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Fig. S1 ESI-MS in positive mode of 1 in DCM (a), and the comparison of experimental (black line) and simulated (red 
line) isotope patterns of peak a, [Au11(PNP)5+KCl+DCM+K+–H+]3+, m/z = 1533.70, calcd. 1533.71 (b); peak b, 
[(Au11(PNP)5+KCl+DCM+K+–2H+)+Cs+]3+, m/z = 1578.37, calcd. 1578.35 (c); peak c, [1]3+, m/z = 1622.72, calcd. 1622.72 
(d).



S3 / S14

Fig. S2 ESI-MS in positive mode of 2 in DCM (a), and the comparison of experimental (black line) and simulated (red 
line) isotope patterns of peak a, [25+–Au+–2H+]2+, m/z = 2335.63, calcd. 2335.63, (b); peak b, [25+–3H+]2+, m/z = 2433.62, 
calcd. 2433.61, (c); peak c, [25+–4H++Au+]2+, m/z = 2532.60, calcd. 2532.60, (d); peak d, [25+–4H++Au++MeOH]2+, m/z = 
2548.58, calcd. 2548.61, (e); peak e, [25+–6H++3Au++Hdppa]2+, m/z = 2921.12, calcd. 2921.11, (f).
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Fig. S3 XPS core level spectra of P 2p (top), N 1s (middle) and Cl 2p (bottom) for 1 (a) and 2 (b).
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Fig. S4 Molecular structure and space-filling mode of 1. Color legend: Au, orange; Cl, green; P, purple; N, blue; C, 
gray. All aromatic rings and hydrogen atoms are omitted for clarity.

Fig. S5 Molecular structure and space-filling mode of 2. Color legend: Au, orange; P, purple; N, blue; C, gray. All 
aromatic rings and hydrogen atoms are omitted for clarity.
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Fig. S6 UV-Vis absorption spectra of PNP (a) and Hdppa (b) ligands in DCM (left) and in solid state (right).

Fig. S7 Calculated TD-DFT UV-Vis absorption spectra (a) and the spectrum on the energy scale (b) of 2.
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Fig. S8 UV-Vis absorption spectra (left and middle) and them on the energy scale (right) of 1 (a) and 2 (b) in solid state. 
The optical gaps are determined to be about 2.08 eV (1) and 1.81 eV (2).

Fig. S9 Time-dependent UV-Vis absorption spectra in DCM of 1 (a) and 2 (b).

Fig. S10 Time-dependent UV-Vis absorption spectra in 50°C EtOH of 1 (a) and 2 (b).
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Fig. S11 Time-dependent UV-Vis absorption spectra in EtOH solution containing 0.1 M NaOH of 1 (a) and 2 (b).

Fig. S12 Fluorescence spectra of 1 in DCM (a) and in solid state (b) at RT.

Fig. S13 Fluorescence spectra (a) and luminescence lifetime decay plot (b) of PNP ligand in solid state at RT.
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Fig. S14 The correlation between the temperature and emission intensity (a) of NCs 1 and CIE color coordinates (b).
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Table S1. Crystal data and structure refinement for 1.

Empirical formula C146H119Au13Cl5N5OP10

Formula weight 5006.97

Temperature / K 150

Crystal system orthorhombic

Space group Pbca

a / Å 31.9023(4)

b / Å 27.8580(4)

c / Å 34.1479(5)

α / ° 90

β / ° 90

γ / ° 90

Volume / Å3 30348.4(8)

Z 8

ρcalc (g / cm3) 2.192

μ / mm–1 25.15

F (000) 18400

Crystal size / mm3 0.12 × 0.02 × 0.01

Radiation Cu Kα (λ = 1.54184)

2θ range for data collection / ° 5.176 to 124.996

Index ranges -36 ≤ h ≤ 24, -32 ≤ k ≤ 25, -39 ≤ l ≤ 39

Reflections collected 74245

Independent reflections 24196 [Rint = 0.1253, Rsigma = 0.1337]

Data/restraints/parameters 24196/1104/1569

Goodness-of-fit on F2 0.915

Final R indexes [I >= 2σ(I)] R1 = 0.0805, wR2 = 0.1949

Final R indexes [all data] R1 = 0.1230, wR2 = 0.2142

Largest diff. peak/hole / e Å–3 4.35/–4.97

CCDC No. 2330058
aR1 = ∑||Fo| – |Fc||/∑|Fo|. wR2 = [∑w(Fo

2 – Fc
2)2/∑w(Fo

2)2]1/2.
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Table S2. Crystal data and structure refinement for 2.

Empirical formula C144H126Au13Cl5N6P12

Formula weight 5049.96

Temperature / K 210.00

Crystal system orthorhombic

Space group Pna21

a / Å 53.647(5)

b / Å 14.0631(13)

c / Å 20.9828(19)

α / ° 90

β / ° 90

γ / ° 90

Volume / Å3 15830(3)

Z 4

ρcalc (g / cm3) 2.119

μ / mm–1 16.649

F (000) 9296

Crystal size / mm3 0.18 × 0.11 × 0.06

Radiation Ga Kα (λ = 1.34138)

2θ range for data collection / ° 6.738 to 113.998

Index ranges -66 ≤ h ≤ 67, -17 ≤ k ≤ 16, -24 ≤ l ≤ 26

Reflections collected 250228

Independent reflections 30528 [Rint = 0.0613, Rsigma = 0.0322]

Data/restraints/parameters 30528/1014/1307

Goodness-of-fit on F2 1.114

Final R indexes [I >= 2σ(I)] R1 = 0.0590, wR2 = 0.1830

Final R indexes [all data] R1 = 0.0776, wR2 = 0.1949

Largest diff. peak/hole / e Å–3 1.49/-1.12

CCDC No. 2330057
aR1 = ∑||Fo| – |Fc||/∑|Fo|. wR2 = [∑w(Fo

2 – Fc
2)2/∑w(Fo

2)2]1/2.
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Table S3. A summary of Au–Au distances in 1.

Au–Au distance / Å Average value / Å
Au7

1

Au7
2

2.7323(13)–2.9604(13)
2.7648(12)–2.9290(13)

2.855
2.842

between Au7
1 and Au7

2 2.8623(13)–3.1413(13) 2.991

Table S4. A summary of Au–Cl/P and Au···N distances in 1 and 2.

Distance / Å Average value / Å
Au–Cl (1) 2.326(6), 2.338(6) 2.332
Au–P (1) 2.281(6)–2.325(6) 2.301
Au–P (2) 2.191(8)–2.392(9) 2.308
Au···N (1) 2.9896(16)–3.0910(17) 3.029
Au···N (2) 3.1740(20)–3.4873(19) 3.364

Table S5. A summary of Au–Au distances in 2.

Au–Au distance / Å Average value / Å
Au7

1
 

Au7
2

 

between Au7
1 and Au7

2

between Au11 and Au2

2.7151(18)–3.3597(14)
2.7160(2)–3.3597(14)

2.8695(15)–3.3597(14)
2.6499(19)–2.7001(16)

2.892
2.890
3.002
2.677

Au2 3.0106(16) /

Table S6. P···P distances of disphosphine ligands of selected Aux NCs (x ≤ 20).

NCs P···P distance / Å Average value / Å Reference*

[Au13(PNP)5Cl2]3+ (1) 5.084(8)–5.133(8) 5.113
[Au13(Hdppa)6]5+ (2) 2.815(11)–2.983(10) 2.899

this work

Au4(dppm)3I2 3.004(3)–3.053(5) 3.030 1
[Au6(xy-xantphos)3]2+ 4.773(3)–4.873(3) 4.836 2

[Au6(mPhDP)4]2+ 5.418(4)–5.455(4) 5.444 3
[Au7(dppp)4]3+ 4.969(7)–5.333(8) 5.157 4

[Au8(dppp)4Cl2]2+ 4.810(12)–4.998(12) 4.920
[Au8(dppp)4]2+ 4.735(4)–5.396(4) 5.066

5

Au8(dppf)4 4.886(4)–5.285(4) 5.171 6
[Au8(PNP)4]+ 5.455(9)–5.562(8) 5.508 7

[Au9(dpph)4]3+ 5.803(22)–5.902(19) 5.853 8
[Au9(BINAP)4]3+ 4.291(11)–4.541(13) 4.437 9
[Au11(dppp)5]3+ 4.458(1)–4.840(2) 4.668 10
[Au11(dppe)6]3+ 4.223(5)–4.457(6) 4.306 11
Au11(dppf)4Cl2]+ 5.217(2)–5.291(6) 5.260 6

[Au11(S-/R-DIOP)4Cl2]+ 5.523(6)–5.422(6) 5.472 12
Au11(dpephos)4Cl2]+ 5.282(4)–5.433(4) 5.366
Au11(xantphos)4Cl2]+ 4.857(5)–4.915(6) 4.886

13

[Au11(dppp)5]+ 4.454(5)–4.988(5) 4.673
[Au11(PNHP)4Br2]+ 5.473(4)–5.822(3) 5.648

[Au11(PNCO4-ClPhP)4Br2]+ 5.934(5)–6.054(5) 5.989
[Au11(PNCO4-CO2MePhP)4Br2]+ 5.886(13)–6.071(11) 5.984

[Au11(PNCO2-NapP)4Br2]+ 5.884(18)–5.977(17) 5.935
[Au11(PNCO4-FPhP)4Br2]+ 5.932(8)–6.498(6) 6.101

14

[Au13(dppe)5Cl2](PF6)3 4.047(11)–4.122(10) 4.085 15
[Au13(dppm)6](BPh4)3 3.068(25)–3.120(24) 3.101 16
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[Au13(dppm)6]5+ 3.115(3)–3.115(4) 3.115 17
[Au13[(R)-L]5Cl2]3+ 4.055(23)–4.103(9) 4.090 18

[Au13(dppe)5Cl2]Cl3 3.638(18)–4.041(18) 3.810 19
[Au13(DIPAMP)5Cl2]3+ 4.062(21)–4.130(13) 4.096 20

[Au14(dppp)5I4]2+ 4.603(8)–5.588(8) 5.072 21
[Au18(dppm)6Cl4]4+ 3.049(9)–3.129(11) 3.090 22
[Au18(dppm)6Br4]2+ 3.014(4)–3.108(4) 3.073
[Au20(dppm)6(CN)6] 3.036(5)–3.091(5) 3.056

16

Table S7. Luminescence lifetime of icosahedral Au13/MAu12 NCs in recent publications.

NCs Temperature Lifetime (τ) / μs Reference*

70 K 11.63 (τav)[Au13(PNP)5Cl2]Cl3 (1)
RT 6.34 (τav)

this work

[Au13(dppe)5Cl2](PF6)3 2.69
[Au13(dppe)5(C≡CPh)2](PF6)3

/
3.51

23

[Au13(NHC-2)5Br2]3+ 2.4
[Au13(NHC-3)9Cl3]2+ RT

1.2
24

[Au13(bis-NHCMe)5Br2]3+ 1.03
[Au13(bis-NHCEt)5Br2]3+ 0.85
[Au13(bis-NHCBn)5Br2]3+

/
0.80

25

[Au13(bis-NHCPyr)5Cl2]3+ / 3.4 26
80 K 3.35

R-[Au13(NHC^MeBz^Pi)8Br4]+
RT 2.53

27

[Au13((S,S)-DIPAMP)5Cl2]3+ / 3.19 28
[Au13(PPh3)5(2-S-QL)3(2-SH-QL)4]2+ / 1.58 29

Single-atom-doped Au13 (MAu12)
/ 5.7

[RuAu12(dppm)6]2+
80 K 24.4

30

[IrAu12(dppm)6]3+ 6.03
[RhAu12(dppm)6]3+ 6.96
[PtAu12(dppm)6]3+ 5.71
[PdAu12(dppm)6]3+

RT

3.07

31

[IrAu12((S,S)-DIPAMP)5Cl2]+ / 5.87 28
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