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Fig. S1 ESI-MS in positive mode of 1 in DCM (a), and the comparison of experimental (black line) and simulated (red
line) isotope patterns of peak a, [Auji(PNP)s+KCl+DCM+K*—H*]3*, m/z = 1533.70, calcd. 1533.71 (b); peak b,
[(Au11(PNP)s+KCI+DCM+K*—2H*)+Cs*]3*, m/z = 1578.37, calcd. 1578.35 (c); peak c, [1]3*, m/z = 1622.72, calcd. 1622.72

(d).
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Fig. S2 ESI-MS in positive mode of 2 in DCM (a), and the comparison of experimental (black line) and simulated (red
line) isotope patterns of peak a, [2°*—Au*—2H*]?*, m/z = 2335.63, calcd. 2335.63, (b); peak b, [2>*—3H*]?*, m/z = 2433.62,
calcd. 2433.61, (c); peak c, [2°*—4H*+Au*]?*, m/z = 2532.60, calcd. 2532.60, (d); peak d, [2>*—4H*+Au*+MeOH]?*, m/z =
2548.58, calcd. 2548.61, (e); peak e, [2>*—6H*+3Au*+Hdppal?**, m/z = 2921.12, calcd. 2921.11, (f).
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Fig. S3 XPS core level spectra of P 2p (top), N 1s (middle) and Cl 2p (bottom) for 1 (a) and 2 (b).
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Fig. S4 Molecular structure and space-filling mode of 1. Color legend: Au, orange; Cl, green; P, purple; N, blue; C,
gray. All aromatic rings and hydrogen atoms are omitted for clarity.
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(d)

Fig. S5 Molecular structure and space-filling mode of 2. Color legend: Au, orange; P, purple; N, blue; C, gray. All
aromatic rings and hydrogen atoms are omitted for clarity.
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Fig. S6 UV-Vis absorption spectra of PNP (a) and Hdppa (b) ligands in DCM (left) and in solid state (right).
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Fig. S7 Calculated TD-DFT UV-Vis absorption spectra (a) and the spectrum on the energy scale (b) of 2.
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Fig. S8 UV-Vis absorption spectra (left and middle) and them on the energy scale (right) of 1 (a) and 2 (b) in solid state.
The optical gaps are determined to be about 2.08 eV (1) and 1.81 eV (2).
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Fig. S9 Time-dependent UV-Vis absorption spectra in DCM of 1 (a) and 2 (b).
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Fig. S10 Time-dependent UV-Vis absorption spectra in 50°C EtOH of 1 (a) and 2 (b).
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Fig. S11 Time-dependent UV-Vis absorption spectra in EtOH solution containing 0.1 M NaOH of 1 (a) and 2 (b).
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Fig. S12 Fluorescence spectra of 1 in DCM (a) and in solid state (b) at RT.
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Fig. S13 Fluorescence spectra (a) and luminescence lifetime decay plot (b) of PNP ligand in solid state at RT.
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Fig. S14 The correlation between the temperature and emission intensity (a) of NCs 1 and CIE color coordinates (b).
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Table S1

. Crystal data and structure refinement for 1.

Empirical formula C146H119AU13ClsN5OP1g
Formula weight 5006.97
Temperature / K 150

Crystal system

orthorhombic

Space group Pbca
a/A 31.9023(4)
b/ A 27.8580(4)
/A 34.1479(5)
al® 90
8/° 90
v/° 90
Volume / A3 30348.4(8)
V4 8
Pealc (8 / cm?) 2.192
p/ mm 25.15
F (000) 18400

Crystal size / mm?3

0.12 x0.02 x0.01

Radiation

Cu Ka (A = 1.54184)

20 range for data collection / °

5.176 to 124.996

Index ranges

36<h<24,-32<k<25, -39<1<39

Reflections collected 74245
Independent reflections 24196 [Rin: = 0.1253, Ryigma = 0.1337]
Data/restraints/parameters 24196/1104/1569
Goodness-of-fit on F? 0.915

Final R indexes [/ >= 20(/)]

R, =0.0805, wR, =0.1949

Final R indexes [all data]

R1=0.1230, wR, =0.2142

Largest diff. peak/hole / e A-3

4.35/-4.97

CCDC No.

2330058

Ri=5|IFol = |Fcl I/Z1Fol. wRy = [SW(F3? = F2)*/Sw(F?)?] 2.
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Table S2

. Crystal data and structure refinement for 2.

Empirical formula C144H126AU13Cl5sNgP 1,
Formula weight 5049.96
Temperature / K 210.00

Crystal system

orthorhombic

Space group Pna2,
a/A 53.647(5)
b/A 14.0631(13)
c/A 20.9828(19)
al’ 90
8/° 90
v/° 90

Volume / A3 15830(3)

z 4
Pealc (8 / cm?3) 2.119
U/ mm 16.649
F (000) 9296

Crystal size / mm3

0.18 x 0.11 x 0.06

Radiation

Ga Ka (A =1.34138)

20 range for data collection / °

6.738 t0 113.998

Index ranges

-66<h<67,-17<k<16,-24<1<26

Reflections collected

250228
Independent reflections 30528 [Rint = 0.0613, Rgigma = 0.0322]
Data/restraints/parameters 30528/1014/1307
Goodness-of-fit on F? 1.114

Final R indexes [/ >= 20(/)]

R; =0.0590, wR, = 0.1830

Final R indexes [all data]

R, =0.0776, wR, = 0.1949

Largest diff. peak/hole / e A-3

1.49/-1.12

CCDC No.

2330057

Ri=5|IFol = |Fcl I/Z1Fol. wRy = [SW(F3? = F2)*/Sw(F?)?] 2.
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Table S3. A summary of Au—Au distances in 1.

Au-Au distance / A Average value / A
Aut 2.7323(13)—2.9604(13) 2.855
Au? 2.7648(12)—2.9290(13) 2.842
between Au;! and Au;? 2.8623(13)—-3.1413(13) 2.991

Table S4. A summary of Au—Cl/P and Au---N distances in 1 and 2.

Distance / A Average value / A
Au—Cl (1) 2.326(6), 2.338(6) 2.332
Au-P (1) 2.281(6)2.325(6) 2.301
Au-P (2) 2.191(8)—2.392(9) 2.308
Au-N (1) 2.9896(16)—3.0910(17) 3.029
Au---N (2) 3.1740(20)-3.4873(19) 3.364

Table S5. A summary of Au—Au distances in 2.

Au—Au distance / A Average value / A
Ayt 2.7151(18)-3.3597(14) 2.892
Aus? 2.7160(2)—3.3597(14) 2.890
between Au;! and Au? 2.8695(15)—-3.3597(14) 3.002
between Auy; and Au, 2.6499(19)-2.7001(16) 2.677
Au, 3.0106(16) /

Table S6. P---P distances of disphosphine ligands of selected Au, NCs (x < 20).

NCs P---P distance / A Average value / A Reference®
[Auq3(PNP)sCl,]3* (1) 5.084(8)-5.133(8) 5.113 .
this work
[Aui3(Hdppa)sl® (2) 2.815(11)-2.983(10) 2.899
Auy(dppm)sl, 3.004(3)-3.053(5) 3.030 1
[Aug(xy-xantphos);]?* 4.773(3)-4.873(3) 4.836 2
[Aug(mPhDP),]%* 5.418(4)-5.455(4) 5.444 3
[Au,(dppp)al®* 4.969(7)-5.333(8) 5.157 4
[Aug(dppp).ClL]%* 4.810(12)—4.998(12) 4.920 5
[Aug(dppp)al?* 4.735(4)-5.396(4) 5.066
Aug(dppf)s 4.886(4)—5.285(4) 5.171 6
[Aug(PNP),]* 5.455(9)—5.562(8) 5.508 7
[Aug(dpph)a]3* 5.803(22)-5.902(19) 5.853 8
[Aug(BINAP),3* 4.291(11)-4.541(13) 4.437 9
[Au2(dppp)s]®* 4.458(1)—4.840(2) 4.668 10
[Auy1(dppe)sl?* 4.223(5)-4.457(6) 4.306 11
Auy,(dppf)sCl]* 5.217(2)-5.291(6) 5.260 6
[Auy1(S-/R-DIOP),Cl,]* 5.523(6)—5.422(6) 5.472 12
Auy;(dpephos),Cl,]* 5.282(4)-5.433(4) 5.366 13
Auiq(xantphos),Cl,]* 4.857(5)—4.915(6) 4.886
[Auz,(dppp)s]* 4.454(5)-4.988(5) 4.673
[Au11(PNHP),Br,]* 5.473(4)-5.822(3) 5.648
[Au,(PNCO4-CIPhP),Br,]* 5.934(5)—6.054(5) 5.989 1
[Auz,(PNCO4-CO2MePhP),Br,]* 5.886(13)-6.071(11) 5.984
[Au,(PNCO2-NapP),Br,]* 5.884(18)-5.977(17) 5.935
[Auz,(PNCO4-FPhP),Br,]* 5.932(8)—6.498(6) 6.101
[Auys(dppe)sCl,](PFe)s 4.047(11)-4.122(10) 4.085 15
[Aus(dppm)s](BPh,)s 3.068(25)-3.120(24) 3.101 16
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[Auss(dppm)e]>* 3.115(3)-3.115(4) 3.115 17
[Auys[(R)-L]5Cl5]3* 4.055(23)—4.103(9) 4.090 18
[Auys(dppe)sCl,]Cl; 3.638(18)—4.041(18) 3.810 19
[Au13(DIPAMP)sCI,]3* 4.062(21)-4.130(13) 4.096 20
[Auys(dppp)sla]®* 4.603(8)-5.588(8) 5.072 21
[Auig(dppm)sCla]* 3.049(9)-3.129(11) 3.090 22
[Auyg(dppm)gBra]?* 3.014(4)-3.108(4) 3.073 16
[Au,o(dppm)s(CN)e] 3.036(5)—3.091(5) 3.056
Table S7. Luminescence lifetime of icosahedral Au;3/MAu;, NCs in recent publications.

NCs Temperature Lifetime (t) / us Reference”
[Auss(PNP)sCL]Cl; (1) 7§TK 161.'3643(2’:“)) this work
[Aus3(dppe)sClo](PFe)s / 2.69 23

[Au;3(dppe)s(C=CPh),](PFe)s 3.51
[Auy3(NHC-2)sBr,]3* RT 2.4 22
[Aui3(NHC-3)4Cl5]%* 1.2
[Auys(bis-NHCMe)sBr,]3* 1.03
[Auys(bis-NHCE)sBr,]3* / 0.85 25
[Auys(bis-NHCB")sBr,]3* 0.80
[Auq3(bis-NHCPyr);sCl,]3* / 3.4 26
R-[Auy3(NHCAMeBz”Pi)gBr,]* SF(:TK ii: 27
[Au.3((S,S)-DIPAMP)sCI,]3* / 3.19 28
[Auy3(PPh3)s(2-S-QL)s(2-SH-QL),]?* / 1.58 29
Single-atom-doped Auy3 (MAu;;)
[RuAuy,(dppm)e]** Sé K 254.74 30
[IrAu;,(dppm)e]** 6.03
[RhAu1,(dppm)e]3* RT 6.96 31
[PtAus,(dppm)e)3* 5.71
[PdAu4,(dppm)e]3* 3.07
[IrAuy,((S,S)-DIPAMP);CI,]* / 5.87 28
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