Electronic Supplementary Information

Three In One: A Cadmium Bismuth Vanadate Nonlinear Optical Crystal Exhibiting a Large Second-Harmonic Generation Response and Enhanced Birefringence

Shuya Liu,^a Conggang Li,^{*,a,c} Jinmiao Jiao,^a Yuheng She,^a Tinghui Zhang,^a Dianxing Ju,^b Ning Ye,^a Zhanggui Hu^{*,a} and Yicheng Wu^a

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

^bCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China.

^cState Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.

*Corresponding author: E-mail address: cgli@email.tjut.edu.cn; hu@mail.ipc.ac.cn

1. Table S1. Selected bond lengths (Å) and angles (deg.) for Cd₂BiVO₆.

2. Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for Cd₂BiVO₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor, and the bond valence sum for each atom in asymmetric unit.

3. Fig. S1. PXRD curves of Cd_2BiVO_6 after melting compared with the calculated data of Cd_2BiVO_6 .

4. **Fig. S2.** EDS of Cd₂BiVO₆ (a) Surface morphology, (b) Atomic ratio of various elements, (c-g) Cd, Bi, V, and O mapping results, respectively.

5. Fig. S₃. Presentation of Cd₂BiVO₆ polycrystalline powder.

6. Fig. S₄. Experimental birefringence measurements. (a-b) Presentation of Cd_2BiVO_6 before and after extinction under orthotropic polarized light, respectively. (c-d) Observed morphology and theoretical morphology of Cd_2BiVO_6 , respectively.

Bi(1)-O(1)#1	2.21(2)	Cd(1)-O(1)	2.241(18)
Bi(1)-O(1)	2.21(2)	Cd(1)-O(1)#6	2.318(18)
Bi(1)-O(1)#2	2.25(2)	Cd(1)-O(2)	2.344(7)
Bi(1)-O(1)#3	2.25(2)	Cd(1)-O(3)#7	2.352(9)
Bi(1)-O(4)#4	2.616(13)	Cd(1)-O(4)#8	2.362(10)
V(1)-O(2)	1.693(11)	Cd(1)-O(3)#3	2.405(10)
V(1)-O(4)	1.739(15)		
V(1)-O(3)	1.740(10)		
V(1)-O(3)#9	1.740(10)		
O(1)#1-Bi(1)-O(1)	74.4(8)	O(1)-Cd(1)-O(1)#6	76.69(13)
O(1)#1-Bi(1)-O(1)#2	78.81(15)	O(1)-Cd(1)-O(2)	90.4(6)
O(1)-Bi(1)-O(1)#2	121.47(11)	O(1)#6-Cd(1)-O(2)	93.1(6)
O(1)#1-Bi(1)-O(1)#3	121.47(11)	O(1)-Cd(1)-O(3)#7	113.4(4)
O(1)-Bi(1)-O(1)#3	78.81(15)	O(1)#6-Cd(1)-O(3)#7	90.9(5)
O(1)#2-Bi(1)-O(1)#3	72.7(8)	O(2)-Cd(1)-O(3)#7	156.2(6)
O(1)#1-Bi(1)-O(4)#4	135.1(4)	O(1)-Cd(1)-O(4)#8	109.3(6)
O(1)-Bi(1)-O(4)#4	135.1(4)	O(1)#6-Cd(1)-O(4)#8	162.1(4)
O(1)#2-Bi(1)-O(4)#4	100.0(5)	O(2)-Cd(1)-O(4)#8	70.4(5)
O(1)#3-Bi(1)-O(4)#4	100.0(5)	O(3)#7-Cd(1)-O(4)#8	101.5(4)
O(2)-V(1)-O(4)	108.2(11)	O(1)-Cd(1)-O(3)#3	80.8(6)
O(2)-V(1)-O(3)	113.7(6)	O(1)#6-Cd(1)-O(3)#3	154.8(5)
O(4)-V(1)-O(3)	56.4(5)	O(2)-Cd(1)-O(3)#3	98.2(7)
O(2)-V(1)-O(3)#9	113.7(6)	O(3)#7-Cd(1)-O(3)#3	87.7(2)
O(4)-V(1)-O(3)#9	56.4(5)	O(4)#8-Cd(1)-O(3)#3	40.3(3)
O(3)-V(1)-O(3)#9	105.7(8)		

Table S1 Selected bond lengths (Å) and angles (deg.) for Cd₂BiVO₆.

Symmetry transformations used to generate equivalent atoms: #1 -x,y,z #2 -x,-y+1,z-1/2 #3 x,-y+1,z-1/2 #4 x-1/2,y+1/2,z-1 #5 -x,-y+1,z+1/2 #6 x,-y+1,z+1/2 #7 -x+1/2,y+1/2,z #8 -x+1,-y+1,z-1/2 #9 -x+1,y,z

#10 -x+1/2,y-1/2,Z #11 -x+1,-y+1,Z+1/2 #12 x+1/2,y-1/2,Z+1

Table S2 Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for Cd₂BiVO₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor, and the bond valence sum for each atom in asymmetric unit.

atom	x	у	Z	U(eq)	BVS
Bi(1)	0	5949(1)	2468(2)	9(1)	2.999
Cd(1)	2939(1)	6148(1)	7471(5)	10(1)	1.880
V(1)	5000	3358(2)	7396(18)	7(1)	4.9049
O(1)	1541(7)	5051(15)	4980(50)	9(2)	2.1080
O(2)	5000	4829(9)	7190(60)	9(4)	1.9565
O(3)	3397(11)	2796(8)	8864(19)	16(2)	1.7407
O(4)	5000	2983(11)	10380(30)	16(3)	2.0110

Fig. S1 PXRD curves of Cd_2BiVO_6 after melting compared with the calculated data of Cd_2BiVO_6 .

Fig. S2 EDS of Cd_2BiVO_6 (a) Surface morphology, (b) Atomic ratio of various elements, (c-f) Cd, Bi, V, and O mapping results, respectively.

Fig. S₃ Presentation of Cd₂BiVO₆ polycrystalline powder.

Fig. S₄ Experimental birefringence measurements. (a-b) Presentation of Cd_2BiVO_6 before and after extinction under orthotropic polarized light, respectively. (c-d) Observed morphology and theoretical morphology of Cd_2BiVO_6 , respectively.