> , Å	18.8119(17)	26.192(4)	31.7556(12)
b, Å	26.116(2)	28.694(4)	53.665(2)
<i>c</i> , Å	17.9103(19)	14.197(2)	58.241(3)
α, °	90	90	90
<i>β</i> , °	90	90	90
γ, °	90	90	90
Volume, Å ³	8799.0(15)	10670(3)	99252(7)
Ζ	4	4	16
$D_{\rm calc},{ m g/cm^3}$	1.548	1.636	1.087
Absorption coefficient, mm ⁻¹	1.389	3.400	0.969
<i>F</i> (000)	4043	5104	32320
Theta range for data collection, °	4.602 to 56.664	4.464 to 52.746	4.366 to 35.48
Completeness to Θ_{max}	99.7 %	97.6 %	99.2 %
Index ranges	$-25 \le h \le 23$	$-31 \le h \le 32$	$-27 \le h \le 25$
	$-34 \le k \le 31$	$-34 \le k \le 35$	$-45 \le k \le 45$
	$-23 \le 1 \le 23$	$-17 \le 1 \le 16$	$-49 \le l \le 49$
Reflections collected	88935	93610	39200
Independent reflections	11132	20349	8120
R(int)	0.0391	0.0912	0.0643
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Data / restraints / parameters	11132 / 1423 / 521	20349 / 7 / 1081	8120 / 3701 / 1004
Goodness-of-fit on F ²	1.020	0.991	1.709
	$R_1 = 0.0477$	$R_1 = 0.0491$	$R_1 = 0.1237$
$R_1,^{[a]} \le R_2^{[b]} (I \ge 2\sigma(I))$	$wR_2 = 0.1361$	$wR_2 = 0.1138$	$wR_2 = 0.3613$
R_1 , ^[a] w R_2 ^[b] (all data)	$R_1 = 0.0585$ $wR_2 = 0.1451$	$R_1 = 0.0625$ $wR_2 = 0.1196$	$R_1 = 0.1481$ $wR_2 = 0.3985$
Largest diff. peak and hole, e/Å ³	1.62 and -1.54	0.79 and -1.26	1.27 and -0.65

Compound	ΤΜΑ-β-VNC-1	
Empirical formula	V ₂₄ P ₈ C ₁₇₄ N ₁₆ O ₁₂₂ H ₃₈₄	
Formula weight, g/mol	6036.21	
Crystal system	Monoclinic	
Space group	C2/c	
<i>a</i> , Å	23.6879(12)	
b, Å	26.7644(14)	
<i>c</i> , Å	35.2346(17)	
α , °	90	
<i>β</i> , °	92.2100(10)	
γ, °	90	
Volume, Å ³	22321.9(19)	
Ζ	4	
$D_{\rm calc},{ m g/cm^3}$	1.217	
Absorption coefficient, mm ⁻¹	1.078	
F(000)	8152	
Theta range for data collection, °	4.106 to 49.998	
Completeness to Θ_{max}	99.5 %	
	$-28 \le h \le 27$	
Index ranges	$-31 \le k \le 31$	
Index ranges	$-41 \le 1 \le 40$	
Reflections collected	95276	
Independent reflections	19553	
R(int)	0.1312	
Absorption correction	Semi-empirical from equivalents	
Data / restraints / parameters	19553 / 2655 / 897	
Goodness-of-fit on F ²	1.440	
D [4] D [b] (B O (D)	$R_1 = 0.1578$	
$R_1,^{[a]} W R_2^{[b]} (I \ge 2\sigma(I))$	$wR_2 = 0.4215$	
R_1 , ^[a] w R_2 ^[b] (all data)	$R_1 = 0.2499$ $wR_2 = 0.4976$	
Largest diff. peak and hole, e/Å ³	2.52 and -1.58	

^[a] $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^[b] w $R_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

References

- S1 G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3 8.
- S2 G. M. Sheldrick, *Acta Cryst.*, 2008, A64, 112 122.
- S3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339 – 341.
- S4 A. L. Spek, Acta Cryst., 2015, C71, 9–18.
- S5 L. H. Schilling and N. Stock, *Dalton Trans.* 2014, **43**, 414 422.