Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting information

Synergistic Role of Hydrogen bond and Band degeneracy Leads to Enhanced Xray Detection in HPIP-(NH₄)_{0.7}Cs_{0.3}Br₃•H₂O Perovskites

Pengxiang Dong^{†, ‡}, Chensheng Lin[†], Xin Zhao[†], Yicong Lv[†], Ning Ye[§] and Min Luo^{*,†}

†Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
‡School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
§Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China.

E-mail: lm8901@fjirsm.ac.cn

Keywords: molecular perovskite, X-ray detection, Cs-Incorporated, Orbital Degeneracy.

Experimental:

Materials preparation: Ammonium bromide (NH₄Br,99%), Cesium bromide (CsBr,99%), Hydrobromic acid (HBr) (40%), and Homopiperazine (HPIP,99%) were purchased from Adamas Reagent. we confirmed that all the reagents and chemicals were used as received without further purification.

Synthesis of HPIP-XBr₃ H₂O powders: HPIP (10.008 g, 100 mmol), XBr (100 mmol), and HBr(40%, 50 mL) are dissolved in 80 ml H₂O and stirred at room temperature for 12 h. Then, the mixed solution was evaporated using a rotary evaporator at 60°C, then the white product was cleaned with ethanol three times. Finally, the white product was dried for 24 hours at 50°C in a vacuum oven.

Synthesis of HPIP-XBr₃ H₂O SCs: The HPIP-XBr₃ H₂O SCs were grown by dissolving the HPIP-XBr₃ H₂O powders into the H₂O to form a saturated solution. Then, the impurities in the mixture solution were removed by filter, and transferred into a crystallizing dish for holding at a constant temperature (35° C) in the oven for several days to obtain HPIP-XBr₃ H₂O single crystals.

Single-Crystal Structure Determination: Single-crystal X-ray diffraction (SC-XRD) data were performed on a Rigaku Mercury CCD diffractometer equipped with graphite-monochromatic Cu-K α radiation ($\lambda = 1.54184$ Å) and Mo-K α radiation ($\lambda = 0.7103$ Å). The crystal structure of HPIP-XBr₃ H₂O was solved by using the ShelXT and then refined by the ShelXL on OLEX2 package1, 2. The program PLATON2 was used to check for the structure. Crystallographic data and structure refinements of HPIP-XBr₃ H₂O were given in Table S3.

Powder X-ray diffraction (PXRD): The PXRD data of HPIP-XBr₃ H₂O were measured on a Miniflex600 powder X-ray diffractometer with Cu K α radiation ($\lambda = 1.54184$ Å) in the 2 θ range from 10 to 60°.

Nuclear Magnetic Resonance (NMR): NMR was performed using AVANCE III 400 with a frequency of 400 MHz, and deuterated DMSO was used as a solvent.

Energy-dispersive X-ray Spectroscopy Analysis: Microprobe elemental analyses were recorded on a field emission scanning electron microscope (FESEM, SU-8010) with an energy-dispersive X-ray spectroscope (EDS).

Thermal analysis: Thermogravimetric Analysis (TGA) was performed on a Netzsch STA449F3 simultaneous analyzer under flowing N_2 at a rate of 10 °C·min⁻¹.

UV-Vis-NIR Diffuse Reflectance Spectrum and Transmission Spectrum: The UV-Vis-NIR transmission Spectrum of HPIP⁻NH₄Br₃ H₂O and HPIP⁻(NH₄)_{0.7}Cs_{0.3}Br₃ H₂O were measured on PerkinElmer Lamda950 UV/vis/NIR spectrophotometer. The UV-Vis-NIR Diffuse Reflectance Spectrum of HPIP⁻CsBr₃ H₂O was measured on PerkinElmer Lamda950 UV/vis/NIR spectrophotometer. BaSO₄ was used as standard.

First-principles calculations:

All DFT calculations were performed with the CP2K package^[1]. We use a Gaussian and augmented

plane waves (GAPW)^[2] scheme, in which, the electronic density is expanded in the form of plane waves with a cutoff of 400 Ry. The PBE as the exchange and correlation functional and the core electrons treated as the Geodecker, Teter and Hutter pseudopotentials^[3] were used in the calculations. Double-zeta split valance basis sets are used for all atomic kinds. In addition, Grimme's empirical dispersion corrections are also included^[4]. The IGHM^[5,6] figure is depicted using Multiwfn^[7] and VMD software^[8].

Device parameters:

Device fabrication preparation for X-ray detector and imager: For the detector, the vacuum evaporation method deposited a thickness of 200 nm Ag electrodes on HPIP-XBr₃ H_2O SCs. The electrode area is 0.0020 cm² with a space of 150 μ m.

 $\mu\tau$ product calculation: In this work, a device structure of Ag/ HPIP⁻XBr₃ H₂O SCs/Ag was used for photoconductivity measurement. Then, the simplified Hecht equation was utilized to extract the $\mu\tau$ product from photoconductivity curves, as follows:

$$I = \frac{I_0 \mu \tau V}{d^2} \left[1 - exp\left(-\frac{d^2}{\mu \tau V} \right) \right]$$

where I_0 is the saturated photoinduced current, V is the bias voltage, and d is the device thickness.

Gain factor calculation: The gain factor can be calculated as follows:^[9]

 $Gain factor = \frac{I_R}{I_P}$ where I_R and I_P stand for induced photocurrent and theoretical photocurrent under X-ray illumination. I_R can be obtained in the experiment, while I_P should calculate as $I_P = \varphi \beta e$. The φ (photon absorption rate) is defined as:

$$\varphi = \frac{\epsilon D \, m_s}{E_{ph}}$$

where β (the number of excited carriers per X-ray photon) is defined as $\beta = \frac{E_{Ph}}{W \pm}$ Notably, *e* represents electric charge, *e* the fraction of photons in the sample (typically defined as 1), *D* the dose rate, *ms* the mass of the sample and E_{Ph} X-ray energy. $W \pm$ is the e-h pair creation energy, which is calculated by $W \pm = 1.43 + 2Eg$.

Signal-to-noise ratio (SNR) calculation: The SNR is calculated according to the relation: $SNR=I_{signal}/I_{noise}$, where the signal current (I_{signal}) is the difference between the average photocurrent (I_{photo}) and the average dark current (I_{dark}), and the noise current (I_{noise}) is obtained by calculating the standard deviation of the photocurrent.

Dark current drift (D) calculation: The D is calculated according to the relation $D=|J_{finish}-J_{begin}|/(t \times E)$, where t is duration, E is applied electric field, J_{finish} and J_{begin} represent current density at the end and beginning, respectively.

X-ray detectors: The X-ray detection measurements were performed on a modified Super Nova instrument. The X-ray is generated by a tungsten anode tube and is operated with a constant 40 keV

acceleration voltage. Operational current can be easily tuned from 5 to 40 μ A to adjust the emitted X-ray dose rate. All the X-ray response characterization was conducted in a dark ambient atmosphere by dark curtain, the photocurrent was recorded by a high-precision electrometer (Keithley 6517B). All measurements were performed at room temperature.

Figure S1. (a) Optical photo and (b) microscope photo of dendrites grown by HPIP-CsBr₃. (c) Optical photo of HPIP-CsBr₃ SC and placed in the natural environment for (d) 3 days and (e) 7 days.

Figure S2. Crystal structure of (a) HPIP-NH₄Br₃ H₂O and (b) HPIP-CsBr₃ H₂O.

Figure S3. Calculated and experimental powder X-ray diffraction patterns of (a) HPIP-(NH₄)₀₋₇Cs₀₋₃Br₃ H₂O, (b) HPIP-NH₄Br₃ H₂O, and (c) HPIP-CsBr₃ H₂O.

Figure S4. Element analysis of HPIP-(NH_4)_{0.7}Cs_{0.3}Br₃ H₂O SC: (a) SEM images and (b-f) the energy-dispersive spectrometric mapping.

Figure S5. TG characterization of (a) HPIP⁻(NH₄)₀₋₇Cs₀₋₃Br₃ H₂O, (b) HPIP⁻NH₄Br₃ H₂O, and (c) HPIP⁻CsBr₃ H₂O.

Figure S6. Absorption coefficients of HPIP-CsBr₃ H₂O, CdTe, TIPS-pentacene, and Si over a wide range of photon energies.

Figure S7. The transmittance spectrum and Tauc plot for an indirect band gap of (a) HPIP-

 $(NH_4)_{0\cdot7}Cs_{0\cdot3}Br_3 \quad H_2O, \ (b) \ HPIP^{\text{-}}NH_4Br_3 \quad H_2O, \ and \ (c) \ HPIP^{\text{-}}CsBr_3 \quad H_2O.$

Figure S9. Electronic density of states for HPIP-NH₄Br₃ H₂O: (a) HPIP-NH₄Br₃ H₂O, and (b) HPIP-CsBr₃ H₂O.

Figure S10. Band nature of HPIP⁻CsBr₃ H₂O: the charge-density distributions for (a) VBM and (b) CBM.

Figure S11. The lowest unoccupied molecular orbital between a) MDABCO, b) DABCO and c) HPIP molecules.

Figure S12 X-ray rocking curve of the HPIP-(NH₄)_{0.7}Cs_{0.3}Br₃•H₂O crystal

Figure S13. The defect formation energy of HPIP⁻CsBr₃ H₂O with different components.

Figure S14 Ionic migration energy of Br and H ions in NH4/Cs and NH4-based crystals

Figure S15. The resistivity of (a) HPIP⁻NH₄Br₃ H_2O , and (b) HPIP⁻CsBr₃ H_2O .

Figure S16. Photocurrent response versus time under different dose rates.

Figure S17. Device performance of HPIP-NH₄Br₃ H₂O SC-based device: (a) X-ray response of photocurrent under different bias and (b) Signal-to-noise ratio (SNR) of the device under a series of bias voltages on exposure to different dose rates.

Figure S18. Device performance of HPIP-CsBr₃ H₂O SC-based device: (a) X-ray response of photocurrent under different bias and (b) Signal-to-noise ratio (SNR) of the device under a series of bias voltages on exposure to different dose rates.

Figure S19. a) The long-term stability of X-ray detector under environmental conditions for 30 days. Photo of the (b) HPIP⁻(NH₄)_{0.7}Cs_{0.3}Br₃ H₂O single crystal and (c) HPIP⁻NH₄Br₃ H₂O single crystal under environmental conditions after 30 days.

Compound	HPIP-NH ₄ Br ₃ H ₂ O	HPIP-(NH ₄) $_{0.7}$ Cs $_{0.3}$ Br $_3$ H ₂ O	HPIP-CsBr ₃ H ₂ O	
Formula	$(C_5H_{14}N_2)-NH_4Br_3$	$(C_5H_{14}N_2)$ - $(NH_4)_{0.7}Cs_{0.3}Br_3$	$(C_5H_{14}N_2)$ -CsBr ₃	
Formula weight	372.99	405.64	967.66	
Temperature	287.15 K	293(2) K	297.15 K	
Wavelength	0.71073 A	1.54184 A	0.71073 A	
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	
space group	Pmc2(1)	Pmc2(1)	Pmc2(1)	
	$a = 13.3845(9) \text{ Å} \alpha = 90^{\circ}$	$a = 13.4298(3) \text{ Å} \alpha = 90^{\circ}$	$a = 13.5281(5) \text{ Å} \alpha = 90^{\circ}$	
Unit cell	$b = 6.7534(5) \text{ Å} \beta = 90^{\circ}$	$b = 6.81540(10) \text{ Å} \beta = 90^{\circ}$	$b = 6.9306(2) \text{ Å} \qquad \beta = 90^{\circ}$	
	$c = 13.7252(9) \text{ Å} \gamma = 90^{\circ}$	$c = 13.7663(3) \text{ Å} \gamma = 90^{\circ}$	$c = 13.9050(5) \text{ Å} \gamma = 90^{\circ}$	
Volume(Å ³)	1240.63(15)	1260.02(4)	1303.70(8)	
Ζ	4	4	2	
Calculated density	1.997 g/cm ³	2.138 g/cm ³	2.465 g/cm ³	
F(000)	732	778	892	
GOF on F ²	0.976	1.068	1.048	
R/wR (I>2 σ(I))	$R_1 = 0.0430, wR_2 = 0.0925$	$R_1 = 0.0567, wR_2 = 0.1484$	$R_1 = 0.0206, wR_2 = 0.0428$	
R/wR (all data)	$R_1 = 0.0580, wR_2 = 0.0966$	$R_1 = 0.0572, wR_2 = 0.1495$	$R_1 = 0.0251, wR_2 = 0.0438$	

Table S1. Crystal Data and Structure Refinement of HPIP-XBr_3 H_2O

 ${}^{a}R(F) = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \cdot wR \ (F_{o}{}^{2}) = [\Sigma w(F_{o}{}^{2} - F_{c}{}^{2}) {}^{2} / \Sigma w(F_{o}{}^{2}) {}^{2}]^{[10]}$

Table S2. Summary of Br-Br and Br-X bond lengths.

HPIP-NH ₄ Br ₃ H ₂ O		HPIP-(NH ₄) $_{0.7}$ Cs $_{0.3}$ Br $_3$ H ₂ O		HPIP-CsI	HPIP-CsBr ₃ H ₂ O	
label	Distances (Å)	label	Distances (Å)	label	Distances (Å)	
Br01-Br02	5.544	Br03-Br01	5.572	Br3-Br4	4.034	
Br02-Br01	5.46	Br01-Br03	5.542	Br1-Br	4.275	
Br04-Br03	5.294	Br04-Br02	5.337	Br-Br3	4.394	
Br02-Br04	5.287	Br03-Br04	5.328	Br4-Br3	4.486	
Br03-Br05	5.203	Br01-Br04	5.268	Br1-Br2	4.514	
Br04-Br01	5.195	Br02-Br05	5.224	Br2-Br	4.677	
Br04-Br05	5.123	Br04-Br05	5.124	Br4-Br	4.734	
Br03-Br05	4.953	Br05-Br02	4.972	Br2-Br1	4.836	
Br05-Br03	4.719	Br05-Br02	4.755	Br1-Br2	5.045	
Br04-Br02	4.636	Br03-Br04	4.67	Br-Br2	5.183	
Br04-Br05	4.593	Br05-Br04	4.609	Br1-Br2	5.269	
Br03-Br05	4.416	Br02-Br05	4.455	Br4-Br	5.384	
Br01-Br02	4.4	Br03-Br01	4.421	Br3-Br	5.392	
Br01-Br04	4.399	Br04-Br01	4.411	Br-Br1	5.49	
Br03-Br04	4.278	Br02-Br04	4.277	Br3-Br4	5.65	
Br01-Br02	4.04	Br01-Br03	4.036	Br4-Br3	5.682	
N00A-Br02	3.606	N Cs06-Br03	3.63	Cs00-Br1	3.46	
Br02-N00A	3.503	N Cs06-Br03	3.515	Cs1-Br3	3.465	
Br05-N007	3.459	N Cs06-Br04	3.497	Cs1-Br3	3.475	
Br04-N00A	3.458	N Cs06-Br04	3.497	Br2-Cs00	3.479	

Br04-N00A	3.458	N00 Cs00-Br02	3.468	Cs00-Br2	3.485
N007-Br04	3.454	N00 Cs00-Br05	3.464	Br1-Cs00	3.503
Br04-N007	3.454	N00 Cs00-Br04	3.454	Cs00-Br	3.511
Br03-N007	3.429	Br04-N00 Cs00	3.454	Cs00-Br	3.511
N007-Br05	3.414	N00 Cs00-Br05	3.431	Br-Cs1	3.522
Br01-N00A	3.398	N Cs06-Br01	3.428	Cs1-Br	3.522
N007-Br03	3.367	Br01-N Cs06	3.396	Br4-Cs1	3.598
N00A-Br01	3.36	N00 Cs00-Br02	3.379	Cs1-Br4	3.642

Table S3. Summary of Br-X-Br bond angles.

_			2	e		
	HPIP-NH ₄ Br ₃	H ₂ O	HPIP-(NH ₄) _{0.7} Cs _{0.3} Br	₃ H ₂ O	HPIP-CsBr ₃	H ₂ O
	label	angles (°)	label	angles (°)	label	angles (°)
	Br(01)-N(00A)-Br(01)	174.0(6)	Br(01)-N Cs(06)-Br(01)	174.30(11)	Br(1)-Cs(00)-Br(1)	168.94(3)
	Br(01)-N(00A)-Br(02)	79.6(3)	Br(01)-N Cs(06)-Br(04)	99.68(4)	Br(1)-Cs(00)-Br	103.907(12)
	Br(01)-N(00A)-Br(02)	106.4(5)	Br(01)-N Cs(06)-Br(04)	79.15(4)	Br(1)-Cs(00)-Br	75.094(12)
	Br(01)-N(00A)-Br(02)	70.7(9)	Br(01)-N Cs(06)-Br(04)	99.68(4)	Br(1)-Cs(00)-Br	103.907(12)
	Br(01)-N(00A)-Br(02)	105.3(8)	Br(01)-N Cs(06)-Br(04)	79.15(4)	Br(1)-Cs(00)-Br	75.094(12)
	Br(01)-N(00A)-Br(04)	99.2(3)	Br(04)-N Cs(06)-Br(04)	148.65(10)	Br(1)-Cs(00)-Br(2)	93.18(2)
	Br(01)-N(00A)-Br(04)	79.5(3)	Br(01)-N Cs(06)-Br(03)	106.59(8)	Br(1)-Cs(00)-Br(2)	88.38(2)
	Br(01)-N(00A)-Br(04)	99.2(3)	Br(01)-N Cs(06)-Br(03)	79.10(6)	Br-Cs(00)-Br	149.28(2)
	Br(01)-N(00A)-Br(04)	79.5(3)	Br(04)-N Cs(06)-Br(03)	98.90(5)	Br(2)-Cs(00)-Br(1)	97.88(2)
	Br(04)-N(00A)-Br(02)	99.3(3)	Br(04)-N Cs(06)-Br(03)	98.90(5)	Br(2)-Cs(00)-Br(1)	80.56(2)
	Br(04)-N(00A)-Br(02)	81.9(9)	Br(01)-N Cs(06)-Br(03)	70.05(6)	Br(2)-Cs(00)-Br	95.615(16)
	Br(04)-N(00A)-Br(02)	98.8(3)	Br(01)-N Cs(06)-Br(03)	104.25(8)	Br(2)-Cs(00)-Br	84.001(16)
	Br(04)-N(00A)-Br(02)	99.3(3)	Br(04)-N Cs(06)-Br(03)	81.87(6)	Br(2)-Cs(00)-Br	95.615(16)
	Br(02)-N(00A)-Br(02)	176.1(8)	Br(04)-N Cs(06)-Br(03)	81.87(6)	Br(2)-Cs(00)-Br	84.000(16)
	Br(04)-N(00A)-Br(04)	148.8(6)	Br(03)-N Cs(06)-Br(03)	176.64(8)	Br(2)-Cs(00)-Br(2)	178.438(15)
	Br(03)-N(007)-Br(03)	167.2(0)	Br(02)-N Cs(00)-Br(05)	88.56(10)	Br(3)-Cs(1)-Br(3)	174.18(3)
	Br(03)-N(007)-Br(04)	76.8(4)	Br(02)-N Cs(00)-Br(04)0	102.69(6)	Br(3)-Cs(1)-Br(4)	105.07(2)
	Br(03)-N(007)-Br(04)	76.7(3)	Br(05)-N Cs(00)-Br(04)0	84.02(8)	Br(3)-Cs(1)-Br(4)	69.11(2)
	Br(03)-N(007)-Br(04)	101.1(1)	Br(02)-N Cs(00)-Br(04)1	102.69(6)	Br(3)- $Cs(1)$ - $Br(4)$	107.11(2)
	Br(03)-N(007)-Br(04)	101.8(0)	Br(05)-N Cs(00)-Br(04)1	84.02(8)	Br(3)-Cs(1)-Br(4)	78.71(2)
	Br(03)-N(007)-Br(05)	93.8(2)	Br(04)0-N Cs(00)-Br(04)	151.57(13)	Br(3)- $Cs(1)$ - Br	101.019(12)
	Br(03)-N(007)-Br(05)	98.9(6)	Br(02)-N Cs(00)-Br(05)	93.21(10)	Br(3)- $Cs(1)$ - Br	77.800(12)
	Br(03)-N(007)-Br(05)	79.7(4)	Br(05)-N Cs(00)-Br(05)	178.23(12)	Br(3)- $Cs(1)$ - Br	77.800(12)
	Br(03)-N(007)-Br(05)	87.4(5)	Br(04)0-N Cs(00)-Br(05)	95.58(8)	Br(3)- $Cs(1)$ - Br	101.019(12)
	Br(04)-N(007)-Br(05)	96.4(5)	Br(04)1-N Cs(00)-Br(05)	95.58(8)	Br(4)- $Cs(1)$ - $Br(4)$	176.218(18)
	Br(04)-N(007)-Br(05)	96.4(5)	Br(02)-N Cs(00)-Br(02)	168.99(16)	Br-Cs(1)-Br(4)	98.247(16)
	Br(04)-N(007)-Br(05)	83.2(7)	Br(05)-N Cs(00)-Br(02)	80.43(10)	Br-Cs(1)-Br(4)	98.247(16)
	Br(04)-N(007)-Br(05)	83.2(7)	Br(04)0-N Cs(00)-Br(02)	76.31(6)	Br-Cs(1)-Br(4)	82.702(16)
	Br(05)-N(007)-Br(05)	178.7(1)	Br(04)1-N Cs(00)-Br(02)	76.31(6)	Br-Cs(1)-Br(4)	82.702(16)
	Br(04)-N(007)-Br(04)	152.1(6)	Br(05)0-N Cs(00)-Br(02)	97.81(11)	Br-Cs(1)-Br	147.10(3)

		-	-	
Ions	HPIP ²⁺	NH4 ⁺	Cs ⁺	Br
Radius (pm)	241	146	168	196
Table S5. Calculated Goldschmidt Tolerance Factor (t) for HPIP-XBr3H2O				
Compound	HPIP-NH ₄ Br ₃	HPIP ⁻ (NH ₄) _{0.7} Cs _{0.3} E	HP	IP-CsBr ₃
t	0.91	0.89		0.84

Table S4. Ion radius in the HPIP⁻XBr₃ H_2O .

Table S6. Summary of the X-ray detection performance of several single crystal-based detectors.

Materials	Sensitivity	Detection limit	Ref.
MA ₃ Bi ₂ I ₉	1947 µC·Gyair ⁻¹ ·cm ⁻² at 60 V•mm ⁻¹	83 nGy∙s ⁻¹	[11]
MA ₃ Bi ₂ I ₉	10620 μ C·Gyair ⁻¹ ·cm ⁻² at 48 V•mm ⁻¹	N/A	[12]
$Rb_3Bi_2I_9$	159.7 μC·Gyair-1·cm-2 at 300 V•mm ⁻¹	8.32 nGy·s ⁻¹	[13]
MAPbBr ₃ with MoO ₃	2552 μC·Gyair ⁻¹ ·cm ⁻² 4.5 V•mm ⁻¹	N/A	[14]
$MA_{x}Cs_{1-x}PbBr_{3}$	2017 µC·Gyair ⁻¹ ·cm ⁻² at 0.5 V•mm ⁻¹	1200 nGy·s ⁻¹	[15]
Cuboid MAPbI ₃	968.9 µC·Gyair ⁻¹ ·cm ⁻² at 1 V•mm ⁻¹	N/A	[16]
FAPbBr ₃	130 μ C·Gyair ⁻¹ ·cm ⁻² at 0.5 V•mm ⁻¹	300 nGy·s ⁻¹	[17]
DABCO-NH ₄ Br ₃	173-176 μC·Gyair ⁻¹ ·cm ⁻² at 1250 V•mm ⁻¹	4960 nGy·s ⁻¹	[18]
DABCO-NH ₄ Cl ₃	165 μC·Gyair ⁻¹ ·cm ⁻² at 1250 V•mm ⁻¹	N/A	[18]
DABCO-NH ₄ I ₃	567 µC·Gyair ⁻¹ ·cm ⁻² at 1250 V•mm ⁻¹	N/A	[18]
MDABCO-NH ₄ I ₃	1997 ± 80 μ C·Gyair ⁻¹ ·cm ⁻² at 1250 V•mm ⁻¹	N/A	[19]
DABCO-CsBr ₃	1345 µC·Gyair ⁻¹ ·cm ⁻² at 5000 V•mm ⁻¹	445 nGy·s ⁻¹	[20]
MDABCO-NH ₄ (PF ₆) ₃	2078 μ C·Gyair ⁻¹ ·cm ⁻² at 330 V•mm ⁻¹	16.3 nGy·s ⁻¹	[21]
DABCO-N ₂ H ₅ Br ₃	1142±10.3 μC·Gyair ⁻¹ ·cm ⁻² at 200 V•mm ⁻¹	2680 nGy·s ⁻¹	[22]
DABCO-N ₂ H ₅ I ₃	1186±9.6 μC·Gyair ⁻¹ ·cm ⁻² at 200 V•mm ⁻¹	2880 nGy·s ⁻¹	[22]
HPIP-NH ₄ Br ₃ H ₂ O	445 μ C·Gyair ⁻¹ ·cm ⁻² at 333 V•mm ⁻¹	3476 nGy·s ⁻¹	
HPIP-CsBr ₃ H ₂ O	874 µC·Gyair ⁻¹ ·cm ⁻² at 333 V•mm ⁻¹	8920 nGy·s ⁻¹	This
HPIP-	1661 μ C·Gyair ⁻¹ ·cm ⁻² at 333 V•mm ⁻¹	402 nGy·s ⁻¹	Work
(NH ₄) _{0.7} Cs _{0.3} Br ₃ H ₂ O			

References

[1] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, *Comput. Phys. Commun.* **2005**, *167*, 103.

[2] M. Iannuzzi, J. Hutter, Phys. Chem. Chem. Phys. 2007, 9, 1599.

[3] S. Goedecker, M. Teter, J. Hutter, *Phys. Rev. B* 1996, 54, 1703.

[4] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.

[5] T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539.

[6] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[7] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[8] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.

[9] W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W.-J. Yin, G. Niu, L. Zhu, L. Yin,

Y. Zhou, Q. Xie, X. Ke, M. Sui, J. Tang, Nat. Photonics 2017, 11, 726.

[10] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.

[11] Y. Liu, Z. Xu, Z. Yang, Y. Zhang, J. Cui, Y. He, H. Ye, K. Zhao, H. Sun, R. Lu, M. Liu, M. G. Kanatzidis, S. (Frank) Liu, *Matter* 2020, *3*, 180.

[12] X. Zheng, W. Zhao, P. Wang, H. Tan, M. I. Saidaminov, S. Tie, L. Chen, Y. Peng, J. Long, W.-H. Zhang, J. Energy Chem. 2020, 49, 299.

[13] M. Xia, J. Yuan, G. Niu, X. Du, L. Yin, W. Pan, J. Luo, Z. Li, H. Zhao, K. Xue, X. Miao, J. Tang, *Adv. Funct. Mater.* **2020**, *30*, 1910648.

[14] Z. Fan, J. Liu, W. Zuo, G. Liu, X. He, K. Luo, Q. Ye, C. Liao, *Phys. Status Solidi A* 2020, 217, 2000104.

[15] Z. Fan, J. Liu, W. Zuo, G. Liu, X. He, K. Luo, Q. Ye, C. Liao, *Phys. Status Solidi RRL – Rapid Res. Lett.* **2020**, *14*, 2000226.

[16] F. Ye, H. Lin, H. Wu, L. Zhu, Z. Huang, D. Ouyang, G. Niu, W. C. H. Choy, *Adv. Funct. Mater.* **2019**, *29*, 1806984.

[17] M. Yao, J. Jiang, D. Xin, Y. Ma, W. Wei, X. Zheng, L. Shen, Nano Lett. 2021, 21, 3947.

[18] Q. Cui, X. Song, Y. Liu, Z. Xu, H. Ye, Z. Yang, K. Zhao, S. (Frank) Liu, *Matter* 2021, 4, 2490.

[19] X. Song, Q. Li, J. Han, C. Ma, Z. Xu, H. Li, P. Wang, Z. Yang, Q. Cui, L. Gao, Z. Quan, S. (Frank) Liu, K. Zhao, *Adv. Mater.* **2021**, *33*, 2102190.

[20] Q. Cui, N. Bu, X. Liu, H. Li, Z. Xu, X. Song, K. Zhao, S. F. Liu, Nano Lett. 2022, 22, 5973.

[21] Z. Li, Z. Li, G. Peng, C. Shi, H. Wang, S. Ding, Q. Wang, Z. Liu, Z. Jin, *Adv. Mater.* 2023, 2300480.

[22] X. Song, H. Cohen, J. Yin, H. Li, J. Wang, Y. Yuan, R. Huang, Q. Cui, C. Ma, S. (Frank) Liu, G. Hodes, K. Zhao, *Small* **2023**, *19*, 2300892.