Supporting Information

CDs "inserted" abundant FeB based electrode via "local

photothermal effect" strategy toward efficient overall seawater

splitting

Shiheng Liang^a, Liugang Wu^a, Yiming Wang^a, Yuqi Shao^a, Hongyuan Song^c, Ziliang Chen^b, Weiju Hao^{*a}

^aSchool of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

^bInstitute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China

^cDepartment of Ophthalmology, Shanghai Changhai Hospital, Shanghai, 200433, P.R. China

E-mail: wjhao@usst.edu.cn

Figure S1. $FeB_x@TiO_2$ and $CDs-FeB_x@TiO_2$ electrodes are electroless plated for 1h, 3h, and 5h, respectively.

Figure S2. LSV curves of CDs-FeB_x@TiO₂ electrode with different electroless plating (EP) time during HER process.

Figure S3. EIS measurements of CDs-FeB_x@TiO₂ with different EP time during HER process.

Figure S4. LSV curves of CDs-FeB_x@TiO₂ electrode with different EP time during OER process.

Figure S5. EIS measurements of CDs-FeB_x@TiO₂ with different EP time during OER process.

Figure S6. Cross-section SEM of CDs-FeB_x@TiO₂ at 50 um, 30 um, 10 um, 5 um, respectively.

Figure S7. CDs-FeB_x@TiO₂ transmission electron microscopy at 500 nm, 100 nm, respectively.

Figure S8. CV curves within a non-faradaic reaction region of $0.05\sim0.40$ V (vs. RHE) at different scan rates toward HER for (a) CDs-FeB_x@TiO₂ PTE; (b) CDs-FeB_x@TiO₂; (c) FeB_x@TiO₂ PTE (d) FeB_x@TiO₂.

Figure S9. (a) Temperature-dependent LSV curves of CDs-FeB_x@TiO₂ PEE in 1M KOH + 0.5M NaCl by heating the temperature of electrolyte during HER process; (b) fitted curves of the relationships between overpotential and temperature at j=20, 50, 100 mA cm⁻², respectively.

HER performance in alkaline solution

Figure S10. The HER performance of CDs-FeB_x@TiO₂ and state-of-the-

art transition metal-based bifunctional electrocatalysts was compared.

Figure S11. The OER performance of $CDs-FeB_x@TiO_2$ and state-of-theart transition metal-based bifunctional electrocatalysts was compared.

Figure S12. CV curves within a non-faradaic reaction region of $0.05 \sim 0.40$ V (vs. RHE) at different scan rates toward OER for (a) CDs-FeB_x@TiO₂ PTE; (b) CDs-FeB_x@TiO₂; (c) FeB_x@TiO₂ PTE (d) FeB_x@TiO₂.

Figure S13. (a) Temperature-dependent LSV curves of CDs-FeB_x@TiO₂ PEE in 1M KOH + 0.5M NaCl by heating the temperature of electrolyte during OER process; (b) fitted curves of the relationships between overpotential and temperature at j=20, 50, 100 mA cm⁻², respectively.

Supporting Tables

Table S1. Comparison of HER overpotential of electrodes in 1.0 M KOH+0.5 M NaCl.

Electrode material	η10(mV)	η50(mV)	η100(mV)
CDs-FeB _x @TiO ₂ 1h	250	398	381
$CDs\text{-}FeB_x @TiO_2 1h (PTE) \\$	135	277	351
CDs-FeB _x @TiO ₂ 3h	76	245	324
$CDs\text{-}FeB_x@TiO_2 \ 3h \ (PTE \)$	56	223	282
CDs-FeB _x @TiO ₂ 5h	128	278	343
$CDs-FeB_x@TiO_2 5h (PTE)$	93	266	336

Table S2. Comparison of OER overpotential of electrodes in 1.0 M KOH+0.5 M

NaCl.

Electrode material	η10(mV)	η50(mV)	η100(mV)
CDs-FeB _x @TiO ₂ 1h	236	337	382
$CDs\text{-}FeB_x \textcircled{0}{}TiO_2 \text{ 1h (PTE)}$	224	330	377
CDs-FeB _x @TiO ₂ 3h	187	309	359
$CDs-FeB_x@TiO_2 3h (PTE)$	183	254	324
CDs-FeB _x @TiO ₂ 5h	207	237	304
$CDs-FeB_x@TiO_2 5h (PTE)$	199	221	282

Table S3. HER overpotential of electrodes in 1.0 M KOH+0.5 M NaCl.

Electrode material	η10(mV)	η50(mV)	η100(mV)
Pt/C@TiO ₂	397	0	0
TiO ₂ (PTE)	374	0	0
$FeB_x@TiO_2 3h$	103	225	342
$FeB_x@TiO_2 3h (PTE)$	93	203	325
CDs-FeB _x @TiO ₂ 3h	76	179	313
$CDs-FeB_x @TiO_2 3h (PTE)$	56	156	286

Table S4. OER overpotential of electrodes in 1.0 M KOH+0.5 M NaCl.

Electrode material	η10(mV)	η50(mV)	η100(mV)
--------------------	---------	---------	----------

Pt/C@TiO ₂	0	0	0
TiO ₂ (PTE)	614	0	0
FeB _x @TiO ₂ 3h	249	298	395
$FeB_x@TiO_2 3h (PTE)$	216	273	357
CDs-FeB _x @TiO ₂ 3h	187	223	337
$CDs-FeB_x@TiO_2 3h (PTE)$	183	215	316

Table S5. Comparison of HER performance of CDs-FeB_x@TiO₂ electrode with recently reported titanium series catalysts in 1.0 M KOH+0.5 M NaCl.

Catalysts	Electrode	η10(mV)	Reference
CDs-FeB _x @TiO ₂	1M KOH + 0.5M NaCl	56	This work
Ti foil/NiP ₂ NS	1M KOH	134	S 1
TiO ₂ /NiFeS	1M KOH	107	S2
Ti/TiO ₂ @NiBx	1M KOH	138	S3
Ti mesh/Mo doped CoSx	1M KOH	230	S4
Ti mesh/amorphous-CoSe	1M KOH	121	S5
Ti mesh/CFMS/CFOC	1M KOH	93	S6
Ti mesh/NiWO ₄	1M KOH	101	S7
Ti mesh/Co-B/CoONAs	1M KOH	102	S 8
Ti mesh/NiMo HNRs	1M KOH	92	S9
Ti plate/NiSe ₂	1M KOH	96	S10
HPTiO ₂ /NF	1M KOH	133	S11
TiO ₂ /NiCo ₂ O ₄	1M KOH	185	S12
TiO ₂ /CoS ₂	1M KOH	198	S13
TiO ₂ /Co ₉ S ₈	1M KOH	139	S14
TiO_2/WS_2	1M KOH	142	S15
TiO_2/MoS_2	1M KOH	127	S16
TiO ₂ /Ru	1M KOH	150	S17
TiO ₂ NDs/Co NSNTs-CFs	1M KOH	108	S18
TiO ₂ /CoNi/C-Au	1M KOH	445	S19

Table S6. Comparison of OER performance of CDs-FeB_x@TiO₂ electrode with recently reported titanium series catalysts of electrodes in 1.0 M KOH+0.5 M NaCl.

Catalysts	Electrode	η10(mV)	Reference
CDs-FeB _x @TiO ₂	1M KOH + 0.5M NaCl	183	This work

Ti/CoO _x -SnO _x /Sb	1M KOH	317	S20
Ti mesh/NiTe ₂	1M KOH	315	S21
Ti mesh/CoP	1M KOH	310	S22
Ti mesh/NiWO ₄	1M KOH	322	S 7
Ti plate/NiSe ₂	1M KOH	295	S10
HP TiO ₂ /NF	1M KOH	309	S11
TiO ₂ /NiCo ₂ O ₄	1M KOH	309	S12
TiO_2/CoS_2	1M KOH	231	S13
Ti mesh/Fe0.1/NiS ₂ NAs	1M KOH	230	S23
TiO ₂ /Co ₉ S ₈	1M KOH	240	S14
TiO_2 HS ₈ /(Co,Nb)-MoS ₂	1M KOH	260	S24
ultrathin TiO ₂ /Fe	1M KOH	270	S25
TiO ₂ /Ti ₃ C ₂ Tx/NiFeCo-LDH	1M KOH	340	S26
TiO ₂ /FeMnP	1M KOH	300	S27
Ti/TiO ₂ /LaCoO ₃ /RuO ₂	1M KOH	289	S28
TiO ₂ /Co	1M KOH	390	S29
Ti plate/CoO ₁₃ NiO ₈₇ Se ₂	1M KOH	320	S30
Ti mesh/Co-B/CoO NAs	1M KOH	290	S 8
Ti mesh/CFMS/CFOC	1M KOH	237	S 6

Table S7. Comparison of OWS performance of CDs-FeB_x@TiO₂ electrode with recently reported bifunctional catalysts in 1.0 M KOH+0.5 M NaCl.

Catalysts	Flootrodo	Potential(V)	Doforonao
Catalysis	Electrode	(<i>j</i> =10mA cm ⁻²)	Kelefence
CDs-FeB _x @TiO ₂	1M KOH + 0.5M NaCl	1.42	This work
NF-Ni ₃ S ₂ /MnO ₂	1M KOH	1.52	S31
NF-C/CoS/NiOOH	1M KOH	1.71	S32

CoFe/NF	1M KOH	1.64	S33
CoFeZr oxides/NF	1M KOH	1.63	S34
HOF-Co _{0.5} Fe _{0.5} /NF	1M KOH	1.63	S35
Fe-Ni ₂ P@PC/Cu _x S	1M KOH	1.62	S36
NF/T(Ni ₃ S ₂ /MnS-O)	1M KOH	1.54	S37
FeB ₂ /NF	1M KOH	1.57	S38
NiFeO _x @NiCu	1M KOH	1.67	S39
CuFe ₂ O ₄	1M KOH	1.62	S40
Co-Cu-W	1M KOH	1.8	S41
Co@N-CNT/NF	1M KOH	1.58	S42
LIA-Ni-BDC	1M KOH	1.6	S43
NCMC/NCMC	1M KOH	1.63	S44
NiFe-MS/MOF@NF	1M KOH	1.74	S45
Co-Mo-P@NCNS	1M KOH	1.58	S46
NiFe-P@GNS	1M KOH	1.58	S47
PtCo@NC//RuCo@NC	1M KOH	1.52	S48
CoP@FeCoP/NC USMPPs	1M KOH	1.68	S49

Reference.

[1] Q.H. Cao, C.Q. Wang, S.J. Chen, X.D. Xu, F.G. Liu, X.H. Geng, J.H. Wang, Int J Hydrogen Energ, 44 (2019) 6535-6543.

[2] Y.D. Xue, Z.S. Fishman, Y.T. Wang, Z.H. Pan, X. Shen, R. Yanagi, G.S. Hutchings, M.Z. Liu, S.L. Zheng, Y. Zhang, E.I. Altman, S. Hu, J Mater Chem A, 7 (2019) 3227-3233.

[3] Y. Fu, S. Weng, J.L. Fan, Y.R. Zhang, Y.H. Guo, W.J. Hao, Chem Eng J 2022, 430, 132881.

[4] J.K. Wang, Y.J. Wang, Z.P. Yao, T.P. Xie, S.L. Liu, Z.H. Jiang, J Electrochem Soc, 167 (2020) 114510.

[5] T.T. Liu, Q. Liu, A.M. Asiri, Y.L. Luo, X.P. Sun, Chem Commun, 51 (2015) 16683-16686.

[6] J.X. Zhao, X. Ren, X. Su, Y. Zhang, T. Yan, Q. Wei, D. Wu, Chemelectrochem, 7 (2020) 2309-2313.

[7] Y.Y. Ji, L. Yang, X. Ren, G.W. Cui, X.L. Xiong, X.P. Sun, ACS Sustain Chem

Eng, 6 (2018) 9555-9559.

[8] W.B. Lu, T.T. Liu, L.S. Xie, C. Tang, D.N. Liu, S. Hao, F.L. Qu, G. Du, Y.J. Ma, A.M. Asiri, X.P. Sun, Small, 13 (2017) 1700805.

[9] J.Q. Tian, N.Y. Cheng, Q. Liu, X.P. Sun, Y.Q. He, A.M. Asiri, J Mater Chem A, 3 (2015) 20056-20059.

[10] Z.H. Pu, Y.L. Luo, A.M. Asiri, X.P. Sun, ACS Appl Mater Inter, 8 (2016) 4718-4723.

[11] Y. Yan, X. Cheng, W.W. Zhang, G. Chen, H.Y. Li, A. Konkin, Z.C. Sun, S.R. Sun, D. Wang, P. Schaaf, ACS Sustain Chem Eng, 7(2019) 885-894.

[12] R. Vadakkekara , R. Illathvalappil , S. Kurungot, Chemelectrochem, 5 (2018) 4000-4007.

[13] P. Ganesan, A. Sivanantham, S. Shanmugam, J Mater Chem A, 6 (2018) 1075-1085.

[14] S.J. Deng, Y. Zhong, Y.X. Zeng, Y.D. Wang, X.L. Wang, X.H. Lu, X.H. Xia, J.P. Tu, Adv Sci, 5 (2018) 1700772.

[15] S.H. Liu, Y.X. Xu, D. Chanda, L. Tan, R.M. Xing, X.Y. Li, L.Q. Mao, N. Kazuya, A. Fujishima, Int J Hydrogen Energ, 45 (2020) 1697-1705.

[16] L. Wang, Y.T. Qian, J.M. Du, L.Y. Zhang, G. Li, B. Zhang, W.M. Wang, D.J. Kang, J Alloy Compd, 821 (2020) 153203.

[17] S.Y. Nong, W.J. Dong, J.W. Yin, B.W. Dong, Y. Lu, X.T. Yuan, X. Wang, K.J. Bu, M.Y. Chen, S.D. Jiang, L.M. Liu, M.L. Sui, F.Q. Huang, J Am Chem Soc, 140 (2018) 5719-5727.

[18] J.X. Feng, H. Xu, Y.T. Dong, X.F. Lu, Y.X. Tong, G.R. Li, Angew Chem Int Edit, 56 (2017) 2960-2964.

[19] M.M. Wang, C. Xu, C.P. Li, Y.D. Jin, J Mater Chem A, 7 (2019) 19704-19708.

[20] M.Z. Wu, Y. Li, J. Du, C.Y. Tao, Z.H. Liu, Appl Surf Sci, 495 (2019) 143596.

[21] Z.C. Wang, L.X. Zhang, Chemelectrochem, 5 (2018) 1153-1158.

[22] L.B. Yang, H.L. Qi, C.X. Zhang, X.P. Sun, 27 (2016) 23lt01.

[23] N. Yang, C. Tang, K.Y. Wang, G. Du, A.M. Asiri, X.P. Sun, Nano Research, 9 (2016) 3346-3354.

[24] D.C. Nguyen, T.L.L. Doan, S. Prabhakaran, D.T. Tran, D. Kim, J.H. Lee, N.H. Kim, Nano Energy, 82 (2021) 105750.

[25] G.Q. Shen, R.R. Zhang, L. Pan, F. Hou, Y.J. Zhao, Z.Y. Shen, W.B. Mi, C.X. Shi, Q.F. Wang, X.W. Zhang, J.J. Zou, Angew Chem Int Edit, 59 (2020) 2313-2317.

[26] N.X. Hao, Y. Wei, J.L. Wang, Z.W. Wang, Z.H. Zhu, S.L. Zhao, M. Han, X. Huang, RSC Adv, 8 (2018) 20576-20584.

[27] D.E. Schiper, Z.H. Zhao, A.P. Leitner, L.X. Xie, F. Qin, M.K. Alam, S. Chen, D.Z. Wang, Z.F. Ren, Z.M. Wang, J.M. Bao, K.H. Whitmire, ACS Nano, 11 (2017) 4051-4059.

[28] S. Li, Y.L. Li, Z.G. Zhang, X.Y. Chen, H. Xiao, L. Lin, W.Q. Wu, X.Y. Wu, X.Y. Jiang, J Appl Electrochem, 50 (2020) 723-731.

[29] Y. Yan, C.Y. Liu, H.W. Jian, X. Cheng, T. Hu, D. Wang, L. Shang, G. Chen, P. Schaaf, X.Y. Wang, E. Kan, T.R. Zhang, Adv Funct Mater, 31 (2021) 2009610.

[30] T.T. Liu, A.M. Asiri, X.P. Sun, Nanoscale, 8 (2016) 3911-3915.

[31] Y. Xiong, L. Xu, C. Jin, Q. Sun, Appl. Catal., B 2019, 254, 329.

[32] F. T. Tsai, Y. T. Deng, C. W. Pao, J. L. Chen, J. F. Lee, K. T. Lai, W. F. Liaw, J. Mater. Chem. A 2020, 8, 9939.

[33] P. Babar, A. Lokhande, H. H. Shin, B. Pawar, M. G. Gang, S. Pawar, J. H. Kim, Small 2018, 14, 1702568.

[34] L. Huang, D. Chen, G. Luo, Y. R. Lu, C. Chen, Y. Zou, C. L. Dong, Y. Li, S. Wang, 40 Adv. Mater. 2019, 31, 1901439.

[35] F. Q. Liu, J. W. Liu, Z. Gao, L. Wang, X. Z. Fu, L. X. Yang, Y. Tao, W. H. Yin, F. Luo, Appl. Catal., B 2019, 258, 117973.

[36] D. T. Tran, H. T. Le, V. H. Hoa, N. H. Kim and J. H. Lee, Nano Energy, 2021, 84, 105861.

[37] Y. Zhang, J. Fu, H. Zhao, R. Jiang, F. Tian, R. Zhang, Appl. Catal., B 2019, 257, 117899.

[38] H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D. L. Carroll, S. M. Geyer, Adv. Energy Mater. 2017, 7, 1700513.

[39] Y. Zhou, Z. Wang, Z. Pan, L. Liu, J. Xi, X. Luo and Y. Shen, Adv Mater, 2019, 31, 1806769.

[40] V. Sharma, U. N. Pan, T. I. Singh, A. K. Das, N. H. Kim and J. H. Lee, Chem 33 Eng J, 2021, 415, 127779.

[41] D. Gao, R. Liu, J. Biskupek, U. Kaiser, Y. Song and C. Streb, Angew Chem Int Edit, 2019, 58, 4644-4648.

[42] L. Yang, H. Li, Y. Yu, Y. Wu, L. Zhang, Appl Catal B-Environ 2020, 271, 118939.

[43] Y. J. Tang, H. Zheng, Y. Wang, W. Zhang, K. Zhou, Adv Funct Mater 2021, 31, 2102648.

[44] X. Wei, Y. Zhang, H. He, D. Gao, J. Hu, H. Peng, L. Peng, S. Xiao, P. Xiao, Chem Commun 2019, 55, 6515-6518.

[45] M. Zhao, W. Li, J. Li, W. Hu, C. M. Li, Adv Sci 2020, 7, 2001965.

[46] N. Li, Y. Guan, Y. Li, H. Mi, L. Deng, L. Sun, Q. Zhang, C. He, X. Ren, J Mater Chem A 2021, 9, 1143-1149.

[47] D. Yang, Z. Su, Y. Chen, Y. Lu, B. Yu, K. Srinivas, B. Wang, W. Zhang, J Mater Chem A 2020, 8, 22222-22229.

[48] B. Sarkar, D. Das, K. K. Nanda, Green Chem 2020, 22, 7884-7895.

[49] J. Shi, F. Qiu, W. Yuan, M. Guo, Z.-H. Lu, Chem Eng J 2021, 403, 126312.