Supporting Information

Achieving high-sensitive dual-mode optical thermometry via phonon-assisted cross-

relaxation in double-perovskite structured up-conversion phosphor

Houhe Dong^{a,1}, Zonghao Lei^{a,1}, Shikun Su^a, Wenhua Yang ^{a*}, Xuyang Zhang^a, Wenying Teng^a, Guangyue Zu^a, Bing

Teng^{a, b*}, Degao Zhong^{a, b, c*}

^aCollege of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao

University, Qingdao 266071, China,

^bQingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao

266071, China

- ^cWeihai Innovation Research Institute of Qingdao University, Weihai 264200, China
- ¹ These authors contributed equally to this work
- * Corresponding author.

Email: <u>yangwh@qdu.edu.cn</u> (Wenhua Yang), <u>5108tb@163.com</u> (Bing Teng), <u>zhdg2008@126.com</u> (Degao Zhong)

Fig. S1. (a and b) XRD profiles of CaLaLiTeO₆: xTm³⁺, 5%Yb³⁺ and CaLaLiTeO₆: 0.2% Tm³⁺, xYb³⁺ phosphors with diverse doping contents.

Fig. S2. SEM and elemental mapping images of the (a) CaLaLiTeO₆: 0.2% Tm³⁺, 5% Yb³⁺, (b) SrLaLiTeO₆: 0.2% Tm³⁺, 5% Yb³⁺, (c) BaLaLiTeO₆: 0.2% Tm³⁺, 5% Yb³⁺ phosphors.

Fig. S3. (a and b) Emission spectra of CaLaLiTeO₆: xTm^{3+} , 5%Yb³⁺ and CaLaLiTeO₆: 0.2% Tm³⁺, xYb³⁺ phosphors with diverse doping contents.

The optimal doping concentration

Use CaLaLiTeO₆: xYb³⁺, xTm³⁺ to study the optimal doping concentration of Yb³⁺ and Tm³⁺, fix the doping concentration of Yb³⁺ and Tm³⁺ in sequence, and change the concentration of another ion so as to cause a concentration gradient change. The PL spectra of CaLaLiTeO₆: xYb³⁺, 0.2% Tm³⁺ excited by a 980nm light source are shown in Fig. S3a. In this system, concentration quenching occurs when x>5%. This is because with the continuous increase of Yb³⁺ ion concentration, the sensitization of Yb³⁺ to Tm³⁺ is gradually replaced by reverse energy transfer [BET: ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}H_4(Tm^{3+}) \rightarrow {}^{2}F_{5/2}(Yb^{3+})+{}^{3}H_6(Tm^{3+})$ or ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}F_4(Tm^{3+}) \rightarrow {}^{2}F_{5/2}(Yb^{3+})+{}^{3}H_6(Tm^{3+})$ or ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}F_4(Tm^{3+})$ or ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}F_4(Tm^{3+})$ or ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}F_4(Tm^{3+})$ or ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}F_4(Tm^{3+})$ or ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}F_4(Tm^{3+})$ or ${}^{2}F_{7/2}(Yb^{3+})+{}^{3}F_4(Tm^{3+})$. The test results reveal that the luminescence intensity is optimal when the doping concentration of Yb^{3+} is 5%. Then, fix the concentration of 5% Yb^{3+}, so that the concentration of Tm³⁺ gradient changes from 0.1% to 0.5\%. As shown in Fig.S3b, when the doping concentration due to concentration quenching effect. Therefore, the optimal doping concentration of CaLaLiTeO_6 is 5% Yb^{3+}, 0.2\% Tm^{3+}. In future studies, we will explore the optical properties of SrLaLiTeO_6 and BaLaLiTeO_6 based on this concentration.

Fig. S4. (a) Up-conversion PL spectra of ALaLiTeO₆: 5% Yb³⁺ (A = Ca, Sr, Ba) phosphor. (b) The energy level transition process diagram of ALaLiTeO₆: 5% Yb³⁺phosphor.

Fig. S5. The relationship between ln(I) and ln(P) of (a) SrLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺ and (b) BaLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺.

Fig. S6. FT-IR and Raman spectra of of (a) CaLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺, (b) SrLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺ and (c) BaLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺ phosphor.

Fig. S7. Calculated band structure of (a) CaLaLiTeO₆: Yb, (b) SrLaLiTeO₆: Yb, (c) BaLaLiTeO₆: Yb. The PDOS, bonding and anti-bonding orbitals of (d) CaLaLiTeO₆: Yb, (e) SrLaLiTeO₆: Yb, (f) BaLaLiTeO₆: Yb.

Fig. S8. UV-Vis-NIR absorption spectra of (a) matrix ALaLiTeO₆: (A = Ca, Sr, Ba) phosphors and (c) ALaLiTeO₆: 5 % Yb^{3+} , 0.2% Tm³⁺ (A = Ca, Sr, Ba) phosphors in diffuse reflection mode; (b) and (d) Kubelka–Munk plots to estimate the optical band gap energies of the synthesized phosphors.

Fig. S9. Calculated partial density of states for (a) CaLaLiTeO₆, (b) CaLaLiTeO₆: Yb, Tm; (c) SrLaLiTeO₆, (d) SrLaLiTeO₆: Yb, Tm; (e) BaLaLiTeO₆, (f) BaLaLiTeO₆: Yb, Tm.

Fig. S10. (a-f) Repeatability heating-cooling cycles between 303 to 603 K of ALaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺.

Fig. S11. (a-f) The calculation of δ T results for ALaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺.

Supplementary Tables

CLLT	Wyckoff sites	Х	У	Z	Occupancy
Bal	4e	0.15326	0.02467	0.24374	1.00000
O1	4e	0.24925	0.72378	0.04729	1.00000
O2	4e	0.24456	0.49054	0.24382	0.50000
Ca3	4e	0.26478	0.45069	0.25237	0.46900
La4	4e	0.32283	0.19227	0.04174	1.00000
O5	2d	0.50000	0.00000	0.50000	1.00000
Li6	2a	0.00000	0.00000	0.00000	1.00000
Te7	4e	0.26478	0.45069	0.25237	0.03000
Yb8	4e	0.26478	0.45069	0.25237	0.00100
Tm9	4e	0.15326	0.02467	0.24374	1.00000

Table S1. Refined crystallographic parameters of CaLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺.

Table S2. Refined crystallographic parameters of SrLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺.

SLLT	Wyckoff sites	х	У	Z	Occupancy
01	4e	0.10536	0.05909	0.23061	1.00000
O2	4e	0.24147	0.71703	0.07528	1.00000
a3	4e	0.26775	0.44071	0.25336	0.46900
Sr4	4e	0.26929	0.44222	0.25294	0.50000
05	4e	0.34466	0.17223	0.05485	1.00000
Li6	2d	0.50000	0.00000	0.50000	1.00000
Te7	2c	0.00000	0.00000	0.00000	1.00000
Yb8	4e	0.26775	0.44071	0.25336	0.03000
Tm9	4e	0.26775	0.44071	0.25336	0.00100

Table S3. Refined crystallographic parameters of BaLaLiTeO₆: 5% Yb³⁺, 0.2% Tm³⁺.

BLLT	Wyckoff sites	X	у	Z	Occupancy
Lal	4e	0.25000	0.25000	0.25000	0.46900
02	2e	0.23016	0.00000	0.00000	0.50000
Ba3	4e	0.25000	0.25000	0.25000	1.00000
Li4	2d	0.50000	0.50000	0.50000	1.00000
Te5	2c	0.00000	0.00000	0.00000	1.00000
Yb6	4e	0.25000	0.25000	0.25000	0.03000
Tm7	4e	0.25000	0.25000	0.25000	0.00100

Table S4. Table of cation radius differences for different substitutions.

R _s	Ca ²⁺ (pm)	Sr ²⁺ (pm)	Ba ²⁺ (pm)	La ³⁺ (pm)
r	112	126	142	116
$D_{r} (Yb^{3+})$	12.1%	21.8%	30.6%	15.1%
$D_{r}(Tm^{3+})$	11.3%	21.1%	30%	14.3%

Table S5. Energy value of simplified energy levels to the ground level for Tm³⁺ ions, and the energy gap of selected transitions in Tm³⁺.

Energy level	Energy(cm ⁻¹)	Transition	$\Delta E(cm^{-1})$
${}^{1}D_{2}$	28010	$NR1:^{3}H_{5} \rightarrow ^{3}F_{4}$	2510
$^{1}G_{4}$	21450	$NR2:{}^{3}F_{2,3} \rightarrow {}^{3}H_{4}$	1530~2030
${}^{3}F_{2}$	14800	$CR1:^{3}H_{4}\rightarrow^{1}D_{2}$	-15240
³ F ₃	14300	$CR1:^{1}G_{4}\rightarrow ^{3}F_{4}$	15830
$^{3}H_{4}$	12770	$CR2:^{1}G_{4}\rightarrow ^{1}D_{2}$	-6560
${}^{3}\text{H}_{5}$	8430	$CR2:^{3}H_{4}\rightarrow ^{3}F_{4}$	6850
³ F ₄	5920	$CR3:^{1}G_{4} \rightarrow ^{3}F_{2,3}$	6650~7150
$^{3}\text{H}_{6}$	0	$CR3:^{3}H_{6}\rightarrow ^{3}F_{4}$	-5920

Phosphors	Transitions	Temperature (K)	S _a (% K ⁻¹)	$S_r (\% K^{-1})$	Refs	
Sr ₂ GdF ₇ : Tm ³⁺ /Yb ³⁺	${}^3F_{2,3} \rightarrow {}^3H_6 / {}^1G_4 \rightarrow {}^3F_4$	293-563	3.9	1.97	1	
$NaY_{2}F_{7}$:Yb ³⁺ /Tm ³⁺	${}^3F_{2,3} {\longrightarrow} {}^3H_6/{}^1G_4 {\longrightarrow} {}^3F_4$	307-567	10.01	1.63	2	
$SrF_2:Tm^{3+}/Yb^{3+}$	${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{H}_{6} / {}^{1}\text{G}_{4} \rightarrow {}^{3}\text{H}_{6}$	298–573	0.21	2.2	3	
$Bi_2SiO_5:Tm^{3+}/Yb^{3+}@SiO_2$	${}^{1}G_{4} \rightarrow {}^{3}F_{4} / {}^{3}F_{2,3} \rightarrow {}^{3}H_{4}$	280-400	1.68	1.95	4	
	${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}/{}^{1}G_{4} \rightarrow {}^{3}F_{4}$	313-573	4.94	1.92		
$La_2Mg11O_6:1m^{3+}, Yb^{3+}$	${}^3F_{2,3} \rightarrow {}^3H_6 / {}^1G_4 \rightarrow {}^3H_6$	313-573	3.32	1.63	5	
La ₂ Mo ₂ O ₉ : Tm ³⁺ , Yb ³⁺	${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}/{}^{3}H_{4} \rightarrow {}^{3}H_{6}$	293–553	0.284	2.29	6	
$Ba_{3}Y_{4}O_{9}$:Yb ³⁺ /Tm ³⁺	${}^3F_{2,3} {\rightarrow} {}^3H_6 / {}^1G_4 {\rightarrow} {}^3H_6$	294-573	0.81	1.08	7	
Sr ₃ Y(PO ₄) ₃ : Tm ³⁺ /Yb ³⁺	${}^3F_{2,3} {\longrightarrow} {}^3H_6/{}^1G_4 {\longrightarrow} {}^3F_4$	298–573	1.27	1.52	8	
$Ba_{3-x}Sr_{x}Lu_{4}O_{9}$: Tm^{3+}/Yb^{3+}	${}^{1}G_{4} \rightarrow {}^{3}F_{4} / {}^{3}F_{3} \rightarrow {}^{3}H_{6}$	303-573	1.50	0.88	9	
Ca ₉ Y(PO ₄) ₇ : Tm ³⁺ , Yb ³⁺	${}^3F_{2,3} \rightarrow {}^3H_6/{}^1G_4 \rightarrow {}^3F_4$	323-823	8.07	1.07	10	
$CaIn_2O_4$: Tm^{3+}/Yb^{3+}	$^{3}\text{H}_{4} \rightarrow ^{3}\text{H}_{6} / \ ^{1}\text{G}_{4} \rightarrow ^{3}\text{H}_{6}$	303-373	1.0	0.51	11	
Y_2O_3 : Tm^{3+}/Yb^{3+}	$^{3}\text{H}_{4} \rightarrow ^{3}\text{H}_{6} / \ ^{1}\text{G}_{4} \rightarrow ^{3}\text{H}_{6}$	303-573	11.7	1.51	12	
	${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}/{}^{1}G_{4} \rightarrow {}^{3}F_{4}$	303-583	19.8	2.46		
$Y_2Mo_3O_{12}$: $Tm^{3+}/0.26Yb^{3+}$	${}^3F_{2,3} {\rightarrow} {}^3H_6 / {}^1G_4 {\rightarrow} {}^3H_6$	303-583	3.17	3.27	12	
	${}^3F_{2,3} {\longrightarrow} {}^3H_6/{}^1G_4 {\longrightarrow} {}^3F_4$	303-503	13.1	2.67	15	
$Y_2Mo_3O_{12}$: $Tm^{3+}/0.14Yb^{3+}$	${}^3F_{2,3} {\rightarrow} {}^3H_6 / {}^1G_4 {\rightarrow} {}^3H_6$	303-503	2.13	3.06		
$BaLu_{6}(Ge_{2}O_{7})_{2}(Ge_{3}O_{10})$	${}^3F_{2,3} \rightarrow {}^3H_6/{}^3H_4 \rightarrow {}^3H_6$	298-498	2.1	1.94	14	
SrWO ₄ : Tm ³⁺ /Yb ³⁺	${}^3F_{2,3} \rightarrow {}^3H_6/{}^3H_4 \rightarrow {}^3H_6$	308-573	0.617	0.7	15	
NaYTiO ₄ : Tm ³⁺ /Yb ³⁺	${}^3F_{2,3} \rightarrow {}^3H_6/{}^3H_4 \rightarrow {}^3H_6$	463-823	3.2	1.04	16	
LaPO ₄ : Tm ³⁺ /Yb ³⁺	${}^3\mathrm{F}_{2,3} \rightarrow {}^3\mathrm{H}_6/{}^3\mathrm{H}_4 {\rightarrow} {}^3\mathrm{H}_6$	293-773	2.5	3.0	17	
$Bi_2Ti_2O_7$: Tm^{3+}/Yb^{3+}	${}^3F_{2,3} \rightarrow {}^3H_6/{}^3H_4 \rightarrow {}^3H_6$	300-505	/	2.4	18	
CaLaLiTeO ₆ : 5%Yb ³⁺ , 0.2%Tm ³⁺			3.19	2.11		
SrLaLiTeO ₆ : 5%Yb ³⁺ , 0.2%Tm ³⁺	${}^3F_{2,3} \rightarrow {}^3H_6/{}^1G_4 \rightarrow {}^3F_4$		8.52	4.69		
BaLaLiTeO ₆ : 5%Yb ³⁺ , 0.2%Tm ³⁺			10.05	1.29	This Work	
CaLaLiTeO ₆ : 5%Yb ³⁺ , 0.2%Tm ³⁺		303-693	1.19	1.22		
SrLaLiTeO ₆ : 5%Yb ³⁺ , 0.2%Tm ³⁺	${}^3\mathrm{F}_{2,3}{\rightarrow}{}^3\mathrm{H}_6/{}^1\mathrm{G}_4{\rightarrow}{}^3\mathrm{H}_6$		2.83	1.35		
BaLaLiTeO ₆ : 5%Yb ³⁺ , 0.2%Tm ³⁺			5.87	1.22		

Table S6. Thermometry sensitivity of Yb^{3+} and Tm^{3+} co-doped up-conversion phosphors.

References

- 1 W. Chen, J. Cao, F. Hu, R. Wei, L. Chen and H. Guo, Sr₂GdF₇:Tm³⁺/Yb³⁺ glass ceramic: A highly sensitive optical thermometer based on FIR technique, *Journal of Alloys and Compounds*, 2018, **735**, 2544-2550.
 - 2 S. Chen, W. Song, J. Cao, F. Hu and H. Guo, Highly sensitive optical thermometer based on FIR technique of transparent NaY₂F₇:Tm³⁺/Yb³⁺ glass ceramic, *Journal of Alloys and Compounds*, 2020, **825**, 154011.
 - N. Rakov, S. A. Vieira and A. S. L. Gomes, Tm³⁺/Yb³⁺co-doped SrF₂ up-conversion phosphors for non-invasive optical thermometry: ratiometric approach using thermal and non-thermal coupled fluorescent emission bands, *Applied Physics A*, 2021, **127**.
 - E. Casagrande, M. Back, D. Cristofori, J. Ueda, S. Tanabe, S. Palazzolo, F. Rizzolio, V. Canzonieri, E. Trave and P. Riello, Upconversion-mediated Boltzmann thermometry in double-layered Bi₂SiO₅:Yb³⁺,Tm³⁺@SiO₂ hollow nanoparticles, *Journal of Materials Chemistry C*, 2020, 8, 7828-7836.
 - 5 K. Zhu, H. Xu, Z. Wang and Z. Fu, Lanthanide-doped lead-free double perovskite La₂MgTiO₆ as ultra-bright multicolour LEDs and novel self-calibrating partition optical thermometer, *Inorganic Chemistry Frontiers*, 2023, DOI: 10.1039/d3qi00529a, 3383-3395.
 - 6 Q. Xiao, X. Dong, X. Yin, H. Wang, H. Zhong, K. Liu, B. Dong and X. Luo, Promising Yb³⁺-sensitized La₂Mo₂O₉ phosphors for multi-color up-conversion luminescence and optical temperature sensing, *Journal of Alloys and Compounds*, 2022, **895**, 162686.
 - 7 S. Liu, J. Cui, J. Jia, J. Fu, W. You, Q. Zeng, Y. Yang and X. Ye, High sensitive $Ln^{3+}/Tm^{3+}/Yb^{3+}$ ($Ln^{3+} = Ho^{3+}$, Er^{3+}) tri-doped $Ba_3Y_4O_9$ upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels, *Ceramics International*, 2019, **45**, 1-10.
 - 8 W. Liu, X. Wang, Q. Zhu, X. Li, X. Sun and J.-G. Li, Upconversion luminescence and favorable temperature sensing performance of eulytite-type Sr₃Y(PO₄)₃:Yb³⁺/Ln³⁺ phosphors (Ln=Ho, Er, Tm), *Science and Technology of Advanced Materials*, 2019, **20**, 949-963.
 - 9 X. Zhang, H. Zheng, J. Hu, F. Lu, X. Peng, R. Wei, F. Hu and H. Guo, Enhanced upconversion luminescence and temperature sensing property of Ba Sr Lu₄O₉:Tm³⁺/Yb³⁺ phosphors, *Ceramics International*, 2021, 47, 32290-32296.
 - 10 Y. Zhuang, D. Wang and Z. Yang, Upconversion luminescence and optical thermometry based on non-thermally-coupled levels of Ca₉Y(PO₄)₇: Tm³⁺, Yb³⁺ phosphor, *Optical Materials*, 2022, **126**, 112167.
 - H. Liu, Z. Zhang, J. Liu, K. Wang and Y. Zhang, Efficient upconversion and downshifting luminescence of CaIn₂O₄: Yb³⁺/Tm³⁺/RE³⁺ (RE=Er/Ho) phosphor: Temperature sensing performance in the visible and near-infrared range, *Ceramics International*, 2023, 49, 30510-30521.

- 12 V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic and M. D. Dramicanin, Y₂O₃:Yb,Tm and Y₂O₃:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence, *Ceramics International*, 2013, **39**, 1129-1134.
- 13 H. Lv, P. Du, W. Li and L. Luo, Tailoring of Upconversion Emission in Tm³⁺/Yb³⁺-Codoped Y₂Mo₃O₁₂ Submicron Particles Via Thermal Stimulation Engineering for Noninvasive Thermometry, ACS Sustainable Chemistry & Engineering, 2022, 10, 2450-2460.
- 14 O. A. Lipina, L. L. Surat, A. Y. Chufarov, I. V. Baklanova, A. N. Enyashin, M. A. Melkozerova, A. P. Tyutyunnik and V. G. Zubkov, Structural, electronic and optical properties of $BaRE_6(Ge_2O_7)_2(Ge_3O_{10})$ (RE = Tm, Yb, Lu) compounds and $BaYb_6(Ge_2O_7)_2(Ge_3O_{10})$:Tm³⁺ and $BaLu_6(Ge_2O_7)_2(Ge_3O_{10})$:Yb³⁺,Tm³⁺ phosphors: potential applications in temperature sensing, *Dalton Transactions*, 2023, **52**, 7482-7494.
- 15 H. Song, C. Wang, Q. Han, X. Tang, W. Yan, Y. Chen, J. Jiang and T. Liu, Highly sensitive Tm³⁺/Yb³⁺ codoped SrWO₄ for optical thermometry, *Sensors and Actuators A: Physical*, 2018, **271**, 278-282.
- 16 Y. Wang, Y. Li, C. Ma, Z. Wen, X. Yuan and Y. Cao, Temperature sensing properties of NaYTiO₄: Yb/Tm phosphors based on near-infrared up-conversion luminescence, *Journal of Luminescence*, 2022, 248, 118917.
- 17 A. Tymiński, E. Śmiechowicz, I. R. Martín and T. Grzyb, Ultraviolet- and Near-Infrared-Excitable LaPO₄:Yb³⁺/Tm³⁺/Ln³⁺ (Ln = Eu, Tb) Nanoparticles for Luminescent Fibers and Optical Thermometers, *ACS Applied Nano Materials*, 2020, **3**, 6541-6551.
- 18 W. Ge, M. Xu, J. Shi, J. Zhu and Y. Li, Highly temperature-sensitive and blue upconversion luminescence properties of Bi₂Ti₂O₇:Tm³⁺/Yb³⁺ nanofibers by electrospinning, *Chemical Engineering Journal*, 2020, **391**, 123546.