Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Te doped 1T/2H-MoSe₂ nanosheets with rich defects as advanced anode materials for high-rate sodium ion half/full batteries

Zhiqi Li,^a Jiawen Yan,^a Qiming Li,^a Ao Xu,^a Jianchao Sun,^a Yijing Wang,^b Xiaoyu Zhang,^{a,c} Xueqin Sun,^a Fuyi Jiang^{a,*} and Yanli Zhou^{a,*}

^a School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

^c Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, Shandong 265503, China

*Corresponding author.

E-mail addresses: fyjiang@ytu.edu.cn; zhouyanli@ytu.edu.cn

Fig. S1 XPS survey spectrum of $Te-MoSe_2$.

Fig. S2 TEM images of MoSe₂.

Fig. S3 Particle size distribution of Te-MoSe₂.

Fig. S4 EPR spectra of Te-MoSe₂ and MoSe₂.

Fig. S5 Elemental spectrum of $Te-MoSe_2$.

Element	Instrument reading (mg/L)	Atom (%)
Mo	7.07	37.53%
Se	10.11	53.66%
Te	1.01	5.34%

Table S1 Elemental composition of Te-MoSe $_2$ obtained from ICP-AES test.

Fig. S6 Electrochemical properties of MoSe₂: (a) CV curves, (b) discharge/charge profiles.

Fig. S7 Cycle performances of Te-MoSe₂ and MoSe₂ at 0.5 A g^{-1} .

Fig. S8 TEM images of Te-MoSe₂ and MoSe₂ after 10 cycles.

Electrode materials	$R_{s}(\Omega)$	$R_{\rm SEI}(\Omega)$	$R_{ct}(\Omega)$
Te-MoSe ₂	3.98	0.38	6.67
MoSe ₂	5.61	1.19	40.79

 Table S2 Reaction impedance derived from EIS spectra.

Fig. S9 (a) TEM image, (b) XRD pattern, (c) charge/discharge profiles at 0.5 A g^{-1} , and (d) cycle performance of Na₃V₂(PO₄)₃@rGO at 0.5 A g^{-1} .

Electrode materials	Specific Capacity (mAh g ⁻¹)	Current Density (A g ⁻¹)	Cycle Number	Ref.
rGO@MoSe2/NAC//NVP@C	88	1.17	500	1
MFCHHS//NVP@C	77.2	0.1	200	2
MoSe ₂ /rGO//NVP	150.1	1	100	3
Sn-MoSe ₂ @GN//NVPOF/C	181.2	0.1	200	4
MoSe ₂ /N,P-rGO//NVP/C	221.6	2	200	5
MoSe ₂ @NC@rGO- 200//NVP/C	207.8	0.1	100	6
This work	239.6	2	900	

 Table S3 Comparison of electrochemical performances of transition metal selenides

 for Na⁺ full cells.

References

- J. Xu, J. Jiang, H. Tang, Z. Chen, J. Chen, Y. Zhang and C.-S. Lee, Interlayer engineering and electronic regulation of MoSe₂ nanosheets rolled hollow nanospheres for high-performance sodium-ion half/full batteries, *Advanced Powder Materials*, 2024, **3**, 100169.
- L. Ma, X. Zhou, J. Sun, P. Zhang, B. Hou, S. Zhang, N. Shang, J. Song, H. Ye, H. Shao, Y. Tang and X. Zhao, Synergy mechanism of defect engineering in MoS₂/FeS₂/C heterostructure for high-performance sodium-ion battery, *J. Energy Chem.*, 2023, 82, 268-276.
- 3. Z. Liu, Y. Zhang, H. Zhao, N. Li and Y. Du, Constructing monodispersed MoSe₂ anchored on graphene: a superior nanomaterial for sodium storage, *Sci. China Mater.*, 2016, **60**, 167-177.
- 4. X. Hu, R. Zhu, B. Wang, X. Liu and H. Wang, Dual regulation of metal doping and adjusting cut-off voltage for MoSe₂ to achieve reversible sodium storage, *Small*, 2022, **18**, e2200437.
- F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang and Y. Qian, MoSe₂-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries, *Adv. Funct. Mater.*, 2017, 27, 1700522.
- Q. Su, X. Cao, T. Yu, X. Kong, Y. Wang, J. Chen, J. Lin, X. Xie, S. Liang and A. Pan, Binding MoSe₂ with dual protection carbon for high-performance sodium storage, *J. Mater. Chem. A*, 2019, 7, 22871-22878.